
Quantum-computer algorithm of Shor

The factorization of an integer N is assumed to be di�cult, since

every known classical algorithm grows exponentially with the

size of the integer N .

This is the basis of most of the adopted cryptographical tools that

are thus assumed to be relatively secure.
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Quantum-computer algorithm of Shor

The factorization of an integer N is assumed to be di�cult, since

every known classical algorithm grows exponentially with the

size of the integer N .

This is the basis of most of the adopted cryptographical tools that

are thus assumed to be relatively secure.

The algorithm of Shor is based on 3 tricks:

1. Transformation of the problem into �nding the period of a

function.

2. Use of the Fourier transform in order to determine this period.

3. Use of quantum parallelism for 1. and 2.

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (1) Berlin, 30.05.2018



Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer y ≤ N

(with gcd(y,N)=1=greatest common divisor of y and N )

there is a large probability that

gcd(yr/2 + 1, N) · gcd(yr/2 − 1, N) = u · v = N

and thus u and v are the factors searched for,

if r is the period of the function f(a) = ya modN .
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Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer y ≤ N

(with gcd(y,N)=1=greatest common divisor of y and N )

there is a large probability that

gcd(yr/2 + 1, N) · gcd(yr/2 − 1, N) = u · v = N

and thus u and v are the factors searched for,

if r is the period of the function f(a) = ya modN .

Notes:

• The integer y can be chosen arbitrarily, provided it has no common divisor

(other than 1) with N .

• Not every choice of y leads to a success, i. e. there are integers that will

not work (�failures�).
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Trick 1: Transformation of the problem (II)

Example: N = 15→ y = 2, 4, 7, 8, 11, 13, or 14.
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Trick 1: Transformation of the problem (II)

Example: N = 15→ y = 2, 4, 7, 8, 11, 13, or 14.

Arbitrary choice of y=11:

110 mod15 = 1 mod15 = (0 · 15 + 1) mod15 = 1

111 mod15 = 11 mod15 = (0 · 15 + 11) mod15 =11

112 mod15 = 121 mod15 = (8 · 15 + 1) mod15 = 1

113 mod15 =1331 mod15 =(88 · 15 + 11) mod15 =11

−→ r = 2 (für y = 11) −→ gcd(112/2 ± 1, 15)

−→ gcd(12, 15) · gcd(10, 15) = 3 · 5 = 15

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (3) Berlin, 30.05.2018



Trick 1: Transformation of the problem (III)

Example: N = 15→ y = 2, 4, 7, 8, 11, 13, oder 14.

Alternatively, choose y=7 (instead of y = 11).
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Trick 1: Transformation of the problem (III)

Example: N = 15→ y = 2, 4, 7, 8, 11, 13, oder 14.

Alternatively, choose y=7 (instead of y = 11).

70 mod15 = 1 mod15 = (0 · 15 + 1) mod15 = 1

71 mod15 = 7 mod15 = (0 · 15 + 7) mod15 = 7

72 mod15 = 49 mod15 = (3 · 15 + 4) mod15 = 4

73 mod15 = 343 mod15 = (22 · 15 + 13) mod15 =13

74 mod15 = 2401 mod15 = (160 · 15 + 1) mod15 = 1

75 mod15 =16807 mod15 =(1120 · 15 + 7) mod15 = 7

−→ r = 4 (für y = 7) −→ gcd(74/2 ± 1, 15)

−→ gcd(50, 15) · gcd(48, 15) = 5 · 3 = 15
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Trick 1: Transformation of the problem (III)

Example: N = 15→ y = 2, 4, 7, 8, 11, 13, oder 14.

Alternatively, choose y=7 (instead of y = 11).

70 mod15 = 1 mod15 = (0 · 15 + 1) mod15 = 1

71 mod15 = 7 mod15 = (0 · 15 + 7) mod15 = 7

72 mod15 = 49 mod15 = (3 · 15 + 4) mod15 = 4

73 mod15 = 343 mod15 = (22 · 15 + 13) mod15 =13

74 mod15 = 2401 mod15 = (160 · 15 + 1) mod15 = 1

75 mod15 =16807 mod15 =(1120 · 15 + 7) mod15 = 7

−→ r = 4 (für y = 7) −→ gcd(74/2 ± 1, 15)

−→ gcd(50, 15) · gcd(48, 15) = 5 · 3 = 15

Note: The choice of y = 14 results in a failure !

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (4) Berlin, 30.05.2018



Trick 2: Quantum Fourier transform QFT (I)

Problem: the e�orts to �nd the period r grow exponentially

with the size of N !
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Trick 2: Quantum Fourier transform QFT (I)

Problem: the e�orts to �nd the period r grow exponentially

with the size of N !

