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A Remarkable Theory:

The Standard Model
Forces – spin 1*Matter – spin 1/2

stable, everyday matter

unstable, made at particle accelerators

*Gravity (spin 2) is very weak at the particle level – ignore it here

Massless

- infinite range

Mass

~ 100 GeV

Why?

QCD – modern

theory of the 

strong force

– binds quarks

together into

protons, plus

many more 

hadrons 
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The Three Forces

g

electromagnetism strongweak

n
electric

charge

weak

charge
color

Feynman diagrams let us visualize them

Many similarities between the 3 forces, but one big difference:

• photon and gluon* are massless particles 

 travel long range, at speed of light

• W and Z particles are very massive:  ~100 times mass of proton

 they can only have influence over ~1/100 of a proton radius!
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2 is the number of ways light 

(photons) can be polarized.

Cross 2 pairs of polarized 

sunglasses to see this.

For a particle at rest, 

all 3 directions of space (x,y,z) are equivalent 

W & Z just like photons, except they have mass. 

Massive particles can be stationary (at rest).

there must be 3 ways to polarize W and Z bosons

 where does the extra polarization come from?

Something Is Missing:
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electroweak

QCD

g*, Z

Vector Bosons Also Self-Interact
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g, Z

Higgs (Anderson, Brout, Englert, Guralnik, Hagen & Kibble) realized

long ago (~1964) that a single scalar spin 0 particle could fix this problem

+

The Higgs boson H

Weak self-interactions by themselves would violate unitarity

at energies well above the weak boson masses:

Something Is Missing (II)

Higgs boson can also give mass to all fermions, not just W and Z
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Hunt for the Higgs

• Higgs boson invented in 1964. 

• Experimental searches only began around 1980, 

really picked up steam in the 1990s and 2000s

(LEP  Tevatron)

• Search is difficult: Higgs doesn’t talk to particles it doesn’t 

give much mass to – and those are the stable particles we 

know how to collide!

mu = 0.003

md = 0.006

mc = 1.3

ms = 0.12

mt = 184

mb = 5.0

me = 0.0005446 mm = 0.1126 mt = 1.894

(in units of mp)



L. Dixon       Precise Theory for the Energy Frontier Berlin           28 Sept. 2009 8

What If Higgs Is Wrong, or Incomplete?

• Lot of reasons to believe that other              
―new physics‖ is lurking nearby.

• Related to hierarchy problem from quadratic 
divergences in simplest Higgs model:

• Also, SM Higgs accomodates, but does not 
explain, patterns of fermion masses mf

• No SM candidate for dark matter

• But what exactly is the new physics?

No-one really knows.
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One Possibility: Supersymmetry

• Symmetry between fermions (matter) and bosons (forces)

• Predicts that for every elementary particle we have already seen 

there is another one we will see soon!

• Solution to the hierarchy problem: 

fermion + boson corrections to Higgs mass cancel

• One particle can be dark matter

• But is it right?

spin 1/2

spin 0 spin 1/2

spin 0

spin 1
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New Physics Around the Corner

• Supersymmetry predicts a host of new massive particles

in this mass range, including a dark matter candidate

• Many other theories of electroweak scale mW,Z = 100 GeV

make similar predictions:

• new dimensions of space-time

• new forces

• etc.

How to sort them all out?

We expect new physics at the 100 GeV – 1 TeV mass scale, 

associated with electroweak symmetry breaking. 

At the very least, a Higgs boson (or something like it).
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Signals vs. Backgrounds

electron-positron colliders

– small backgrounds

vs.

proton colliders

– large backgrounds
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The Energy Frontier 

Is at Proton Colliders
Tevatron, Fermilab, Illinois

Run II: 2001  2011?

• protons = bags of strongly interacting 

quarks and gluons

• collisions make hundreds of   

strongly-interacting particles

• backgrounds large

• collides protons with antiprotons

• energy = 10 times best e+e- LEP2

D0, Fermilab
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The Large Hadron Collider

• Proton-proton collisions at 71014 TeV center-of-mass energy,

3.557 times greater than previous (Tevatron)

• Luminosity (collision rate) 10—100 times greater

• New window into physics at the shortest distances – opening this year!

ATLAS

CMS
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Tevatron & LHC Are QCD Machines

 new physics?

Need precise 

understanding

of ―old physics‖

that looks like

new physics
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• New particles – whether from 
– supersymmetry 

– extra dimensions

– new forces

– Higgs boson(s)

typically decay into old particles:  

quarks, gluons, charged leptons, neutrinos, photons, 

Ws & Zs (which in turn decay to leptons, …)

• Kinematic signatures not always clean (e.g. mass bumps)

if neutrinos, or other escaping particles present

Signals and Backgrounds

• Need precise Standard Model backgrounds for a 

variety of multi-particle processes, to maximize potential for 

new physics discoveries

c
c

n
n

gluino

cascade
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How to Make Precise?

