Quantum-computer algorithm of Shor

The factorization of an integer IN is assumed to be difficult, since
every known classical algorithm grows exponentially with the
size of the integer N.

This is the basis of most of the adopted cryptographical tools that
are thus assumed to be relatively secure.
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Quantum-computer algorithm of Shor

The factorization of an integer IN is assumed to be difficult, since
every known classical algorithm grows exponentially with the
size of the integer N.

This is the basis of most of the adopted cryptographical tools that
are thus assumed to be relatively secure.
The algorithm of Shor is based on 3 tricks:

1. Transformation of the problem into finding the period of a
function.

2. Use of the Fourier transform in order to determine this period.

3. Use of quantum parallelism for 1. and 2.

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (1) Berlin, 30.05.2018



Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer y < N
(with ged(y, V) =1=greatest common divisor of 1 and V)
there is a large probability that

gcd(y/? +1,N) - ged(y"/2—=1,N) = w-v = N

and thus v and v are the factors searched for
if r is the period of the function f(a) = y“ modN.
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gcd(y/? +1,N) - ged(y"/2—=1,N) = w-v = N
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Notes:

e Theinteger 1 can be chosen arbitrarily, provided it has no common divisor

(other than 1) with V.
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Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer y < N
(with ged(y, V) =1=greatest common divisor of 1 and V)

there is a large probability that
ged(y" /2 +1,N) -ged(y/2—1,N) = u-v = N

and thus v and v are the factors searched for
if r is the period of the function f(a) = y“ modN.

Notes:

e Theinteger 1 can be chosen arbitrarily, provided it has no common divisor

(other than 1) with V.

e Not every choice of 7 leads to a success, i.e. there are integers that will
not work (“failures”).
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Trick 1: Transformation of the problem (II)

Example: N =15—y=2,4,7,8,11,13, or 14.
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Trick 1: Transformation of the problem (II)

Example: N =15—y=2,4,7,8,11,13, or 14.

Arbitrary choice of y=11:

11
11
11
11

mod1bH =
mod1H =

Ilmodl5= (0-1541)modl5 = 1

11mod15 = (0-15+ 11)modl5 =11

mod15 = 121mod15 = (8-15+ 1)modl5 = 1
mod15 =1331 mod15 =(88 - 15 4+ 11) mod15 =11

— =2 (firy = 11) — ged(11%/2 £ 1, 15)

— ged(12,15) - ged(10,15) =3 -5 =15
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Trick 1: Transformation of the problem (Ill)

Example: N =15 -y =2,4,7,8,11,13, oder 14.
Alternatively, choose y=7 (instead of y = 11).
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Trick 1: Transformation of the problem (Ill)

Example: N =15 -y =2,4,7,8,11,13, oder 14.

Alternatively, choose y=7 (instead of y = 11).

1) modl5 = 1
mod15 = 7Tmodl5= (0-154+7)modl5 =7
mod15 = 49modl5 = (315 +4)modls = 4

)

1)

)

7" mod15 = lmodl5= (0-15+

mod15 = 2401 mod15 = (160 - 15 +

~ =~ =3 =1 =

—s =4 (fiiry = 7) — ged (72 £ 1, 15)

mod15 = 343modl5 = (22-15+ 13) mod15 =13
modl1lH = 1
mod15 =16807 mod15 =(1120 - 15 + 7) mod15 = 7

— ged(50,15) - ged(48,15) =5-3 =15
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Trick 1: Transformation of the problem (Ill)

Example: N =15 -y =2,4,7,8,11,13, oder 14.

Alternatively, choose y=7 (instead of y = 11).

1) modl5 = 1
mod15 = 7Tmodl5= (0-154+7)modl5 =7
mod15 = 49modl5 = (315 +4)modls = 4

)

1)

)

7" mod15 = lmodl5= (0-15+

mod15 = 2401 mod15 = (160 - 15 +

~ =~ =3 =1 =

—s =4 (fiiry = 7) — ged (72 £ 1, 15)

mod15 = 343modl5 = (22-15+ 13) mod15 =13
modl1lH = 1
mod15 =16807 mod15 =(1120 - 15 + 7) mod15 = 7

— ged(50,15) - ged(48,15) =5-3 =15

Note: The choice of y = 14 results in a failure!

