Qualitative strong-field ionization models

REMPI Resonance-enhanced multiphoton ionization

Multiphoton Ionization

ATI Above-threshold ionization

Qualitative strong-field ionization models

• Lowest-order perturbation theory (LOPT) (low laser intensities).

- Lowest-order perturbation theory (LOPT) (low laser intensities).
- Quasistatic regime (high intensity and low frequency):
 - ★ Perelomov, Popov, Terent'ev (**PPT**): tunneling
 - * Ammosov, Delone, Krainov (ADK): tunneling
 - barrier-suppression models (none appears convincing)
 - * quasistatic approximation (using exact ab initio dc rates).

- Lowest-order perturbation theory (LOPT) (low laser intensities).
- Quasistatic regime (high intensity and low frequency):
 - ★ Perelomov, Popov, Terent'ev (**PPT**): tunneling
 - * Ammosov, Delone, Krainov (ADK): tunneling
 - * barrier-suppression models (none appears convincing)
 - * quasistatic approximation (using exact ab initio dc rates).
- Keldysh, Faisal, Reiss theory (KFR), strong-field approximation (SFA), or intense-field S-matrix theory (ISMT).

- Lowest-order perturbation theory (LOPT) (low laser intensities).
- Quasistatic regime (high intensity and low frequency):
 - ★ Perelomov, Popov, Terent'ev (**PPT**): tunneling
 - * Ammosov, Delone, Krainov (ADK): tunneling
 - * barrier-suppression models (none appears convincing)
 - * quasistatic approximation (using exact ab initio dc rates).
- Keldysh, Faisal, Reiss theory (KFR), strong-field approximation (SFA), or intense-field S-matrix theory (ISMT).
- Floquet theory (exact for constant infinite pulse).

- Lowest-order perturbation theory (LOPT) (low laser intensities).
- Quasistatic regime (high intensity and low frequency):
 - ★ Perelomov, Popov, Terent'ev (**PPT**): tunneling
 - * Ammosov, Delone, Krainov (ADK): tunneling
 - * barrier-suppression models (none appears convincing)
 - * quasistatic approximation (using exact ab initio dc rates).
- Keldysh, Faisal, Reiss theory (KFR), strong-field approximation (SFA), or intense-field S-matrix theory (ISMT).
- Floquet theory (exact for constant infinite pulse).
- Solution of the time-dependent Schrödinger equation (TDSE): exact.

Lowest-order perturbation theory (LOPT)

$$\Gamma_{\text{LOPT}} \propto I^{N} \left| \sum_{\nu,\mu,\ldots,\zeta} \frac{\langle \Psi_{f} | \hat{\mathbf{D}} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{\mathbf{D}} | \Psi_{\mu} \rangle \cdots \langle \Psi_{\zeta} | \hat{\mathbf{D}} | \Psi_{i} \rangle}{[E_{\nu} - E_{i} - (N-1)\omega] [E_{\mu} - E_{i} - (N-2)\omega] \cdots [E_{\zeta} - E_{i} - \omega]} \right|^{2}$$

- **Perturbative regime:** high photon energies, low intensity.
- Simple intensity dependence $(\Gamma_{
 m LOPT} \propto I^N)$

 \longrightarrow absolute cross-sections, energy dependence?

 Problem: Calculation requires sum over all virtual intermediate states, incl. continua.

Lowest-order perturbation theory (LOPT)

$$\Gamma_{\text{LOPT}} \propto I^{N} \left| \sum_{\nu,\mu,\ldots,\zeta} \frac{\langle \Psi_{f} | \hat{\mathbf{D}} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{\mathbf{D}} | \Psi_{\mu} \rangle \cdots \langle \Psi_{\zeta} | \hat{\mathbf{D}} | \Psi_{i} \rangle}{[E_{\nu} - E_{i} - (N-1)\omega] [E_{\mu} - E_{i} - (N-2)\omega] \cdots [E_{\zeta} - E_{i} - \omega]} \right|$$

- **Perturbative regime:** high photon energies, low intensity.
- Simple intensity dependence $(\Gamma_{
 m LOPT} \propto I^N)$

 \longrightarrow absolute cross-sections, energy dependence?

- Problem: Calculation requires sum over all virtual intermediate states, incl. continua.
 - H⁺₂ (vibrational and orientational dependence).
 A. Apalategui, A. Saenz und P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. 33, 2791 (2000).
 - H₂ (fully correlated, method comparison complex scaling vs. B splines).
 A. Apalategui und A. Saenz, J. Phys. B: At. Mol. Opt. Phys. 35, 1909 (2002).
 - H₂ (including nuclear motion in BO approx.).
 A. Palacios, H. Bachau, F. Martín, *Phys. Rev. Lett.* 96, 143001 (2006).