• We can (essentially) only compute reaction rates as a 
perturbative expansion in small parameters (couplings)

QED + + …

e3

g

e

weak

g

QCD

gs
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Asymptotic Freedom

Gluon self-interactions make QCD more calculable at high energies

Quantum fluctuations of massless virtual particles polarize vacuum

Gross, Wilczek, Politzer (1973)

QED:  electrons screen charge (e larger at short distances)

QCD:  gluons anti-screen charge (gs smaller at short distances)

For Nc=3, Nf =5 or 6,  gluons win



L. Dixon       Precise Theory for the Energy Frontier Berlin           28 Sept. 2009 18

Asymptotic Freedom (cont.)

Running of as is only logarithmic, 

slow at short distances (large Q or m).

confining
calculable

Bethke
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QCD Factorization & Parton Model

• Asymptotic freedom guarantees that at short

distances (large transverse momenta), 

partons in the proton are almost free. 

• Sampled ―one at a time‖ in hard collisions.

 QCD-improved parton model

suitable final state

Parton distribution function

factorization scale

(―arbitrary‖)

Partonic cross section,

computable in perturbative QCD partonic CM energy2 renormalization scale

(―arbitrary‖)

mF ~ MZ
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Problem: Leading-order, tree-level predictions only qualitative

due to poor convergence

of expansion in 

(setting )

Partonic Cross Section 

in Perturbation Theory

Example:  Z production at Tevatron

Distribution in rapidity Y

LO NLO NNLO

has

still  ~50%  corrections, LO  NLO

ADMP (2004)

(2007)

by NNLO, a precision observable
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• NLO corrections require one-loop amplitudes, as well as 

tree-level amplitudes with one additional parton.

• Both terms are infrared divergent; use dimensional 

regularization with 

• After adding terms, renormalizing q(x), all         poles cancel.

• Simplest example – Z production:

Need for Loop Amplitudes

tree + 1 parton
1 loop
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Lack of Loop Amplitudes

state of the art:

LO = |tree|2

n=8
NLO = loop x tree* + …

n=3

NNLO = 2-loop x tree* + …

n=2

At NLO, the bottleneck for more complex processes 
is the lack of availability of one-loop amplitudes.
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Strong growth in difficulty at one loop (NLO) 

with number of final-state objects

# of jets

3

4

5

6

# 1-loop Feynman diagrams (gluons only)
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• Cascade from gluino to neutralino

(dark matter, escapes detector)

• Signal: missing energy + 4 jets

• SM background from Z + 4 jets,

Z neutrinos

Background to Search for Supersymmetry

Current state of art 

for Z + 4 jets:

ALPGEN, based on 

LO tree amplitudes 

 normalization still 

quite uncertain

c
c

n
n

1 leg beyond state-of-art

• Motivates goal of
 n n
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W + n jets Data

NLO (MCFM)

n = 1

n = 2

n = 3  
only LO

available

– until 

this year

LO with

different

matching 

schemes

CDF, 0711.4044 [hep-ex]

Tevatron

% uncertainty
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A Better Way to Compute?

• Backgrounds (and many signals) require detailed 

understanding of scattering amplitudes for 

many ultra-relativistic (―massless‖) particles

– especially quarks and gluons of QCD

• Feynman told 

us how to do this

– in principle

• However, Feynman diagrams, while very general and powerful, 
are not optimized for these processes

• There are more efficient methods for multi-gluon + quark 
processes!
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Feynman Diagrams Not Obsolete

• Many state-of-art NLO calculations based on them,    

such as:

•

Febres Cordero, Reina, Wackeroth, hep-ph/0606102

Higgs background at Tevatron

•

SUSY background at LHC
Dittmaier, Uwer, Weinzierl, hep-ph/0703120, 0810.0452

•

Dittmaier, Kallweit, Uwer, 0710.1577; 0908.4124

Campbell, Ellis, Zanderighi, 0710.1832

Higgs (+ jet) background at LHC

• Higgs (+ tt) background at LHC
_

Bredenstein et al., 0807.1248, 0905.0110



L. Dixon       Precise Theory for the Energy Frontier Berlin           28 Sept. 2009 28

Remembering a Simpler Time...