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (4) Berlin, 30.05.2018



Trick 2: Quantum Fourier transform QFT (1)

Problem: the efforts to find the period r grow exponentially

with the size of N |
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Trick 2: Quantum Fourier transform QFT (1)

Problem: the efforts to find the period r grow exponentially
with the size of N |

Solution: Make use of the very specific properties of the

(quantum) Fourier transform.

The Quantum Fourier transform (QFT)

K—1 OFT K—1 K—1 .

I

wi3) = Y wklk) e = ) @R
7=0 k=0 7=0

is completely analogous to the classical discrete Fourier transform (DFT),
except the fact that in the QFT the amplitudes are transformed.

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (5) Berlin, 30.05.2018



Trick 2: Quantum Fourier transform (11)

Relevant properties of the (Q)FT:

1. A possible period 7 in g 1. Kx—1 changes into a period K /7 in the
Yo,1,....K—1-
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Trick 2: Quantum Fourier transform (11)

Relevant properties of the (Q)FT:

1. A possible period 7 in g 1. Kx—1 changes into a period K /7 in the
Yo,1,....K—1-

2. A constant shift transforms into a phase factor

i T e ki
vl jH) == D TR g lk)
]:O k=0

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (6) Berlin, 30.05.2018



Efficiency of the Quantum Fourier transform QFT

Efficiency:

e Classical discrete fast Fourier transform: scales as K 2%

e Quantum Fourier transform (QFT): scales as K?

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (7) Berlin, 30.05.2018



Efficiency of the Quantum Fourier transform QFT

Efficiency:

e Classical discrete fast Fourier transform: scales as K 2%

e Quantum Fourier transform (QFT): scales as K?

Quantum parallelism transforms a difficult into a simple problem.

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (7) Berlin, 30.05.2018



Efficiency of the Quantum Fourier transform QFT

Efficiency:

e Classical discrete fast Fourier transform: scales as K 2%

e Quantum Fourier transform (QFT): scales as K?

Quantum parallelism transforms a difficult into a simple problem.

Fourier transforms are really of massive practical interest !

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (7) Berlin, 30.05.2018



Efficiency of the Quantum Fourier transform QFT

Efficiency:

e Classical discrete fast Fourier transform: scales as K 2%

e Quantum Fourier transform (QFT): scales as K?

Quantum parallelism transforms a difficult into a simple problem.

Fourier transforms are really of massive practical interest !

Problem: The results of the QFT (the amplitudes yx) are not directly
accessible ( ) !

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (7) Berlin, 30.05.2018



Shor for factorizing 15 (1): 2 registers

The Shor algorithm given explicitly for the example of
factorizing the number N = 15.

Two registers are needed:

k = 3 qubits for representing the numbers 0 to 7 (< N/2)
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Shor for factorizing 15 (1): 2 registers

The Shor algorithm given explicitly for the example of
factorizing the number N = 15.

Two registers are needed:

k = 3 qubits for representing the numbers 0 to 7 (< N/2)
Register 2. m = 4 qubits for the numbers 0 to 15 (< N)

Choose a number y < 15 (with ged(y,15) = 1), e.g. y = 11.

The Shor algorithm can be split into 4 steps:

1. Initialization: Set all 7 qubits to | 0):
10000000) (= [ W1 )1] P1)2).

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (8) Berlin, 30.05.2018



Shor for factorizing 15 (I1): Input preparation

2. Prepare input: Put the into the superposition of |0) and
| 1), i.e. the integers 0 to 7:

0000000) — — 000} 4001} 4010}
' \/g S—— S—— S——
10) | 1) |1 2)
—+ —I-\ >>|OOOO>
| 7)
ok _q

WD) = = 3 [a)i]0)a
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Shor for factorizing 15 (l11): evaluate f(a)

3. Evaluate f(a) = y*modN (here 11*mod15) for all a

in the (0...7) simultaneously (quantum parallelism).

Store the result in the 2nd register:
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Shor for factorizing 15 (l11): evaluate f(a)

3. Evaluate f(a) = y*modN (here 11*mod15) for all a

in the (0...7) simultaneously (quantum parallelism).

