Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$\Psi(R_1, R_2, \ldots, R_N) = \prod_{i=1}^{N} \phi_0(R_i)$$

- In contrast to, e.g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.
Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$\Psi(R_1, R_2, \ldots, R_N) = \prod_{i=1}^{N} \phi_0(R_i)$$

- In contrast to, e.g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$\Psi(R_1, R_2, \ldots, R_N) = \prod_{i=1}^{N} \phi_0(R_i)$$

- In contrast to, e.g., superfluid He interactions in dilute atomic gases are (usually) small \rightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
- “Superchemistry” (?): chemical reaction between two coherent molecular clouds.
Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$\Psi(R_1, R_2, \ldots, R_N) = \prod_{i=1}^{N} \phi_0(R_i)$$

- In contrast to, e.g., superfluid He interactions in dilute atomic gases are (usually) small → practically 100 % BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
- “Superchemistry” (?): chemical reaction between two coherent molecular clouds.
- Neutral atoms → variable particle number.
- Different atomic species → different interparticle interactions.
Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$\Psi(R_1, R_2, \ldots, R_N) = \prod_{i=1}^{N} \phi_0(R_i)$$

- In contrast to, e.g., superfluid He interactions in dilute atomic gases are (usually) small \rightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
- “Superchemistry” (?): chemical reaction between two coherent molecular clouds.
- Neutral atoms \rightarrow variable particle number.
- Different atomic species \rightarrow different interparticle interactions.

Macroscopic coherent quantum systems

with variable interparticle interactions.
Thermal cloud vs. Bose-Einstein Condensate (BEC)

[from: http://cua.mit.edu/ketterle_group/]

A. Saenz: Quantum information with ultracold quantum gases (2)

HU Berlin, 18.05.2018
Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions \rightarrow s-wave scattering:

\[\sigma = 4\pi a_{l=0}^2 + O(k^2) \approx 4\pi a_{sc}^2 \]

(“hard-spheres”).

(Note: p-wave scattering for identical Fermions.)
Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions \rightarrow s-wave scattering:

 \[\sigma = 4\pi a_{l=0}^2 + O(k^2) \approx 4\pi a_{sc}^2 \]

 (“hard-spheres”). (Note: p-wave scattering for identical Fermions.)

- Effective interaction potential:

 \[V_{\text{pseudo}}(R) = \frac{4\pi \hbar^2}{\mu R^2} a_{sc} \delta(R) \]

 Extremely simple short-range potential (though strongly dependent on long-range part of true interatomic potential).
Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions \rightarrow s-wave scattering:
 \[\sigma = 4 \pi a_{l=0}^2 + O(k^2) \approx 4 \pi a_{sc}^2 \]
 ("hard-spheres"). (Note: p-wave scattering for identical Fermions.)

- Effective interaction potential:
 \[V_{\text{pseudo}}(R) = \frac{4 \pi \hbar^2}{\mu R^2} a_{sc} \delta(R) \]
 Extremely simple short-range potential (though strongly dependent on long-range part of true interatomic potential).

- Magnetic Feshbach resonances \rightarrow extreme tunability: $-\infty \leq a_{sc} \leq +\infty$
 ("strong attraction, no interaction, strong repulsion").
Interactions in ultracold atomic gases

Interactions:

• Ultracold collisions \rightarrow s-wave scattering:
 \[\sigma = 4\pi a^2_{l=0} + O(k^2) \approx 4\pi a_{sc}^2 \]
 ("hard-spheres").
 (Note: p-wave scattering for identical Fermions.)

• Effective interaction potential:
 \[V_{\text{pseudo}}(R) = \frac{4\pi \hbar^2}{\mu R^2} a_{sc} \delta(R) \]

Extremely simple short-range potential (though strongly dependent on long-range part of true interatomic potential).

• Magnetic Feshbach resonances \rightarrow extreme tunability: $-\infty \leq a_{sc} \leq +\infty$
 ("strong attraction, no interaction, strong repulsion").

• Dipolar gases (Cr, diatomics, . . .) \rightarrow non-isotropic interaction ("spins").
Magnetic Feshbach resonances

Simple picture:

Only 2 channels:
- open (continuum) channel,
- closed (bound) channel.
Magnetic Feshbach resonances

Simple picture:
Only 2 channels:
- open (continuum) channel,
- closed (bound) channel.

Multichannel reality:
Example $^6\text{Li} - ^{87}\text{Rb}$: 8 coupled channels,
- very different length scales involved,
- high quality molecular potential curves required.
Optical lattices: physics on a lattice

Counterpropagating lasers: \rightarrow standing light field.

Trap potential varies as

$$U_{\text{lat}} \sin^2(\vec{k}\vec{r})$$

with

$$k = \frac{2\pi}{\lambda}$$

λ: laser wavelength.

$$U_{\text{lat}} \propto I \alpha(\lambda)$$

with laser intensity I and atomic polarizability α.