Solution: Make use of the very speci�c properties of the

(quantum) Fourier transform.

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (5) Berlin, 30.05.2018



Trick 2: Quantum Fourier transform QFT (I)

Problem: the e�orts to �nd the period r grow exponentially

with the size of N !

Solution: Make use of the very speci�c properties of the

(quantum) Fourier transform.

The Quantum Fourier transform (QFT)

K−1∑
j=0

xj | j 〉
QFT−→

K−1∑
k=0

yk | k 〉 , yk =

K−1∑
j=0

xj e2πi
jk
K

is completely analogous to the classical discrete Fourier transform (DFT),

except the fact that in the QFT the amplitudes are transformed.
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Trick 2: Quantum Fourier transform (II)

Relevant properties of the (Q)FT:

1. A possible period r in x0,1,...,K−1 changes into a period K/r in the

y0,1,...,K−1.
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Trick 2: Quantum Fourier transform (II)

Relevant properties of the (Q)FT:

1. A possible period r in x0,1,...,K−1 changes into a period K/r in the

y0,1,...,K−1.

2. A constant shift transforms into a phase factor

K−1∑
j=0

xj | j+l 〉 QFT−→
K−1∑
k=0

e2πi
k l
K yk | k 〉 ,

but the (measurable) probabilities remain unchanged

( |e2πi k lK yk|2 = |yk|2 ).

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (6) Berlin, 30.05.2018



E�ciency of the Quantum Fourier transform QFT

E�ciency:

• Classical discrete fast Fourier transform: scales as K 2K.

• Quantum Fourier transform (QFT): scales as K2.
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E�ciency of the Quantum Fourier transform QFT

E�ciency:

• Classical discrete fast Fourier transform: scales as K 2K.

• Quantum Fourier transform (QFT): scales as K2.

Quantum parallelism transforms a di�cult into a simple problem.

Fourier transforms are really of massive practical interest !

Problem: The results of the QFT (the amplitudes yk) are not directly

accessible (wave-function collapse) !

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (7) Berlin, 30.05.2018



Shor for factorizing 15 (I): 2 registers

The Shor algorithm given explicitly for the example of

factorizing the number N = 15.

Two registers are needed:

Register 1: k = 3 qubits for representing the numbers 0 to 7 (≤ N/2)

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (8) Berlin, 30.05.2018
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Shor for factorizing 15 (I): 2 registers

The Shor algorithm given explicitly for the example of

factorizing the number N = 15.

Two registers are needed:

Register 1: k = 3 qubits for representing the numbers 0 to 7 (≤ N/2)

Register 2: m = 4 qubits for the numbers 0 to 15 (≤ N )

Choose a number y ≤ 15 (with gcd(y, 15) = 1), e. g. y = 11.

The Shor algorithm can be split into 4 steps:

1. Initialization: Set all 7 qubits to | 0 〉:
| 0000000 〉 (= |Ψ1 〉1|Φ1 〉2).

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (8) Berlin, 30.05.2018



Shor for factorizing 15 (II): Input preparation

2. Prepare input: Put the 1st register into the superposition of | 0 〉 and
| 1 〉, i. e. the integers 0 to 7:

| 0000000 〉 → 1√
8

(
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 001 〉︸ ︷︷ ︸
| 1 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

+ · · ·+ | 111 〉︸ ︷︷ ︸
| 7 〉

)
| 0000 〉

|Ψ1 〉1|Φ1 〉2 →
1√
2k

2k−1∑
a=0

| a 〉1| 0 〉2

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (9) Berlin, 30.05.2018



Shor for factorizing 15 (III): evaluate f(a)

3. Evaluate f(a) = yamodN (here 11amod15) for all a

in the 1st register (0 . . . 7) simultaneously (quantum parallelism).

Store the result in the 2nd register:

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (10) Berlin, 30.05.2018
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1
√
8

(
| 000 〉︸ ︷︷ ︸
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Shor for factorizing 15 (III): evaluate f(a)

3. Evaluate f(a) = yamodN (here 11amod15) for all a

in the 1st register (0 . . . 7) simultaneously (quantum parallelism).