Store the result in the 2nd register:

1
— | Y0001 ) 4+ | Y| 1011)
Ve 10) 1) 1) [ 11)

+ | Y0001 ) 4+ -+ 4 | >|1011>>
—— —— —— ——

12) 1) |7) | 11)
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Shor for factorizing 15 (l11): evaluate f(a)

3. Evaluate f(a) = y*modN (here 11*mod15) for all a

in the (0...7) simultaneously (quantum parallelism).

Store the result in the 2nd register:

1
— | Y0001 ) 4+ | Y| 1011)
Ve 10) 1) 1) [ 11)

_ 1 0001
= & [000) +]010)4+]100) + | >|1>>

+1[001) +[011) +[101) +| >]|1011>>
1) 13) 15) I7) 11)

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (10) Berlin, 30.05.2018



Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = y® modN (here
11%mod15) for all a in (0...7)isin the 2nd register:
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Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = y® modN (here

11%mod15) for all a in (0...7)isin the 2nd register:
. _
e ([ Loyt for0y+ o0y 110y | povony

+[001) +
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Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = y® modN (here

11%mod15) for all a in (0...7)isin the 2nd register:
(|l
—= | [ 000) +[010) +|100) 4 [110) | [ 0001 )
VBl 10) 12) 1) 16) 1)
+1 | >+1V>J+1V>J+1V>J |1Q}1>>
L 1) |3) 15) 17) | 11)
2k _1
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Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = y® modN (here
11%mod15) for all @ in 1st register (0...7)isin the 2nd register:

! -|000)+|010>+|100)+|11())- | 0001 )
V8 —_—— L L — 7
- |0) | 2) | 4) |[6) - | 1)
4| [001Y 4+ ]011Y 4+ [101) +|111) |1011>>
R/_/ \VJ \VJ \VJ g -~ ’,
- | 1) | 3) | 5) |7) - | 11)
2k _1
| U3 )1 @3)2 = | a)1]| y“ modNN ),
Y
k r—1 A
A<=l 1
=" |1+ g7 )1 ]|y mod N )
; W(A+1)j§,

Register 1 contains now the period r of interest, but only for
iIdentical measurement results in register 2!

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (11) Berlin, 30.05.2018



Shor for factorizing 15 (V): r in 1st register (2)

The searched for period 7 (here r = 2) is the distance between the

components (| 0),[2),[4),16)or|[1),[3),]15),]7))in the
Ist register for a single state of the 2nd register (1 or 11).

_—
[ ]1000Y4]010Y+[100)+]110) | |0001)
VA AR RS RS B A B RRIGLY)
| 0) | 2) | 4) |6) - | 1)
S 001y 4011y 4+ 101 ) 4+ ]111) |1011)>
SN—— N—— N—— N——
| 1) | 3) | 5) |7) - | 11)
2"’—1 r—1
|‘I’3>1|‘I’3>2 =" |1+ j7 )1 | | y' modN ),
lZ W(A+1)Z

Only the multiple repetition of the experiment yields the period r

Berlin, 30.05.2018
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Shor for factorizing 15 (V): r in 1st register (2)

The searched for period 7 (here r = 2) is the distance between the

components (| 0),[2),[4),16)or|[1),[3),]15),]7))in the
Ist register for a single state of the 2nd register (1 or 11).

_—
[ ]1000Y4]010Y+[100)+]110) | |0001)
VA AR RS RS B A B RRIGLY)
| 0) | 2) | 4) |6) - | 1)
S 001y 4011y 4+ 101 ) 4+ ]111) |1011)>
| 1) | 3) | 5) |7) - | 11)
2"’—1 r—1
|‘I’3>1|‘I’3>2 =" |1+ j7 )1 | | y' modN ),
lZ W(A+1)Z

Only the multiple repetition of the experiment yields the period r
The mean number of necessary repetitions grows exponentially with the

Berlin, 30.05.2018

number of digits of IN |

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (12)



Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

— 1<[|000)+|100>] | 0001 )
2 N—— N—— N——
10 1) 1)

+ [ | 000) + ™[ 100) \|1011>J>

H/—/ ~~ 7 ~~
| 0) —|4) - | 11)
1 r—1 r—1 w‘_j .2k: ]
| Wy )1 Py)e = — [ ™7 |5 1| |y modN ),
r =0 7=0 r i
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Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

