Laserphysik

Vorlesung mit Übung im Wintersemester 2016/2017, Modul P23.4
www.physik.hu-berlin.de/amo/teaching/Laser_WS16

1. Einleitung und Motivation

2. Wellenoptik und Lichtausbreitung
 2.1 Klassische Lichtfelder und makroskopische Polarisationen
 2.2 Optische Resonatoren
 2.3 Photonische Kristalle und Metamaterialien

3. Wechselwirkung von Licht mit Materie
 3.1 Wechselwirkung von klassischem Licht mit Zweiniveausystemen
 3.2 Maxwell-Blochgleichungen, Blochvektor, kohärente und inkohärente Dynamik
 3.3 Verbreitungsmechanismen und optische Linienprofile
 3.4 Nichtlineare Effekte: Absorptionssättigung und nichtlineare Brechung

4. Optische Verstärkung und Laser
 4.1 Optische Verstärkung und Pumpmechanismen
 4.2 Laser im stationären und im transienten Regime
 4.3 Erzeugung ultrakurzer und ultraintensiver Impulse

5. Typen von Lasern
 5.1 Gaslaser und chemische Laser
 5.2 Halbleiterlaser, Festkörperlaser
 5.3 Beschleunigerbasierte kohärente Lichtquellen (Freie-Elektronenlaser)
 5.4 Eigenschaften von Laserstrahlung

6. Anwendungen
 6.1 Spektroskopie von Atomen und Molekülen
 6.2 Ultrakurzzeitphysik kondensierter Materie
 6.3 Nanooptik und Plasmonik

7. Quantisierung des elektromagnetischen Feldes
 7.1 Quantisierung von Feldern
 7.2 Fock-, kohärente und gequetschte Zustände sowie chaotisches Licht
7.3 Kohärenzeigenschaften von Licht (optische Korrelationsfunktionen)

8. Quantenmechanische Licht-Materie-Wechselwirkung
8.1 Jaynes-Cummings-Modell
8.2 Prozesse in Dreizustandssystemen (STIRAP und EIT)
8.3 Kopplung an ein Reservoir: Weisskopf-Wigner-Modell der spontanen Emission

9. Laser-Materie-Wechselwirkung bei sehr hohen Intensitäten
9.1 Multiphotonenprozesse
9.2 Erzeugung und Eigenschaften hoher Harmonischer

10. Grundlagen der Atomoptik
10.1 Lichtkräfte
10.2 Kühlen und Fangen von Atomen
10.3 Bose-Einstein-Kondensate und Atomlaser

Literatur

H. J. Wünsche, Institut für Physik, HU Berlin, Vorlesungsskripten Photonik I und II
M. Fox, Quantum Optics, An Introduction, Oxford University Press 2006
C.C. Gerry, P.L. Knight, Introductory Quantum Optics, Cambridge University Press 2005
G. Grynberg, A. Aspect, C. Fabre, Introduction to Quantum Optics, Cambridge University Press 2010
M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press 1997
M. Orszag, Quantum Optics, Springer Berlin Heidelberg 2000