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1 Introduction

Some requirements for the physical implementation of quantum computation
(according to David DiVincenzo, Fortschr. Phys. 48, 9-11, p. 771 (2000)):

1. A scalable physical system with well characterized qubits.
As discussed above a qubit could be encoded in any two different quantum
states. Examples are given in the following. The main consideration is
wether the step from 2 qubits to n qubits is possible. This situation may
be compared to the first implementations of classical computers:
The first machines made from electro-mechanical (Zuse Z1 1938) and later
electrical subunits (electrical tubes, IBM 1948) could have been scaled
up in principle to increase the computer’s power. But, realistically the
failure probability and also the energy consumption would have scaled as
well. Only the invention of the semiconductor based subunits made scaling
feasible.

2. The ability to initialize the state of the qubits to a simple initial state, such
as |0, 0, ...0〉 .
In almost all of the above described algorithms initialization is a first step.
This initialization may be easy for some physical systems, but crucial for
others. If the qubit is encoded in two bits, say with an energy difference
∆E then initialization can be accomplished by cooling to below T <<
∆E/kb. This thermal relaxation of the qubits may take too long a time
for a computation. Active initialization may be required.

3. Long relevant decoherence times, much longer than gate operations.
Decoherence is crucial for any quantum computation. It transforms pure
states in statistical mixtures and destroys entanglement. The problem
of decoherence is the more difficult the larger the quantum system gets:
We do not observe quantum objects in our classical world! The issue
that decoherence must be negligible as long as the computation takes was
considered the main obstacle in quantum computation. The suggestion
of quantum error correcting codes (Shor 1995) demonstrated that this
is not the case! Error correcting codes and fault tolerant computation
make arbitrary long calculations possible as soon as the decoherence is
negligible for about 104 − 105 clock times. This is still a very stringent
requirement. The price one has to pay is to have each qubit encoded with
3-10 additional qubits for error correction, which then requires even more
complex systems.

4. A universal set of quantum gates.
A set of universal gates consists e.g. of single qubit operations and a
CNOT gate. Gates are unitary operators. In some systems no appropriate
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gates may be constructed easily. Interaction between qubits may influence
not only one or two, but many other qubits. Interactions can not be
switched on and off arbitrarily and can not be controlled with arbitrary
precision.

5. A qubit-specific measurement capability.
It is not easy in some systems to perform a measurement with 100% pre-
cision. However, this is less of a problem, since the computation may be
repeated several times. (If a detection works only with 90%, then a three
times repetition already gives 97% fidelity).

For quantum computation the first 5 requirements suffice, but in a wider
context of quantum information processing or networking two more features
would be desirable:

1. The ability to interconvert stationary and flying qubits.

2. The ability to faithfully transmit flying qubits between specific locations.

The notation ”flying” qubits was introduced by Kimble. It refers to photons
which should be the ideal long-distance carriers for quantum information. The
use of the well developed optical fiber communication system would be a tremen-
dous advantage. However, transport (although over relatively short distances)
is also discussed in some solid-state implementation of quantum computers.

Figure 1: Some details of the Zuse Z1 (Berlin Technical Museum)

The above mentioned items will be discussed from the viewpoint of the
different systems introduced in the following section. To summarize:
There is no fundamental physical problem to build an arbitrary large quantum
computing device.
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2 Optical and Cavity QED Implementations

2.1 Properties of an optical quantum computer

2.1.1 Single Quantum Gates for Photons

Single photons can represent qubits. The advantage of using photons is that
they are easy to produce and to detect with high efficiency. A qubit is usually
represented with two optical modes:

|1〉 = |1〉1 |0〉2 = |10〉 = one photon in mode one, zero photons in mode two or
|0〉 = |0〉1 |1〉2 = |01〉 = one photon in mode two, zero photons in mode one

This representation of qubits is called the dual-rail representation. The free time
evolution of the qubits is given by the Hamiltonian:

H = h̄ωa†a

where a† and a are the creation and annihilation operators for a photon. The
free evolution thus only adds an overall phase which can be neglected.

The modes can be two physically separated modes (two ”beams”) or two modes
with orthogonal polarization (horizontal and vertical). Single qubit gates can
very easily be realized with the help of linear optical elements (mirrors, phase
shifters, beam splitters).

Two ways to encode a qubit (two polarizations or two spatial modes) can be
easily exchanged.

Figure 2: Transfer of polarization encoding into encoding via two spatial modes
and vice versa [Myers and Laflamme, arXiv:quant-ph/0512104 v1 13 Dec 2005]
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A mirror is used to redirect beams and arrange networks. Low loss mirrors
with 99.9% reflectivity are obtainable.