Store the result in the 2nd register:

1
√
8

(
| 000 〉︸ ︷︷ ︸
| 0 〉

| 0001 〉︸ ︷︷ ︸
| 1 〉

+ | 001 〉︸ ︷︷ ︸
| 1 〉

| 1011 〉︸ ︷︷ ︸
| 11 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

| 0001 〉︸ ︷︷ ︸
| 1 〉

+ · · ·+ | 111 〉︸ ︷︷ ︸
| 7 〉

| 1011 〉︸ ︷︷ ︸
| 11 〉

)

=
1
√
8

([
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

+ | 110 〉︸ ︷︷ ︸
| 6 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 001 〉︸ ︷︷ ︸
| 1 〉

+ | 011 〉︸ ︷︷ ︸
| 3 〉

+ | 101 〉︸ ︷︷ ︸
| 5 〉

+ | 111 〉︸ ︷︷ ︸
| 7 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)
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Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = yamodN (here

11amod15) for all a in 1st register (0 . . . 7) is in the 2nd register:
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Shor for factorizing 15 (IV): r in 1st register (1)
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1
√

8
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Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = yamodN (here

11amod15) for all a in 1st register (0 . . . 7) is in the 2nd register:

1
√

8

([
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

+ | 110 〉︸ ︷︷ ︸
| 6 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 001 〉︸ ︷︷ ︸
| 1 〉

+ | 011 〉︸ ︷︷ ︸
| 3 〉

+ | 101 〉︸ ︷︷ ︸
| 5 〉

+ | 111 〉︸ ︷︷ ︸
| 7 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)

|Ψ3 〉1|Φ3 〉2 =
1
√

2k

2k−1∑
a=0

| a 〉1| yamodN 〉2

A<2k−l
r

=

r−1∑
l=0

[
1√

r(A + 1)

A∑
j=0

| l + jr 〉1

]
| ylmodN 〉2
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Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of f(a) = yamodN (here

11amod15) for all a in 1st register (0 . . . 7) is in the 2nd register:

1
√

8

([
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

+ | 110 〉︸ ︷︷ ︸
| 6 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 001 〉︸ ︷︷ ︸
| 1 〉

+ | 011 〉︸ ︷︷ ︸
| 3 〉

+ | 101 〉︸ ︷︷ ︸
| 5 〉

+ | 111 〉︸ ︷︷ ︸
| 7 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)

|Ψ3 〉1|Φ3 〉2 =
1
√

2k

2k−1∑
a=0

| a 〉1| yamodN 〉2

A<2k−l
r

=

r−1∑
l=0

[
1√

r(A + 1)

A∑
j=0

| l + jr 〉1

]
| ylmodN 〉2

Register 1 contains now the period r of interest, but only for

identical measurement results in register 2!
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Shor for factorizing 15 (V): r in 1st register (2)

The searched for period r (here r = 2) is the distance between the

components (| 0 〉, | 2 〉, | 4 〉, | 6 〉 or | 1 〉, | 3 〉, | 5 〉, | 7 〉) in the

1st register for a single state of the 2nd register (1 or 11).

1
√

8

([
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

+ | 110 〉︸ ︷︷ ︸
| 6 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 001 〉︸ ︷︷ ︸
| 1 〉

+ | 011 〉︸ ︷︷ ︸
| 3 〉

+ | 101 〉︸ ︷︷ ︸
| 5 〉

+ | 111 〉︸ ︷︷ ︸
| 7 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)

|Ψ3 〉1|Φ3 〉2
A<2k−l

r
=

r−1∑
l=0

[
1√

r(A + 1)

A∑
j=0

| l + jr 〉1

]
| ylmodN 〉2

Only the multiple repetition of the experiment yields the period r.
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Shor for factorizing 15 (V): r in 1st register (2)

The searched for period r (here r = 2) is the distance between the

components (| 0 〉, | 2 〉, | 4 〉, | 6 〉 or | 1 〉, | 3 〉, | 5 〉, | 7 〉) in the

1st register for a single state of the 2nd register (1 or 11).

1
√

8

([
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 010 〉︸ ︷︷ ︸
| 2 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

+ | 110 〉︸ ︷︷ ︸
| 6 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 001 〉︸ ︷︷ ︸
| 1 〉

+ | 011 〉︸ ︷︷ ︸
| 3 〉

+ | 101 〉︸ ︷︷ ︸
| 5 〉

+ | 111 〉︸ ︷︷ ︸
| 7 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)

|Ψ3 〉1|Φ3 〉2
A<2k−l

r
=

r−1∑
l=0

[
1√

r(A + 1)

A∑
j=0

| l + jr 〉1

]
| ylmodN 〉2

Only the multiple repetition of the experiment yields the period r.