— 1<[|000)+|100)] | 0001 )
2 N—— N—— N——
10) | 4) | 1)

+[|000)+e’“'|100) |1011>>
N\ 7 A\ -~ J/ N\ -~ J/
10) N R

r—1 . k ]

1j 2
[ > e*™F |5 )1| |y modN ),
§=0 LA

1
| Wy )1| Pa)2 = —
r =0

Independent of register 2 every measurement yields either O or a
multiple of the new period 2% /7 (here 4 due to » = 2 and k = 3):

e |[0) =1|000): failure — new attempt.
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Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

— 1<[|000)+|100>] | 0001 )
10 1) 1)

+[|000)+e’“'|100) |1011>>
N\ 7 A\ -~ J/ N\ -~ J/
10) N R

r—1 r—1 . k
1 Lj 2
| Uy )| )2 = - [

™ | 4 - b1| | y' modN ),

Independent of register 2 every measurement yields either O or a
multiple of the new period 2% /7 (here 4 due to » = 2 and k = 3):

e |[0) =1|000): failure — new attempt.
o |4)=1[100) r=2F3/4=8/4 = 2 (success!).

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (13) Berlin, 30.05.2018



Shor for factorizing 15 (VII): analysis

1 — — ﬂ'LL
| Wy )| Pa)2 = ;Z Z : |J—> | y' modN ),

7=0

Problem: measurement yields | 3 27) with7 =0,1,...,7r — 1.

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (14) Berlin, 30.05.2018



Shor for factorizing 15 (VII): analysis

| Py 1| Pa)e =

3=

r—1 r—1 ) 15 zk l

Yol D . ™ 5= 1| |y modN ),
) T

=0 7=0

k
Problem: measurement yields | 3 27) with7 =0,1,...,7r — 1.

7 = 0 — failure, but the probability decreases for increasing IN .
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Shor for factorizing 15 (VII): analysis

| Py 1| Pa)e =

3=

r—1 r—1 ) 15 zk l

DI D> ™G] |y modN ),
, T

=0 71=0

k
Problem: measurement yields | 3 27) with7 =0,1,...,7r — 1.
7 = 0 — failure, but the probability decreases tor increasing IN .
Larger N —— generally larger period 7 and larger 7.

Example N = 15 with y = 11: no problem, sincer =2 — 3 =0, 1.
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Shor for factorizing 15 (VII): analysis

1 | ~— o2miti, 2"
|‘I’4>1|‘I’4>2=;Z Z : |J—> | y' modN ),

=0
Problem: measurement yields | 3 27) with7 =0,1,...,7r — 1.

7 = 0 — failure, but the probability decreases tor increasing IN .

Larger N —— generally larger period 7 and larger 7.

Example N = 15 with y = 11: no problem, sincer =2 — 3 =0, 1.

r from j - 2% /r: method of continued fractions.
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Shor for factorizing 15 (VII): analysis

r—1 r—1 . k
1 ﬂil—J 2
[@adi @a)e = — > [ > ™G] |y modN ),
1=0 j=0

Problem: measurement yields | 3 %) with7 =0,1,...,7r — 1.

7 = 0 — failure, but the probability decreases tor increasing IN .

Larger N —— generally larger period 7 and larger 7.

Example N = 15 with y = 11: no problem, sincer =2 — 3 =0, 1.
r from j - 2% /r: method of continued fractions.

Important: 2% and r grow exponentially with IV,
but 2% /7 only polynomially |
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Shor for factorizing 15 (VII): analysis

r—1 r—1 . k
1 ﬂil—J 2

[ Oy )1 @aYs = = > | D 5= )1| |y modN ),
T =0 | j=o r

Problem: measurement yields | 3 %) with7 =0,1,...,7r — 1.

7 = 0 — failure, but the probability decreases tor increasing IN .

Larger N —— generally larger period 7 and larger 7.

Example N = 15 with y = 11: no problem, sincer =2 — 3 =0, 1.
r from j - 2% /r: method of continued fractions.

Important: 2% and r grow exponentially with IV,
but 2% /7 only polynomially |

Number of operations incl. probability for failures grows only polynomially

with IN 1

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (14) Berlin, 30.05.2018