A phase shifter is a slab of transparent (low loss) material with index of re-
fraction n. It simply retards one optical mode with respect to the other. Its
action is described as:

Rz(∆) = exp(−iσ3∆/2)

with the Pauli matrix σ3 =
(

1 0
0 −1

)
and ∆ = (n− n0)L/c0

The phase shift ∆ is defined by the different optical paths through the material
of length L. The following gives a graphical representation of the phase gate
where the upper wire corresponds to the state |0〉 = |01〉 and the lower wire to
the state |1〉 = |10〉:

Figure 3: Graphical representation of a phase gate

A beam splitter is a piece of transparent (low loss) material with a thin metal
coating.

A beam splitter acts on two modes which can be described by annihilation
and creation operators a, a† and b, b†, respectively. There is a transformation
between creation/annihilation operators before (subscript 0) and after (sub-
script 1) a beam splitter with a reflectivity of R = cos2 θ as follows (e.g., for the
annihilation operators):

(
a1

b1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
a0

b0

)

Thus, with e.g. the state |Ψin〉 = |0〉 = |01〉 = b†0 |00〉 as input the output is

|Ψout〉 = (sin ϑa1 + cos ϑb1) |00〉 = cos ϑ |01〉+ sin ϑ |10〉
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Figure 4: Schematics of a beam splitter

or with the state |Ψin〉 = |1〉 = |10〉 = a†0 |00〉 as input the output is

|Ψout〉 = (cos ϑa1 − sin ϑb1) |00〉 = cos ϑ |10〉 − sin ϑ |01〉
The beam splitter together with a π-phase shifter acts (up to an overall phase)
as a Hadamard gate.
Phase shifters and beamsplitters thus allow the construction of arbitrary single
qubit gates!

2.1.2 Photon-Photon-Interaction

The main obstacle of optical quantum computation is to realize controlled gates
which require a qubit-qubit (therefore a photon-photon) interaction. Interaction
between photons can be established inside certain non-linear materials. Non-
linear effects are rather weak. Strongest non-linearities are usually achieved close
to resonances which then means a pronounced absorption as well. One type of
non-linear material leads to the Kerr-Effect. The Kerr-Effect is described by
the following Hamiltonian:

HKerr = −χa†ab†b

After propagation through some Kerr material of length L it corresponds to a
transformation K:

K = exp(iχLa†ab†b)
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K acts on the basis states |00〉, |01〉, |10〉, and |11〉 as follows:

K |00〉 = |00〉
K |01〉 = |01〉
K |10〉 = |10〉
K |11〉 = exp(iχL) |11〉

If a huge Kerr effect is achieved with iχL = iπ and thus K |11〉 = − |11〉 then a
CNOT can be constructed, because CNOT can be factorized as:

UCN = (I ⊗H)K(I ⊗H)

where

(I ⊗H) =




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 and K=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




The following figure shows a possible realization of a Kerr-gate using dual-rail
representations of single photon qubits: The presence of light (single photon) in
mode s produces a phase shift in one interferomter arm, thus sending a photon
to dector D1 and D2, respectively.

Figure 5: Schematics of a Kerr-gate
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2.2 Quantum Computation with Linear Optics

2.2.1 Hong-Ou-Mandel Interference

Recent proposals suggest a strong photon-photon interaction without using non-
linear material. These gates rely on two-photon interference of indistinguishable
photons. Linear optics quantum computation (LOQC) has the advantage of ex-
perimental simplicity. A review can also be found in Kok et al. [Rev. Mod.
Phys. 79, 135 (2007)]. Figures 5 and 11-15 are from this review.

As can be seen from Fig. 6 two identical photons impinging on a beam-splitter

Figure 6: Principle of two-photon interference on a beam-splitter for classical
particles, bosons, and fermins

will always leave together. This quantum mechanical effect was first observed
by Hong, Ou, and Mandel (Phys. Rev. Lett. 59, 2044 (1987)). Two identical
photons were created by parametric down-conversion in a non-linear crystal.
The experimental configuration is shown in Fig. 7.
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Figure 7: Experimental setup of the Hong-Ou-Mandel experiment [Hong, Ou,
and Mandel, Phys. Rev. Lett. 59, 2044 (1987)].

If coincidences or two-photon events are measured as a function of the time
of arrival difference at the beam-splitter a pronounced dip is observed, i.e. the
two photons never leave on either side, but always together. This dip is called
the Hong-Ou-Mandel dip or HOM dip. Its depth (ideally down to zero) is
a measure for the indistinguishability of two photons.