[reproduced from I. Bloch, *Nature Physics* 1, 23 (2005)]
Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).
 Strong anisotropies possible: physics in reduced dimensionality.
Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).
 Strong anisotropies possible: physics in reduced dimensionality.
- Additional vector potential may break Abelian symmetry.
Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).
 Strong anisotropies possible: physics in reduced dimensionality.
- Additional vector potential may break Abelian symmetry.

+ variability and tunability of the interactions:

→ Quantum emulators for solid-state Hamiltonians and (possibly) lattice gauge theory!
Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).
 Strong anisotropies possible: physics in reduced dimensionality.
- Additional vector potential may break Abelian symmetry.

+ variability and tunability of the interactions:

→ Quantum emulators for solid-state Hamiltonians and (possibly) lattice gauge theory!

+ single-site addressability:

→ Quantum computers could become possible!
1. Radio-frequency pulse (RF) changes spin state of one atom.
2. Merge the two atoms into a single well.
3. Exchange interaction induces oscillation of spin population in lower and upper vibrational state.

[Anselini et al., *Nature* **448** 452 (2007)]
Example of a two-qubit gate (SWAP) (II)

Left (Fig. a):
1. Radio-frequency pulse (RF) changes spin state of one atom.
2. Merge the two atoms into a single well.
3. Exchange interaction induces oscillation of spin population in lower and upper vibrational state.

Right (Fig. c):
Measured spin populations in upper vibrational state as a function of interaction time.

[Anderlini et al., Nature 448 452 (2007)]
Single-site resolution (I)

Sherson et al., Nature 467, 68 (2010)
Single-site resolution (II)

A. Saenz: Quantum information with ultracold quantum gases (10)
Single-site addressing (I)

Weitenberg et al., Nature 471, 319 (2011)
Single-site addressing (II)

Bose-Hubbard model of the OL

\(N\)-Boson Hamiltonian with additional external confinement \(V_{\text{conf}}(\mathbf{r})\)

\[H_{\text{OL}} = \sum_{n=1}^{N} \left(\frac{p_n^2}{2m} + V_{\text{OL}}(\mathbf{r}_n) + V_{\text{conf}}(\mathbf{r}_n) \right) + \sum_{n<m} \hat{V}_{\text{int}}(\mathbf{r}_n - \mathbf{r}_m) \]

is rewritten in basis of Wannier functions \(w_i(\mathbf{r})\) (superpositions of Bloch solutions localized at lattice site \(i\)) of the first Bloch band as

\[\hat{H}_{BH} = -J \sum_{\langle i,j \rangle} \hat{b}_i^\dagger \hat{b}_j + \sum_i \epsilon_i \hat{n}_i + U \sum_i \frac{\hat{n}_i (\hat{n}_i - 1)}{2} \]
Bose-Hubbard model of the OL

\(N \)-Boson Hamiltonian with additional external confinement \(V_{\text{conf}}(r) \)

\[
H_{\text{OL}} = N \sum_{n=1}^{N} \left(\frac{\vec{p}_n^2}{2m} + V_{\text{OL}}(r_n) + V_{\text{conf}}(r_n) \right) + \sum_{n<m} \hat{V}_{\text{int}}(r_n - r_m)
\]

is rewritten in basis of Wannier functions \(w_i(r) \) (superpositions of Bloch solutions localized at lattice site \(i \)) of the first Bloch band as

\[
\hat{H}_{\text{BH}} = -J \sum_{\langle i,j \rangle} b_i^\dagger b_j + \sum_i \epsilon_i \hat{n}_i + U \sum_i \frac{\hat{n}_i(\hat{n}_i - 1)}{2}
\]

with

\[
J = -\left\langle w_0 \left| \frac{\vec{p}}{2m} + \hat{V}_{\text{OL}} \right| w_1 \right\rangle, \quad \epsilon_i = \left\langle w_i \left| \frac{\vec{p}}{2m} + \hat{V}_{\text{OL}} + \hat{V}_{\text{conf}} \right| w_i \right\rangle
\]

and

\[
U = \left\langle w_0 \left| \left\langle w_0 \right| \hat{V}_{\text{Int}} \right| w_0 \right\rangle \right| w_0 \rangle
\]
Two atoms in a triple well

We obtain exact solutions for two interacting atoms in 3 wells of an OL.
We obtain **exact solutions** for two interacting atoms in 3 wells of an OL.

- Comparison with **BH model** with Hamiltonian

\[\hat{H}_{\text{BH}} = J \sum_{<i,j>} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) + \sum_i \epsilon_i \hat{b}_i^{\dagger} \hat{b}_i \]

yields **optimal BH parameters** \(J^{\text{opt}}, U^{\text{opt}}, \epsilon_i^{\text{opt}} \)

and **validity range of BH model**

Mott to superfluid transition

super-fluid phase (BEC)

insulating phase (incoherent)

super-fluid phase (BEC)

(s. Greiner et al., Nature 415 39 (2002))
Phase diagram (spin system)