Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$
\Psi\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)=\prod_{i=1}^{N} \phi_{0}\left(\boldsymbol{R}_{i}\right)
$$

- In contrast to, e. g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.

Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$
\Psi\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)=\prod_{i=1}^{N} \phi_{0}\left(\boldsymbol{R}_{i}\right)
$$

- In contrast to, e. g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.

Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$
\Psi\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)=\prod_{i=1}^{N} \phi_{0}\left(\boldsymbol{R}_{i}\right)
$$

- In contrast to, e. g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
- "Superchemistry" (?): chemical reaction between two coherent molecular clouds.

Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$
\Psi\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)=\prod_{i=1}^{N} \phi_{0}\left(\boldsymbol{R}_{i}\right)
$$

- In contrast to, e. g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
- "Superchemistry" (?): chemical reaction between two coherent molecular clouds.
- Neutral atoms \longrightarrow variable particle number.
- Different atomic species \longrightarrow different interparticle interactions.

Bose-Einstein condensate of dilute atomic gases

In a perfect Bose-Einstein condensate (BEC) all ideal bosons occupy the same lowest energy state (in mean field):

$$
\Psi\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \ldots, \boldsymbol{R}_{N}\right)=\prod_{i=1}^{N} \phi_{0}\left(\boldsymbol{R}_{i}\right)
$$

- In contrast to, e. g., superfluid He interactions in dilute atomic gases are (usually) small \longrightarrow practically 100% BEC: quantum statistics determines behaviour.
- Lowest known temperatures (nanokelvin), atoms are practically at rest: high-precision spectroscopy, quantum-state resolved cross-sections.
- "Superchemistry" (?): chemical reaction between two coherent molecular clouds.
- Neutral atoms \longrightarrow variable particle number.
- Different atomic species \longrightarrow different interparticle interactions.

Macroscopic coherent quantum systems
with variable interparticle interactions.

Thermal cloud vs. Bose-Einstein Condensate (BEC)

[from: http://cua.mit.edu/ketterle_group/]

Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions $\longrightarrow \mathrm{s}$-wave scatering:

$$
\sigma=4 \pi a_{l=0}^{2}+O\left(k^{2}\right) \approx 4 \pi a_{\mathrm{sc}}^{2}
$$

("hard-spheres").
(Note: p-wave scattering for identical Fermions.)

Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions $\longrightarrow \mathrm{s}$-wave scatering:

$$
\sigma=4 \pi a_{l=0}^{2}+O\left(k^{2}\right) \approx 4 \pi a_{\mathrm{sc}}^{2}
$$

("hard-spheres").
(Note: p-wave scattering for identical Fermions.)

- Effective interaction potential:

$$
V_{\text {pseudo }}(R)=\frac{4 \pi \hbar^{2}}{\mu R^{2}} a_{\mathrm{sc}} \delta(R)
$$

Extremely simple short-range potential (though strongly dependent on long-range part of true interatomic potential).

Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions \longrightarrow s-wave scatering:

$$
\sigma=4 \pi a_{l=0}^{2}+O\left(k^{2}\right) \approx 4 \pi a_{\mathrm{sc}}^{2}
$$

("hard-spheres").
(Note: p-wave scattering for identical Fermions.)

- Effective interaction potential:

$$
V_{\text {pseudo }}(R)=\frac{4 \pi \hbar^{2}}{\mu R^{2}} a_{\mathrm{sc}} \delta(R)
$$

Extremely simple short-range potential (though strongly dependent on long-range part of true interatomic potential).

- Magnetic Feshbach resonances \longrightarrow extreme tunability: $-\infty \leq a_{\mathrm{sc}} \leq+\infty$ ("strong attraction, no interaction, strong repulsion").

Interactions in ultracold atomic gases

Interactions:

- Ultracold collisions \longrightarrow s-wave scatering:

$$
\sigma=4 \pi a_{l=0}^{2}+O\left(k^{2}\right) \approx 4 \pi a_{\mathrm{sc}}^{2}
$$

("hard-spheres").
(Note: p-wave scattering for identical Fermions.)

- Effective interaction potential:

$$
V_{\text {pseudo }}(R)=\frac{4 \pi \hbar^{2}}{\mu R^{2}} a_{\mathrm{sc}} \delta(R)
$$

Extremely simple short-range potential (though strongly dependent on long-range part of true interatomic potential).

- Magnetic Feshbach resonances \longrightarrow extreme tunability: $-\infty \leq a_{\text {sc }} \leq+\infty$ ("strong attraction, no interaction, strong repulsion").
- Dipolar gases (Cr, diatomics, . .) \longrightarrow non-isotropic interaction ("spins").

Magnetic Feshbach resonances

Simple picture:

Only 2 channels:

- open (continuum) channel,
- closed (bound) channel.

Magnetic Feshbach resonances

Simple picture:
Only 2 channels:

- open (continuum) channel,
- closed (bound) channel.

Multichannel reality:

Example ${ }^{6} \mathrm{Li}^{87} \mathrm{Rb}$: 8 coupled channels,

- very different length scales involved,
- high quality molecular potential curves required.

Optical lattices: physics on a lattice

Counterpropagating lasers:
\longrightarrow standing light field.
Trap potential varies as

$$
U_{\text {lat }} \sin ^{2}(\vec{k} \vec{r})
$$

with
$k=\frac{2 \pi}{\lambda}$
λ : laser wavelength.

$$
U_{\text {lat }} \propto I \alpha(\lambda)
$$

with
laser intensity I and atomic polarizability α.
[reproduced from I. Bloch, Nature Physics 1, 23 (2005)]

Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.

Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).