Figure 8: Experimental results of the Hong-Ou-Mandel experiment, the HOM-
dip [Hong, Ou, and Mandel, Phys. Rev. Lett. 59, 2044 (1987)].
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2.2.2 The KLM-Gate

The HOM interference together with single photon detection can be used to
implement two-photon gates. The main idea of the gate proposed by E. Knill,
R. Laflamme, and G. J. Milburn (Nature Vol 409, 46 (2001)), the KLM-gate,
uses so-called ancilla states, which are indistinguishable single photons in addi-
tional modes (additional to the qubit modes). After the photons have passed a
certain gate made from various optical elements the ancilla states are measured.
The operation of the gate is accepted only if a specific outcome is measured.
Otherwise the operation has to be started again. Knill et al. proposed a gate
NS−1 that performs a non-deterministic phase shift on an initial state |ψ〉 as
follows:

|ψ〉 = α0 |0〉+β1 |1〉+γ1 |2〉 = (α0 +β1a
†+γ1a

(2)†) |0〉 −→ α0 |0〉+β1 |1〉−γ1 |2〉

The gate NS−1 can be realized by the network of linear optical elements shown
in Fig. 9:

Figure 9: Nonlinear phase shift gate. [from Knill et al., Nature 409, 46 (2001)]

Here the action of each of the three beamsplitters includes a phase shift ex-
plicitly, such that e.g. the transformation between the annihilation (creation)
operators a1 and a2 before and after the beamsplitter is described by the matrix:

(
cosϑ −eiφ sin ϑ

e−iφ sinϑ cosϑ

)
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It can be shown that the effect of the whole network for a particular setting
of ϑ, and φ (ϑ1 = π/8, φ1 = 0, ϑ2 = 3π/8, φ2 = 0, ϑ3 = −π/8, φ3 = 0, φ4 =
π) can be described by the following matrix, which transforms the creation
(annihilation) operators in modes 1, 2, and 3:




1− 21/2 2−1/4 (3/21/2 − 2)1/2

2−1/4 1/2 1/2− 1/21/2

(3/21/2 − 2)1/2 1/2− 1/21/2 21/2 − 1/2




At the beginning the ancilla states in mode 2 and 3 are set to:

|ψ〉2 = |1〉
|ψ〉3 = |0〉

The operation is accepted only if the detectors (at R2 and R3) measure the
ancilla states unchanged, i.e. exactly one photon in mode 2 and no photon in
mode 3. Otherwise the operation has to start again. The probability of success
is 1/4.

The NS−1 gate can then be used to construct a conditional phase shift as
illustrated in the following picture:

Figure 10: Conditional sign flip gate implemented with NS-1. [from Knill et al.,
Nature 409, 46 (2001)]
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The two beamsplitters set at 45◦ = π/4 are 50/50 beamsplitters. If exactly
one photon is in mode 1 and in mode 3 then after the first beamsplitter the
state is:

|ψ〉 = |20〉13 + |02〉13
Only then a phase shift of -1 occurs which is transferred to qubit Q2 after the
second beam splitter which completes the operation. Thus, the probability of
success for the controlled phase shift is 1/16.

One drawback of the proposal is this finite probability. However, in the same pa-
per the authors suggest methods to boost up the success probability arbitrarily
close to 1 with the help of even more ancilla states and quantum teleporta-
tion. What remains is the requirement for single photon production and for
detectors which can discriminate between zero, one, and more than one photon.
Additionally, the number of optical elements increases dramatically.

2.2.3 Another intuitive two-photon gate

The KLM proposal motivated many other suggestions for linear optical quan-
tum computing gates. The goal is to reduce the additional effort in terms of the
number of ancilla photons and optical elements.

Figure 11 shows another intuitive NS−1-gate proposed by Rudolph and Pan
using polarizing beam-splitters (PBS): Assume the input state is horizontally
polarized: (

α + βâ†H +
γ√
2
â†2H

)
b̂†V |0〉

After the first polarizer the state is:
[
α + β cos σâ†H + β sin σâ†V +

γ√
2
(cos2 σâ†2H + sin 2σâ†H â†V + sin2 σâ†2V )

]
b̂†V |0〉

Detecting no photon in the first arm yields:
(

α + β cos σâ†H +
γ√
2

cos2 σâ†2H

)
â†V |0〉

After the second polarizer θ:
[
α + β cos σ(cos θâ†H + sin θâ†V ) +

γ√
2

cos2 σ(cos θâ†H + sin θâ†V )2
]