LOPT regime for H₂: intensity scan ($R = 1.4 a_0$)

$$\Gamma^{(N)} = \sigma^{(N)} \left(\frac{I}{\hbar\omega}\right)^N$$

- N: Number of photons
- $\Gamma^{(N)}$: Ionization rate
- $\sigma^{(N)}$: N-photon ionization cross-section
- *I*: Intensity
- $\hbar\omega$: Photon energy

lonization yield: $P_{\text{ion}} = \int_{\text{pulse}} \Gamma^{(N)} dt$

Berlin, 07.11.2014

Photoelectron spectra for H₂

LOPT prediction:

only first Σ_u peak exists (3 photon process)!

Additional peaks: above-threshold ionization (ATI)

H₂ at $R = 1.40 a_0$ Photon energy: 6.2 eVPulse length: 25 cycles $\approx 16.5 \text{ fs}$

Photoelectron spectra (H atom)

H atom:

lonization potential $I_P = 13.6 \text{ eV}$ **400 nm (3.1 eV)** $\longrightarrow N_{\text{ph,min}} = 5$ **800 nm (1.55 eV)** $\longrightarrow N_{\text{ph,min}} = 9$ **1600 nm (0.775 eV)** $\longrightarrow N_{\text{ph,min}} = 18$

Efficient solution of TDSE for H atom: Y. V. Vanne and A. Saenz, to be published

Validity regimes of approximations (reminder)

Quasi-static approximation (QSA)

Concept: Atomic and molecular response to intense laser field is similar to the response to a slowly varying electric dc field (with strength F).

Ionisation rate
$$\Gamma_{ac} = \frac{1}{T} \int_{-T/2}^{+T/2} \Gamma_{dc} (F(t)) dt$$

Quasi-static approximation (QSA)

Concept: Atomic and molecular response to intense laser field is similar to the response to a slowly varying electric dc field (with strength F).

Ionisation rate
$$\Gamma_{ac} = \frac{1}{T} \int_{-T/2}^{+T/2} \Gamma_{dc} \left(F(t) \right) dt$$

- Quasistatic regime: low frequency, high intensity.
- The static rate is (evidently) frequency independent.
- Tunnel regime (lower intensity) vs.

over-the-barrier ionisation (higher intensity).

Quasi-static approximation (QSA)

Concept: Atomic and molecular response to intense laser field is similar to the response to a slowly varying electric dc field (with strength F).

Ionisation rate
$$\Gamma_{ac} = \frac{1}{T} \int_{-T/2}^{+T/2} \Gamma_{dc} \left(F(t) \right) dt$$

- Quasistatic regime: low frequency, high intensity.
- The static rate is (evidently) frequency independent.
- Tunnel regime (lower intensity) vs.

over-the-barrier ionisation (higher intensity).

- Simple atomic one-electron tunnel models exist for a long time.
 Example: Ammosov-Delone-Krainov (ADK) model.
- Fully correlated 3D calculation of dc rates difficult !!!

 \longrightarrow so far ab initio dc rates exist only for H⁺₂ and H₂!

Validity of exact QSA for H atom (I)

Validity of exact QSA for H atom (II)

Taken from A. Scrinzi, M. Geisler, T. Brabec, *Phys. Rev. Lett.* 83 (1999).

Example electron spectrum (ATI)

Technical details of the TDSE calculation:

Hydrogen atom

Laser parameters: 1300 nm; 6 cycles; \cos^2 ; $I_{max} = 10^{14} \text{ W/cm}^2$

Direct electrons: 0 to about 2 times the ponderomotive energy $U_{\rm p}$.

Corkum's 3-step model for imaging

from P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007)

- 1. Electron escapes through or over the electric-field lowered Coulomb potential (a).
- 2. Electronic wavepacket moves away until the field direction reverses (b) and is (partly) driven back to its parent ion (c).
- 3. The returning electron may (d)
 - scatter elastically (electron diffraction)
 - scatter inelastically (excitation, dissociation, double ionization, . . .)
 - recombine radiatively (high-harmonic radiation).

Outcome of 3rd step reveals time-resolved structural information!

Examples for pioneering experiments (I)

Orbital tomography using high-harmonic radiation:

[J. Itatani et al., *Nature* **432**, 867 (2004)]

graph from P. B. Corkum and F. Krausz, *Nature Phys.* **3**, 381 (2007)

Tomographical reconstruction of the HOMO (highest-occupied molecular orbital) of N_2 using the high-harmonic generation (HHG):

- (a) Cartoon of the process: the interference pattern encoded in the HHG changes with electron wavelength and molecular orientation.
- (b) Experimentally reconstructed orbital.
- (c) Quantum-chemically calculated orbital (reference).

Examples for pioneering experiments (II)

Laser induced electron tunneling and diffraction:

[M. Meckel et al., *Science* **320**, 1478 (2008)]

Sketch:

Some electrons tunnel directly to the detector, others recollide and show thus diffraction. Both, direct and recolliding electrons may reveal structural information!

Experimental results:

indication (picture?) of the different orbital structures of the HOMO of N_2 and O_2 !