The 1960s

• In the 1960s there was no QCD,

no Lagrangian or Feynman rules

for the strong interactions
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The Analytic S-Matrix

Bootstrap program for strong interactions:

Reconstruct scattering amplitudes directly from analytic properties

Chew, Mandelstam; 

Eden, Landshoff, 

Olive, Polkinghorne;

Veneziano; 

Virasoro, Shapiro; 

… (1960s)

Analyticity fell out of favor in 1970s with the rise of QCD & Feynman rules

Ironically, it has now been resurrected for computing amplitudes for 

perturbative QCD – as an alternative to Feynman diagrams!

• Poles

• Branch cuts
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The Tail of the Mantis Shrimp

• Reflects left and right 

circularly polarized light

differently 

• Led biologists to discover 

that its eyes have 

differential sensitivity

• It communicates via the

helicity formalism

l/4

plate

“It's the most private communication 

system imaginable. No other animal 

can see it.”
- Roy Caldwell  (U.C. Berkeley)
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What the Biologists Didn’t Know

Particle theorists have also evolved capability 

to communicate results via helicity formalism

unpolarized

any final-state

polarization

effects washed

out by fragmentation

LHC experimentalists are blind to it

must sum over

all helicity

configurations
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Helicity Formalism 

 Tree-Level Simplicity in QCD

Many helicity amplitudes either vanish or are very short

Parke-Taylor formula (1986)

Analyticity

makes it possible

to recycle this

simplicity into

loop amplitudes
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Special Complex Momenta

real (singular)

complex (nonsingular)

• Makes sense of most basic process with all 3 particles massless
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For Efficient Computation 

Reduce 
the number of ―diagrams‖

Reuse 
building blocks over & over

Recycle 
lower-point (1-loop) & lower-loop (tree)

on-shell amplitudes

Recurse 
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Amplitudes Are ―Plastic‖

They fall apart – factorize – into simpler ones in special limits
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Explore Limits in Complex Plane
Britto, Cachazo, Feng, Witten, hep-th/0501052

Inject complex momentum at leg 1, remove it at leg n.

special limits           poles in z

Cauchy:

residue at zk =   [kth factorization limit]   =  
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 BCFW (On-shell) Recursion Relations

Ak+1 and An-k+1 are on-shell tree amplitudes with fewer legs,

and with momenta shifted by a complex amount

Britto, Cachazo, Feng, hep-th/0412308

An

Ak+1

An-k+1

Trees recycled into trees
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All Gluon Tree Amplitudes Built From:

(In contrast to Feynman vertices, it is on-shell, gauge invariant.)
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On-Shell Recursion at One Loop
Bern, LD, Kosower, hep-th/0501240, hep-ph/0505055, hep-ph/0507005;

Berger, et al., hep-ph/0604195, hep-ph/0607014, 0803.4180

• New features compared with tree case, 

especially branch cuts

• Determine cut terms efficiently using 

(generalized) unitarity

• Same techniques work for one-loop QCD amplitudes

Trees recycled into loops!
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Generalized Unitarity

Ordinary unitarity:
put 2 particles on shell

Generalized unitarity:
put 3 or 4 particles on shell

cut conditions require complex loop momenta

trees get simpler
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One-Loop Amplitude Decomposition 

rational part

When all external momenta are in D=4, loop momenta in D=4-2e

(dimensional regularization), one can write:             BDDK (1994)

known scalar one-loop integrals,

same for all amplitudes

coefficients are all rational functions – determine algebraiclally

from products of trees using (generalized) unitarity

Missing from the old, nonpertubative analytic S-matrix
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Generalized Unitarity 

for Box Coefficients di
Britto, Cachazo, Feng, hep-th/0412308

no. of dimensions = 4 = no. of constraints    discrete solutions (2)
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Ideas Now Implemented 

Numerically and Automatically 

CutTools:        Ossola, Papadopolous, Pittau, 0711.3596

NLO production of WWW   Binoth+OPP, 0804.0350

Rocket:                            Giele, Zanderighi, 0805.2152

One-loop n-gluon amplitudes for n up to 20; 

W + 3 jets amplitudes                            EGKMZ, 0810.2762

Blackhat:    Berger, Bern, LD, Febres Cordero, Forde, H. Ita, 

D. Kosower, D. Maître, 0803.4180, 0808.0941

One-loop n-gluon amplitudes for n up to 7,…;

amplitudes needed for NLO production of W,Z + 3 jets

D-dim’l

unitarity

+ on-shell

recursion
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W + 3 jets at Tevatron at NLO

same cuts as CDF

Phys. Rev. Lett.

102: 222001, 2009

and

0907.1984 [hep-ph]

• Much smaller 

uncertainties

than at LO.  

• Agrees well 

with data; more

data coming soon.