×(− sin θâ†H + cos θâ†V )|0〉
Finally after detecting a single (!) vertically polarized photon in the second

detector:

|ψout〉 = α cos θ|0〉+ β cosσ cos 2θ|1〉+ γ cos2 σ cos θ(1− sin2 3θ)|2〉
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Figure 11: Schematics of the NS−1-gate proposed by Rudolph and Pan

With σ ' 150.5◦ and θ ' 61.5◦ this yields the NS−1 gate with probability

Psuccess = cos2 θ = (3−
√

2)/7

2.2.4 Experimental demonstrations

Several fundamental gates have been demonstrated using LOQC:
Franson et al. Fortschr. Phys. 51, 369 (2003), Fidelity: 86%
O’Brian et al., Nature 426, 264 (2003)], Fidelity: 84%
Pittman et al., Phys. Rev. A 68, 032316 (2003)], Fidelity: 79%
Gasparoni et al., Phys. Rev. Lett. 93, 020504 (2004)], Fidelity: 79%

Usually the gates are tested by measuring the truth table. However, the truth

Figure 12: Experimentally obtained truth tables of the gates from Pittman (left)
and O’Brian (right)
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table in a certain basis is a classical operation. In order to prove the coherence
of the gate one has to use coherent superposition of basis states as input. Then,
the output state is typically an entangled state. This is shown in the following
experimentally determined density matrix of the two photon output state of the
gate by O’Brian. For a complete characterization the complete map of all input
states to all output states has to be determined.

Figure 13: Measured real part of the density matrix of the gate by O’Brian et
al. when the input state was a coherent superpositions of the two basis states

2.2.5 Scalability of LOQC

The question may arise if quantum computation with probabilistic gates may
be useful at all. When the gates in a computational circuit succeed only with a
certain probability p, then the entire calculation that uses N such gates succeeds
with probability pN . The resources time or circuits scale exponentially with the
number of gates. In order to do useful quantum computing with probabilistic
gates, one has to take the probabilistic elements out of the running calculation.
In 1999, Gottesman and Chuang proposed a trick that removes the probabilis-
tic gate from the quantum circuit and places it in the resources that can be
prepared offline. It is commonly referred to as the teleportation trick, since it
teleports the gate into the quantum circuit.

Suppose a probabilistic CZ gate needs to be applied to two qubits with quantum
states |φ1〉 and |φ2〉, respectively. If the gate is applied directly to the qubits,
very likely the qubits are destroyed. However, suppose that both qubits are
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teleported from their initial mode to a different mode. For one qubit, this is
shown in Fig. 14. Here x and z are binary variables, denoting the outcome of the
Bell measurement, which determine the unitary transformation that needs to be
applied to the output mode. If x=1, the x Pauli operator denoted by X needs
to be applied, and if z=1, the z Pauli operator needs to be applied. If x,z=0, no
operator has to be applied. For teleportation to work, the entangled resource
|Φ+〉 is required, which can be prepared off-line. If a suitable storage device is
available, |Φ+〉 does not have to be made on demand: it can be created with a
probabilistic protocol using several trials and stored in the storage device.

Figure 14: The teleportation circuit. The state |φj〉 is teleported via a Bell
state |Φ+〉 and a Bell measurement B. The binary variables x and z parametrize
the outcome of the Bell measurement and determine which Pauli operator is
applied to the output mode.

One can now apply the probabilistic CZ gate to the output of two teleporta-
tion circuits. Now, the CZ gate can be commuted through the Pauli operators
X and Z at the cost of more Pauli operators. That means it can be moved from
the right to the left at the cost of only the optically available single-qubit Pauli
gates. Again, the required resource can be prepared off-line with a probabilistic
protocol and stored in a suitable storage device. There are now no longer any
probabilistic elements in the computational circuit.

It is important to note that also teleportation can be implemented with linear
optical elements and photon counters, as shown in the KLM proposal. Thus,
using these tricks together with efficient error correction LOQC is in principle
possible.

In conlcusion, ”...the physical resources for the original KLM protocol, albeit
scalable, are daunting. For linear optical quantum computing to become a viable
technology, we need more efficient quantum gates.” [Kok et al., 2007]
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Figure 15: The CZ gate using teleportation: here |ψ〉 = UCZ |φ1φ2〉. By com-
muting the CZ gate through the Pauli gates from the computational circuit to
the teleportation resources, the probabilistic part is taken off-line. The telepor-
tation channel (the shaded area, including the CZ) can be prepared in many
trials, without disrupting the quantum computation.

