Fundamentals of Optical Sciences

WS 2017/2018
 1. Exercise sheet

Lecture: Prof. Dr. Alejandro Saenz, Dr. Sven Ramelow
Deliver your answers on 27.10.2017; discussed in the exercise on 01.11.2017.

Problem 1: Gaussian Beam

A Gaussian beam with $w_{0}=1 \mathrm{~cm}$ is focused by a thin lens of focal length $f=2 \mathrm{~cm}$. The lens is placed at the focus of the original Gaussian beam. Assume an optical wavelength of $\lambda=1.0 \mu \mathrm{~m}$.
a) At what distance from the lens does the new focus occur?
b) What is the spot size at the new focus? Give numbers for both an ideal and a realistic lens.
c) What is the far-field expansion angle?

Problem 2: Knife method

A common technique in the laboratory for measuring the beam waist parameter of a Gaussian beam is illustrated in the diagram. A Gaussian beam is incident on an optical power meter, which registers the total power of the incident beam. A knife edge can be translated in the transverse direction to block part of the beam (i.e., if the position of the knife edge is $x_{\text {knife }}$, then the part of the beam in the region $x<x_{\text {knife }}$ is blocked from reaching the power meter). The " $10-90$ " rule is to measure the knife edge position $x_{10 \%}$ where the power meter reads 10% of the total beam power, and then the position $x_{90 \%}$ where the power meter reads 90% of the total beam power. Then the beam radius $w(z)$ at the knife-edge location z along the beam is given by

$$
w(z)=\alpha\left|x_{10 \%}-x_{90 \%}\right|
$$

where α is a constant factor. Calculate the numerical value of α.

Problem 3: ABCD method

Refraction at a spherical boundary
a) Derive the ABCD matrix for a refractive spherical boundary.
b) Find the determinant of the matrix.

Focussing a beam with a sphere
c) Use the spherical boundary matrix to find the focal length for glass bead. At what distance f is a ray parallel to the optical axis at $y=0.8 \mathrm{~mm}$ focussed behind a glass bead with diameter $d=2 \mathrm{~mm}$?