Strong anisotropies possible: physics in reduced dimensionality.

Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).

Strong anisotropies possible: physics in reduced dimensionality.

- Additional vector potential may break Abelian symmetry.

Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).

Strong anisotropies possible: physics in reduced dimensionality.

- Additional vector potential may break Abelian symmetry.
+ variability and tunability of the interactions:
\longrightarrow Quantum emulators for solid-state Hamiltonians and (possibly) lattice gauge theory!

Applications in quantum information

Optical lattices:

- Perfect periodic structure (phonon free) with variable filling.
- Lattice shape, depth, geometry tunable (in real time).

Strong anisotropies possible: physics in reduced dimensionality.

- Additional vector potential may break Abelian symmetry.
+ variability and tunability of the interactions:
\longrightarrow Quantum emulators for solid-state Hamiltonians and (possibly) lattice gauge theory!
+ single-site addressability:
\longrightarrow Quantum computers could become possible!

Example of a two-qubit gate (SWAP) (I)

1. Radio-frequency pulse (RF) changes spin state of one atom.
2. Merge the two atoms into a single well.
3. Exchange interaction induces oscillation of spin population in lower and upper vibrational state.
[Anderlini et al., Nature 448452 (2007)]

Example of a two-qubit gate (SWAP) (II)

Left (Fig. a):

1. Radio-frequency pulse (RF) changes spin state of one atom.
2. Merge the two atoms into a single well.
3. Exchange interaction induces oscillation of spin population in lower and upper vibrational state.

Right (Fig. c):
Measured spin populations in upper vibrational state as a function of interaction time.
[Anderlini et al., Nature 448452 (2007)]

Single-site resolution (I)

Sherson et al., Nature 467, 68 (2010)

Single-site resolution (II)

Sherson et al., Nature 467, 68 (2010)

Single-site addressing (I)

Weitenberg et al., Nature 471, 319 (2011)

Single-site addressing (II)

Weitenberg et al., Nature 471, 319 (2011)

Bose-Hubbard model of the OL

N-Boson Hamiltonian with additional external confinement $V_{\text {conf }}(\mathbf{r})$

$$
H_{\mathrm{OL}}=\sum_{n=1}^{N}\left(\frac{p_{n}^{2}}{2 m}+V_{\mathrm{OL}}\left(\mathbf{r}_{n}\right)+V_{\mathrm{conf}}\left(\mathbf{r}_{n}\right)\right)+\sum_{n<m} \hat{V}_{\mathrm{int}}\left(\mathbf{r}_{n}-\mathbf{r}_{m}\right)
$$

is rewritten in basis of Wannier functions $w_{i}(\mathbf{r})$ (superpositions of Bloch solutions localized at lattice site i) of the first Bloch band as

$$
\hat{H}_{B H}=-J \sum_{<i, j>} b_{i}^{\dagger} b_{j}+\sum_{i} \epsilon_{i} \hat{n}_{i}+U \sum_{i} \frac{\hat{n}_{i}\left(\hat{n}_{i}-1\right)}{2}
$$

Bose-Hubbard model of the OL

N-Boson Hamiltonian with additional external confinement $V_{\text {conf }}(\mathbf{r})$

$$
H_{\mathrm{OL}}=\sum_{n=1}^{N}\left(\frac{p_{n}^{2}}{2 m}+V_{\mathrm{OL}}\left(\mathbf{r}_{n}\right)+V_{\mathrm{conf}}\left(\mathbf{r}_{n}\right)\right)+\sum_{n<m} \hat{V}_{\mathrm{int}}\left(\mathbf{r}_{n}-\mathbf{r}_{m}\right)
$$

is rewritten in basis of Wannier functions $w_{i}(\mathbf{r})$ (superpositions of Bloch solutions localized at lattice site i) of the first Bloch band as

$$
\hat{H}_{B H}=-J \sum_{<i, j>} b_{i}^{\dagger} b_{j}+\sum_{i} \epsilon_{i} \hat{n}_{i}+U \sum_{i} \frac{\hat{n}_{i}\left(\hat{n}_{i}-1\right)}{2}
$$

$$
\begin{gathered}
\text { with } J=-\left\langle w_{0}\right| \frac{\hat{p}}{2 m}+\hat{V}_{\mathrm{OL}}\left|w_{1}\right\rangle, \quad \epsilon_{i}=\left\langle w_{i}\right| \frac{\hat{p}}{2 m}+\hat{V}_{\mathrm{OL}}+\hat{V}_{\text {conf }}\left|w_{i}\right\rangle \\
\text { and } U=\left\langle w_{0}\right|\left\langle w_{0}\right| \hat{V}_{\text {Int }}\left|w_{0}\right\rangle\left|w_{0}\right\rangle
\end{gathered}
$$

Two atoms in a triple well

Two atoms in a triple well

We obtain exact solutions for two interacting atoms in 3 wells of an OL.

- Comparison with BH model with Hamiltonian

$$
\hat{H}_{\mathrm{BH}}=J \sum_{<i, j>} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)+\sum_{i} \epsilon_{i} \hat{b}_{i}^{\dagger} \hat{b}_{i}
$$

yields optimal BH parameters $J^{\text {opt }}, U^{\text {opt }}, \epsilon_{i}^{\text {opt }}$ and validity range of BH model [P.I. Schneider et al., Phys. Rev. A 80, 013404 (2009)]

Mott to superfluid transition

super-fluid phase (BEC)
insulating phase
(incoherent)
super-fluid phase
(BEC)
(s. Greiner et al., Nature 41539 (2002))

Phase diagram (spin system)

Liao et al., Nature 467, 567 (2010)