2.2.6 Summary: Optical photon quantum computer

• Qubit representation: Location of single photons between two modes
|01〉 and |10〉, or polarization.

• Unitary evolution (Kerr media): Arbitrary transforms are constructed
from phase shifters, beam splitters, and non-linear Kerr media. The latter
should establish a cross phase modulation of π.

• Unitary evolution (LOQC): Single qubit gates are constructed from
phase shifters, polarizers, and beam splitters. Two-qubit gates can be con-
structed with linear optical elements and single photon detectors. Tele-
portation and efficient error corrections can be implemented to bring the
success probability close to unity.

• Initial state preparation: Create single photon states. This can be
approximated by using attenuated laser light pulses, but for real optical
quantum computers single photon states and ancilla states are required.

• Readout: Detect single photons, e.g., by an avalanche photo diode (APD).

• Drawbacks: Non-linear Kerr media with large ratio of cross phase mod-
ulation strength to absorption are difficult to realize.
LOQC requires huge resources in terms of perfect ancilla states. Also
storage media for entangled states are required.
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2.3 Cavity Quantum electrodynamics

2.3.1 Jaynes-Cummings-Hamiltonian

In cavity quantum electrodynamics (cavity-QED) one attacks the dilemma of
optical quantum computation: On one hand photons seem to be ideal candi-
dates for carrying quantum information. Qubits are relatively easy encoded, and
photons only interact weakly with their environment. The latter point however
is the main obstacle in order to realize multiple quantum gates. In cavity-QED
it is possible to obtain a strong interaction between single atoms and single
photons without the problems of scattering, photon loss, or fast decoherence.
Single atoms can mediate interactions between two photons and thus cause an
effective strong photon-photon interaction.

An important number in cavity-QED is the Q-factor. It is the ratio of the
cavity’s resonance frequency and its linewidth. The latter is inversely propor-
tional to the photon loss rate. Q-factors exceeding 1010 have been realized with
photon storage times of seconds. (Compared to acoustic frequencies, say 400
Hz, this would correspond to undamped oscillation of several months!).

The high-Q leads to several important properties:

• The modes have very narrow linewidth. Interaction with single modes can
be achieved.

• The photon loss rate is very small and thus decoherence is very small.

• The electromagnetic field is enhanced on resonance. In other words pho-
tons are reflected many times from the cavity mirrors or cavity walls. Thus
they have the chance to interact many times with atoms in the cavity.

• The latter holds also for the vacuum field which could lead to a strong
modification of the spontaneous emission inside the cavity, particularly
for cavities with a small mode volume and thus a large electric field per
photon

A monochromatic single-mode electric field is quantized as follows:

−→
E (r) = i−→ε E0

[
aeikr − a†e−ikr

]

where E0 is the amplitude, −→ε the polarization, k = ω/c is the spatial frequency,
and a, a† are the annihilation and creation operators. The free evolution of the
field is given by the Hamiltonian:

Hfield = h̄ωa†a
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The free Hamiltonian of a two level atom can be written as:

Hatom =
h̄ω0

2

(
1 0
0 −1

)
=

h̄ω0

2
σ3

with the Pauli matrix σ3. The atomic state lives in a two-dimensional Hilbert
space and can either be in the lower state with energy EL or in the upper state
with energy EU . (ω0 = EU − EL).

The interaction between atom and field is described as a dipole interaction−→
d · −→E . Its quantized version in the so-called rotating wave approximation is:

Hint = g(a†σ− − aσ+)

where g is the atom-field coupling constant and σ−, σ+ are the Pauli raising and
lowering operators:

σ+ =
σ1 + iσ2

2
=

(
0 1
0 0

)
, σ− =

σ1 − iσ2

2
=

(
0 0
1 0

)

The Jaynes-Cummings-Hamiltonian is the sum of the three Hamiltonians
above:

HJC = Hfield + Hatom + Hint = h̄ωa†a +
h̄ω0

2
σ3 + g(a†σ− − aσ+)

This Hamiltonian couples the two atomic states |up〉 = |1〉 , |down〉 = |0〉 with
only two photon number states |n〉 and |n + 1〉. In case of only one exci-
tation (photon) the basis states are: |0〉photon |0〉atom , |0〉photon |1〉atom , and
|1〉photon |0〉atom. In this case the Jaynes-Cummings-Hamiltonian is a 3x3 ma-
trix:

HJC = −



δ 0 0
0 δ g
0 g −δ




where δ = (ω0 − ω)/2 is the detunig and h̄ = 1.