The mean number of necessary repetitions grows exponentially with the

number of digits of N !
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Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

−→
1

2

( [
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 000 〉︸ ︷︷ ︸
| 0 〉

+ e
iπ | 100 〉︸ ︷︷ ︸
− | 4 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)

|Ψ4 〉1|Φ4 〉2 =
1

r

r−1∑
l=0

[
r−1∑
j=0

e
2πi

l j
r | j

2k

r
〉1

]
| ylmodN 〉2
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Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

−→
1

2

( [
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 000 〉︸ ︷︷ ︸
| 0 〉

+ e
iπ | 100 〉︸ ︷︷ ︸
− | 4 〉

]
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)

|Ψ4 〉1|Φ4 〉2 =
1

r

r−1∑
l=0

[
r−1∑
j=0

e
2πi

l j
r | j

2k

r
〉1

]
| ylmodN 〉2

Independent of register 2 every measurement yields either 0 or a

multiple of the new period 2k/r (here 4 due to r = 2 and k = 3):

• | 0 〉 ≡ | 000 〉: failure −→ new attempt.
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Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

−→
1

2

( [
| 000 〉︸ ︷︷ ︸
| 0 〉

+ | 100 〉︸ ︷︷ ︸
| 4 〉

]
| 0001 〉︸ ︷︷ ︸
| 1 〉

+

[
| 000 〉︸ ︷︷ ︸
| 0 〉

+ e
iπ | 100 〉︸ ︷︷ ︸
− | 4 〉

]
| 1011 〉︸ ︷︷ ︸
| 11 〉

)

|Ψ4 〉1|Φ4 〉2 =
1

r

r−1∑
l=0

[
r−1∑
j=0

e
2πi

l j
r | j

2k

r
〉1

]
| ylmodN 〉2

Independent of register 2 every measurement yields either 0 or a

multiple of the new period 2k/r (here 4 due to r = 2 and k = 3):

• | 0 〉 ≡ | 000 〉: failure −→ new attempt.

• | 4 〉 ≡ | 100 〉: r = 2k=3/4 = 8/4 = 2 (success!).
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Shor for factorizing 15 (VII): analysis

|Ψ4 〉1|Φ4 〉2 =
1

r

r−1∑
l=0

[
r−1∑
j=0

e
2πi

l j
r | j

2k

r
〉1

]
| ylmodN 〉2

Problem: measurement yields | j 2k

r
〉 with j = 0, 1, . . . , r − 1.
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Shor for factorizing 15 (VII): analysis
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l j
r | j

2k

r
〉1

]
| ylmodN 〉2

Problem: measurement yields | j 2k

r
〉 with j = 0, 1, . . . , r − 1.

j = 0→ failure, but the probability decreases for increasing N .
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]
| ylmodN 〉2

Problem: measurement yields | j 2k

r
〉 with j = 0, 1, . . . , r − 1.

j = 0→ failure, but the probability decreases for increasing N .

Larger N −→ generally larger period r and larger j.

Example N = 15 with y = 11: no problem, since r = 2→ j = 0, 1.
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Problem: measurement yields | j 2k

r
〉 with j = 0, 1, . . . , r − 1.

j = 0→ failure, but the probability decreases for increasing N .

Larger N −→ generally larger period r and larger j.

Example N = 15 with y = 11: no problem, since r = 2→ j = 0, 1.

r from j · 2k/r: method of continued fractions.
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Shor for factorizing 15 (VII): analysis
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]
| ylmodN 〉2

Problem: measurement yields | j 2k

r
〉 with j = 0, 1, . . . , r − 1.

j = 0→ failure, but the probability decreases for increasing N .

Larger N −→ generally larger period r and larger j.

Example N = 15 with y = 11: no problem, since r = 2→ j = 0, 1.

r from j · 2k/r: method of continued fractions.

Important: 2k and r grow exponentially with N ,

but 2k/r only polynomially !
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Shor for factorizing 15 (VII): analysis

|Ψ4 〉1|Φ4 〉2 =
1

r

r−1∑
l=0

[
r−1∑
j=0

e
2πi

l j
r | j

2k

r
〉1

]
| ylmodN 〉2

Problem: measurement yields | j 2k

r
〉 with j = 0, 1, . . . , r − 1.

j = 0→ failure, but the probability decreases for increasing N .

Larger N −→ generally larger period r and larger j.

Example N = 15 with y = 11: no problem, since r = 2→ j = 0, 1.

r from j · 2k/r: method of continued fractions.

Important: 2k and r grow exponentially with N ,

but 2k/r only polynomially !

Number of operations incl. probability for failures grows only polynomially

with N !!!

A. Saenz (HU Berlin): Quantum-computer algorithm of Shor (14) Berlin, 30.05.2018


