Laserphysik

WS 2017/2018

3. Exercise sheet
01.11.2017

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson
Deliver your solutions no later than 3pm 08.11.2017 (mail box near room 1'701)

Problem 1: Gaussian Beams 1

Consider the complex amplitude of a Gaussian beam:

$$
U(\mathbf{r})=\frac{W_{0}}{W(z)} \exp \left[-\frac{r^{2}}{W(z)^{2}}\right] \exp \left[\left(-i k z-i k \frac{r^{2}}{2 R}(z)+i \tan ^{-1}\left(\frac{z}{z_{0}}\right)\right)\right]=A(\mathbf{r}) e^{-i k z}
$$

With the beam waist radius W_{0}, the Rayleigh length z_{0}, the beam waist along the optical axis $W(z)$ and the wave front radius $R(z)$ defined as:

$$
\begin{align*}
& W_{0}=\sqrt{\frac{\lambda z_{0}}{\pi}} \\
& z_{0}=\frac{\pi W_{0}^{2}}{\lambda} \\
& W(z)=W_{0} \sqrt{1+\left(\frac{z}{z_{0}}\right)^{2}} \tag{1}\\
& R(z)=z\left[1+\left(\frac{z_{0}}{z}\right)^{2}\right]
\end{align*}
$$

Show that the complex envelope $A(\mathbf{r})$ of this beam satisfies the paraxial Helmholtz equation:

$$
\left(\nabla_{T}^{2}-2 i k \frac{\partial}{\partial z}\right) A(\mathbf{r})=0
$$

with ∇_{T}^{2} being the transverse part of the Laplacian operator.
Hint 1: You might show first, that $A(\mathbf{r})$ can be expressed as $A(\mathbf{r})=\frac{q(0)}{q(z)} e^{-i k \frac{r^{2}}{2 q(z)}}$ with $q(z)=z+i z_{0}$.
Hint 2: Use an appropriate coordinate system.

Problem 2: Gaussian Beams 2

Consider the same Gauss beam as in problem 1.
a) What is the meaning of z_{0} for the beam waist $W(z)$?
b) Show that in the far-field, the beam propagates in the form of a cone of half angle $\tan \Theta_{0}=\frac{\lambda}{\pi W_{0}}$
c) Discuss the radius of curvature $R(z)$ of the wavefronts in the near- and far-field. At which length does maximum wave-front curvature occur?

Problem 3: Gaussian Beams 3

The Gaussian beam described above represents the fundamental mode. Higher order modes, so-called Hermite-Gaussian modes, are expressed as:

$$
\begin{align*}
E_{l, m}(x, y, z)= & E_{0} \frac{W_{0}}{W(z)} H_{l}\left(\frac{\sqrt{2} x}{W(z)}\right) H_{m}\left(\frac{\sqrt{2} y}{W(z)}\right) \exp \left(-\frac{r^{2}}{W^{2}(z)}\right) \exp \left(-i \frac{k r^{2}}{2 R(z)}\right) \tag{2}\\
& \cdot \exp \left(-i k z+i(1+l+m) \tan ^{-1}\left(\frac{z}{z_{0}}\right)\right)
\end{align*}
$$

where the modes are indexed $\mathrm{TEM}_{l, m}$. Plot the intensity of the following modes: $\mathrm{TEM}_{0,0}$, $\mathrm{TEM}_{1,0}, \mathrm{TEM}_{0,1}$, and $\mathrm{TEM}_{1,1}$. Use a computer.