It is straightforward to show that the time evolution operator UJC can be writ-
ten as:

UJC = e−iδt |00〉 〈00|
+

(
cosΩt + i

δ

Ω
sinΩt

)
|01〉 〈01|

+
(

cosΩt− i
δ

Ω
sinΩt

)
|10〉 〈10|

−i
g

Ω
sinΩt (|01〉 〈10|+ |10〉 〈01|)
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where ΩR = 2Ω =
√

δ2 + g2 is the Rabi frequency.
The dynamics of a two level atom interacting with an electromagnetic field can
be represented by a so-called Bloch vector pointing on a Bloch sphere. Here |0〉
could be the atom in the upper state, and |1〉 atom in the lower state. With the
Bloch vector in the equatorial plane the state is a coherent superposition of the
form 1/

√
2(|0〉+ eiφ |1〉):

Figure 16: Representation of a qubit state as a vector on a Bloch sphere

2.3.2 Resonant Interaction

As one example the probability that a single photon is absorbed by the atom
(initially in the ground state |0〉) is:

pabsorb =
∑

k

|〈0k|UJC |10〉|2 =
g2

δ2 + g2
sin2 Ωt =

g2

δ2 + g2

1
2
(1− cos(2Ωt))

Accordingly, the probability to find the atom in the upper state oscillates. This
phenomenon is called Rabi oscillation. This oscillatory energy exchange be-
tween the atom and the field mode is a quantum analog to the classical coupled
pendulum problem. It replaces the monotonic and irreversible process of spon-
taneous emission when an atom interacts with a continuum of modes (e.g. in
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free space, see figure below).

Figure 17: Rabi flopping versus spontaneous decay

Experimental realizations:
First experiments that aimed at the realization of a physical system which could
be described by the Jaynes-Cummings Hamiltonian were performed with Ry-
dberg atoms and superconducting resonators. Ryberg atoms are alkali atoms
with a single electron in a highly excited state (n = 50 to 70). The atoms
are thus similar to very large Hydrogen atoms. Since the dipole moment scales
with the atoms diameter (

−→
d = −→r ·e) the interaction of Rydberg atoms with the

electromagnetic field is very strong. At the same time their lifetime is very long
as well. A transition between two neighboring Rydberg states is a very good
approximation for a two level system. These transitions are in the microwave
regime (some 10 GHz). Very high-Q superconducting cavities are available for
these frequencies.

In the experiments performed in two groups (MPI Garching, and ENS Paris)
diluted atomic beams cross different types of cavities (Fabry-Perot or cylinder
cavities). The interaction time of the atoms with the field is the time of flight
through the cavity. On the average there is at most one atom interacting with
the cavity.
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Figure 18: Schematics of the experimental setup in the Garching group
(single atom maser). A superconduting microwave cavity is mounted
inside a cryostat (also to reduce the number of thermal photons).
An atomic oven and laser excitation produces Rydberg states. [from
http://www.mpq.mpg.de/micromaser.html]

Single microwave photons cannot be detected. The output of the experiment
is encoded in the atoms which have passed the cavity. Atoms which have left the
cavity in the upper or lower state an be distinguished by subsequent ionization
in an electric field. The detection efficiency is better than 40%.

24



In the Paris group the Rydberg atoms could be prepared in a coherent super-
position of the upper and lower states with the help of a (classical) microwave
pulse before entering the cavity. Also, behind the cavity a second microwave
pulse acts as an analyzer. In this experiment a rapid tuning (on resonance/off
resonance) was possible by applying an electric field between the two cavity
mirrors. The resulting Stark effect is strong enough to considerably detune
the atom with respect to the cavity. The figures 20 and 21 show experimental

Figure 19: Schematics of the experimental setup in the ENS group in Paris.
[from Bouwmeester et al.]

results from the ENS and the Garching group. Both experiments detected Ryd-
berg atoms that had passed an on-resonance cavity. The probability to measure
the atoms in the upper or lower state was measured as a function of the time-
of-flight through the cavity. In the first experiment a weak coherent state was
coupled into the cavity. In the second experiment Fock states were prepared via
detection of (one, two, ...) successive Rydberg atoms in the lower state. Then,
subsequent atoms detected the according Rabi oscillations.
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Figure 20: Quantum Rabi oscillations. The probabilty to find an atom in the
upper state after passage through the cavity was measured as a function of the
time-of-flight. (A), (B), (C), (D) are measurements for increasing field strengths
of a coherent state in the cavity, (A) is the vacuum. Middle and left columns are
Fourier transforms and calculated photon number distributions. [from Brune et
al., M, SchmidtKaler F, Maali A, et al. Phys. rev. Lett., 1800 (1996)]