Gleisberg
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Total Transverse Energy HT at LHC

often used in supersymmetry searches

0907.1984

flat LO/NLO ratio

due to good 

choice of

scale m = HT
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Leptonic Variables in W + 3 jets at LHC

rapidity

distributions

remember

u(x)/d(x) large

as x  1

W+W- transverse

ratios trace a

remarkably large 

left-handed

W polarization 

– may be useful

to separate it from 

top, new physics
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NLO                    at LHC

much improved

scale uncertainties at NLO

Higgs (+ tt) background at LHC
_

Bredenstein et al., 

0807.1248, 0905.0110First done using Feynman diagrams

Recently recomputed in CutTools framework Bevilacqua et al., 0907.4723

shape changes in bb distributions

from LO to NLO  (K=NLO/LO)
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Conclusions

• New and efficient computational approaches to one-loop 
QCD amplitudes needed for important Tevatron and 
LHC backgrounds:
– exploit analyticity: build loop amplitudes up out of trees

– implemented numerically in C++ program BlackHat, as well as
CutTools and Rocket

• Validated at Tevatron and now producing useful new 
NLO results for the LHC

• W + 3 jets completed; Z + 3 jets in process

• W/Z + 4 jets also now feasible 

• Other groups have produced NLO results for several 
other processes using similar methods (VVV, ttbb, …)

• Success here an essential ingredient for optimal 
exploitation of LHC data!
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Extra slides
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Spinor products

If the momenta ki are real, they are complex square roots

of the Lorentz products:   

Use spinor products: 

Instead of Lorentz products:

Which always obey: 
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Spinor variables

Scattering amplitudes for massless

plane waves of definite 4-momentum: 

Lorentz vectors ki
m         ki

2 = 0

But for particles with spin

there are better variables

massless q,g,g

all have 2 helicities

Take “square root” of 4-vectors ki
m     (spin 1)

use 2-component Dirac (Weyl) spinors ua(ki) (spin ½) 

Textbook: use Lorentz-invariant products 

(invariant masses):
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Other integral coefficients

Also, solutions to cut constraints are now continuous, 

so there are multiple ways to solve and eliminate di , etc.

d

di

di dib

Britto et al. (2005,2006); Ossola, Papadopoulos, Pittau, hep-ph/0609007; 

Mastrolia hep-th/0611091; Forde, 0704.1835; Ellis, Giele, Kunszt, 0708.2398; …
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No cuts in D=4 – can’t get from D=4 unitarity

However, can get using D=4-2e unitarity:

Bern, Morgan (1996); Bern, LD, Kosower (1996);

Brandhuber, McNamara, Spence, Travaglini hep-th/0506068;

Anastasiou et al., hep-th/0609191, hep-th/0612277;

Britto, Feng, hep-ph/0612089, 0711.4284;

Giele, Kunszt, Melnikov, 0801.2237;

Britto, Feng, Mastrolia, 0803.1989;  Britto, Feng, Yang, 0803.3147;

Ossola, Papadopolous, Pittau, 0802.1876;

Mastrolia, Ossola, Papadopolous, Pittau, 0803.3964;

Giele, Kunszt, Melnikov (2008);  Giele, Zanderighi, 0805.2152;

Ellis, Giele, Kunszt, Melnikov, 0806.3467;  

Feng, Yang, 0806.4106;  Badger, 0806.4600;

Ellis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762

Rational function R
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OR:  Get rational function R

using on-shell recursion

• Used to get infinite series of QCD helicity amplitudes

analytically:

- n-gluon MHV amplitudes at 1-loop

- n-gluon ―split‖ helicity amplitudes

- ―Higgs‖ + n-gluon MHV amplitudes

Forde, Kosower, hep-ph/0509358; Berger, Bern, LD, Forde, Kosower, 

hep-ph/0604195, hep-ph/0607014; Badger, Glover, Risager, 0704.3194;

Glover, Mastrolia, Williams, 0804.4149
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Example of recursive diagrams

recursive:

overlap:

For rational part of 

Compared with 10,860 1-loop Feynman diagrams

loops recycled 

into loops
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Generic analytic properties of shifted 1-loop amplitude,           

Loop amplitudes with cuts

Cuts and poles in z-plane:

But if we know the cuts (via unitarity in D=4),

we can subtract them:

full amplitude cut-containing partrational part

Shifted rational function

has no cuts, but has spurious poles in z 

because of Cn:
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Unmasking a new particle

Particle theorists are really good at proposing alternative

explanations...

Suppose a new particle is found – how do we know what we 

have, a Higgs boson or something else?
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NLO also improves

shapes of distributions
Azimuthal decorrelation of di-jets at D0 

at Tevatron, due to additional radiation

NLO

n=3

Df

Z. Nagy (2003)