Another experiment was performed in the ENS group in order to exchange
an arbitrary qubit state between two successive atoms. The following sequence
was applied

1. Prepare atom 1 in an arbitrary state:

|ψ〉 = (α |0〉atom + β |1〉atom) |0〉field

2. Send atom 1 through the cavity with the cavity in resonance. The inter-
action time is set such that ΩRt = π, (π-pulse), i.e. an atom in the excited
state emits a photon with probability one:

−→ |ψ〉 = |0〉atom (α |0〉field + β |1〉field)

3. Prepare atom 2 in the ground state:

|ψ〉′ = |0〉atom (α |0〉field + β |1〉field)
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Figure 21: Rabi oscillation after preparation of a n=0, n=1, n=2 Fock state.
The normalized difference of the probability to find the atom in the upper or
lower state was measured. The left column shows the calculated photon number
distribution. [from Varcoe et al., Nature 403, 743 (2000)]

4. Send atom 2 through the cavity with the cavity in resonance. Again the
interaction time is set such that ΩRt = π, (π-pulse), i.e. the atom in the
ground state absorbs a photon with probability one:

−→ |ψ〉′ = (α |0〉atom + β |1〉atom) |0〉field

2.3.3 Off Resonant Interaction/Phase Shifts

The phase shift experienced by a single photon due to the presence of a single
atom in the ground state can be easily derived from the time evolution operator
UJC :

χphoton = arg
[
e−iδt

(
cosΩt− i

δ

Ω
sinΩt

)]

For large detuning the absorption of a photon becomes very unlikely, whereas
there is still a considerable phase shift.
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Similarly the phase shift experienced by an atom in the ground state due to
the presence of one photon is:

χatom = arg
[
cosΩt− i

δ

Ω
sinΩt

]

The phase shift of the atomic ground state due to the presence of a single
photon can be used to realize a conditional phase shift gate. Such a gate can be
used to construct a universal two qubit logic gate.

Figure 22: Schematics of the levels used for experimental realization of a con-
ditional phase gate

Control and target qubit are encoded in two successive atoms. The experimental
procedure goes as follow:

1. Prepare atom 1 (control) in a coherent superposition:

|ψ〉 =
1√
2
(|0〉atom + |1〉atom) |0〉field

2. Send atom 1 through the cavity with the cavity in resonance with respect
to the 0 −→ 1 transition (see Fig. 22), i.e. swap the atomic state to the
photon state:

−→ |ψ〉 = |0〉atom

1√
2
(|0〉field + |1〉field)

3. Prepare atom 2 (target) in a coherent superposition:

|ψ〉′ =
1√
2
(|0〉atom + |1〉atom)

1√
2
(|0〉field + |1〉field)

4. Send atom 2 through the cavity with the cavity off resonance or in res-
onance with a 2π−pulse condition with respect to the 1 −→ i transition
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(see Fig. 22):

−→ |ψ〉′ =
1
2
(|0〉atom + |1〉atom) |0〉field +

1
2
(|0〉atom + eiχ |1〉atom) |1〉field

=
1
2
(|00〉+ |10〉+ |01〉+ eiχ |11〉)

The shift χ depends on the detuning of the 1 −→ i transition. In case of zero
detuning a photon can be absorbed by the 1 state. In this case the interaction
time is set such that ΩRt = 2π, (2π-pulse), i.e. the atom absorbs a photon
but emits it again with probability one. Thus the state of the 1 state of atom
remains unchanged and only experiences a phase shift of χ = −1.

The following shows experimental results of a conditioned-phase gate achieved
in the ENS experiment:

Figure 23: Experimental results of a conditioned-phase gate. The probability to
detect the atom in in the ground state is measured for various cavity detunings.
Open diamonds correspond to an empty cavity, solid squares are single photon
fringes. [from Rauschenbeutel et al., Phys. Rev. Lett. 83, 5166]
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2.3.4 Flying Qubits

A single atom can mediate the interaction between two photons very effectively.
It can be regarded as an almost ideal Kerr medium to achieve cross-phase mod-
ulation. The most fundamental system to study the Kerr effect consists of a
single three level atom interacting with two modes of the electromagnetic field:

Figure 24: Model of a three level system as a Kerr medium

For such a system (with degenerate energy levels 1 and 2) the generalized Jaynes-
Cummings Hamiltonian is:

HJC =
∑

i=1,2

h̄ωa†iai +
h̄ω0

2
σ3 +

∑

i=a,b

gi(a
†
iσi− − aiσi+)

It can be shown that a single photon in mode a or mode b experiences a
phase shift φa and φb if an atom in the ground state is present. This phase
shift could be understood classically by the index of refraction of the atom in
the cavity. However, there is an additional phase shift ∆ if both photons are
present. The non-linear phase shift is plotted in the following figure depending
on the atom-cavity detuning. This additional phase shift is the Kerr cross phase
modulation.
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Figure 25: Calculated Kerr shift of a three level atom as afunction of the atom
cavity detuning [from Nielsen and Chuang]

An experiment where a conditional phase shift gate with the help of the
Kerr effect was realized was performed in the group of Kimble at Caltech, USA.
In contrast to the experiment in the ENS group the qubits were encoded in
two single photons (flying qubits) in two modes. The photonic qubit states
were approximated by two weak coherent states in two orthogonal modes with
slightly different frequencies.

The initial state was a linearly polarized (probe) beam and a circularly
polarized (pump) beam:

|ψ〉in =
∣∣β+

〉
pump

1√
2
(
∣∣α+

〉
+

∣∣α−〉
)probe

≈ [∣∣0+
〉

+ β
∣∣1+

〉] 1√
2

[∣∣0+
〉

+ α
∣∣1+

〉
+

∣∣0−〉
+ α

∣∣1−〉]

Here the +,- denotes left or right circular polarization. The atom was a Cs atom
optically pumped in the 6S1/2, F = 4,mF = 4 state.

After the atom had interacted with the cavity the photons were left in the
state:

|ψ〉out ≈ ∣∣0+
〉 1√

2

[∣∣0+
〉

+ αeiφa
∣∣1+

〉
+

∣∣0−〉
+ α

∣∣1−〉]

+βeiφb
∣∣1+

〉 1√
2

[∣∣0+
〉

+ αei(φa+∆)
∣∣1+

〉
+

∣∣0−〉
+ α

∣∣1−〉]
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The states in square brackets are linearly polarized states which are tilted off
the vertical by an angle φa and φa + ∆, respectively. The shift of the probe
beam was detected in the experiment with the help of a balanced homodyne
detector (the local oscillator discriminated the pump from the probe beam).

Figure 26: Experimental demonstration of a conditional phase gate in the Cal-
tech experiment. Qubits were encoded in photons (”flying qubits”), a strong
Kerr nonlinearity was mediated by single Cs atoms. [from Turchette et al. Phys.
Rev. Lett. 75,4710 (1995)]

In the experiment the shifts.φa = 17.5◦ , φb = 12.5◦, and ∆ = 16◦ were
established. This experiment thus demonstrates the possibility to realize a uni-
versal two qubit quantum gate.

More recent experiments with high-Q cavities are performed in the optical
domain. In these experiments atomic traps instead of atomic beams are used.
Atoms are trapped and cooled above a cavity and then dropped. This increases
the interaction time. However, it is extremely difficult to cascade many cavi-
ties. First results have also been obtained with semiconductor nanostructures
(quantum dots) in solid-state cavities [Yoshie et al., Nature 432, 200 (2004);
Reithmaier et al., Nature 432, 197 (2004); Peter et al., Phys. Rev. Lett. 95,
067401 (2005)]. Rabi oscillations could be observed. These all-solid state sys-
tems may have the potential for up-scaling towards two, three, N (?) quantum
dots and/or cavities.
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Figure 27: Measured phase shift in the Caltech experiment. The mean number
of atoms in the cavity was 1. The inset shows the transmission of the probe
through the cavity. [from Turchette et al. Phys. Rev. Lett. 75,4710 (1995)]

2.3.5 Summary: Cavity QED implementation of quantum comput-
ers

• Qubit representation: Location of single photons between two modes
|01〉 and |10〉, or polarization.

• Unitary evolution: Arbitrary transforms are constructed from phase
shifters, beam splitters, and cavity QED systems.

• Initial state preparation: Create single photon states. This can be
approximated by using attenuated laser light pulses.

• Readout: Detect single photons, e.g. by an avalanche photo diode
(APD).

• Drawbacks: The coupling of two photons is mediated by a atom. Thus
a strong atom field coupling is desirable. Coupling of photons into and
out of the cavity then becomes difficult. The scalability is limited.
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