Quantum-computer algorithm of Shor

The factorization of an integer N is assumed to be difficult, since every known classical algorithm grows exponentially with the size of the integer N.
This is the basis of most of the adopted cryptographical tools that are thus assumed to be relatively secure.

Quantum-computer algorithm of Shor

The factorization of an integer \boldsymbol{N} is assumed to be difficult, since every known classical algorithm grows exponentially with the size of the integer N.
This is the basis of most of the adopted cryptographical tools that are thus assumed to be relatively secure.

The algorithm of Shor is based on 3 tricks:

1. Transformation of the problem into finding the period of a function.

Quantum-computer algorithm of Shor

The factorization of an integer \boldsymbol{N} is assumed to be difficult, since every known classical algorithm grows exponentially with the size of the integer N.
This is the basis of most of the adopted cryptographical tools that are thus assumed to be relatively secure.

The algorithm of Shor is based on 3 tricks:

1. Transformation of the problem into finding the period of a function.
2. Use of the Fourier transform in order to determine this period.

Quantum-computer algorithm of Shor

The factorization of an integer \boldsymbol{N} is assumed to be difficult, since every known classical algorithm grows exponentially with the size of the integer N.
This is the basis of most of the adopted cryptographical tools that are thus assumed to be relatively secure.

The algorithm of Shor is based on 3 tricks:

1. Transformation of the problem into finding the period of a function.
2. Use of the Fourier transform in order to determine this period.
3. Use of quantum parallelism for 1 . and 2.

Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer $y \leq N$ (with $\operatorname{gcd}(y, N)=1=$ greatest common divisor of y and N) there is a large probability that

$$
\operatorname{gcd}\left(y^{r / 2}+1, N\right) \cdot \operatorname{gcd}\left(y^{r / 2}-1, N\right)=u \cdot v=N
$$

and thus u and v are the factors searched for, if r is the period of the function $f(a)=y^{a} \bmod N$.

Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer $y \leq N$ (with $\operatorname{gcd}(y, N)=1=$ greatest common divisor of y and N) there is a large probability that

$$
\operatorname{gcd}\left(y^{r / 2}+1, N\right) \cdot \operatorname{gcd}\left(y^{r / 2}-1, N\right)=u \cdot v=N
$$

and thus u and v are the factors searched for, if r is the period of the function $f(a)=y^{a} \bmod N$.

Notes:

- The integer y can be chosen arbitrarily, provided it has no common divisor (other than 1) with N.

Trick 1: Transformation of the problem (I)

For an integer N and an arbitrarily chosen integer $y \leq N$ (with $\operatorname{gcd}(y, N)=1=$ greatest common divisor of y and N) there is a large probability that

$$
\operatorname{gcd}\left(y^{r / 2}+1, N\right) \cdot \operatorname{gcd}\left(y^{r / 2}-1, N\right)=u \cdot v=N
$$

and thus u and v are the factors searched for, if r is the period of the function $f(a)=y^{a} \bmod N$.

Notes:

- The integer y can be chosen arbitrarily, provided it has no common divisor (other than 1) with N.
- Not every choice of y leads to a success, i. e. there are integers that will not work ("failures").

Trick 1: Transformation of the problem (II)

Example: $N=15 \rightarrow y=2,4,7,8,11,13$, or 14 .

Trick 1: Transformation of the problem (II)

Example: $N=15 \rightarrow y=2,4,7,8,11,13$, or 14 .

Arbitrary choice of $y=11$:

Trick 1: Transformation of the problem (II)

Example: $N=15 \rightarrow y=2,4,7,8,11,13$, or 14 .

Arbitrary choice of $y=11$:

$$
\begin{aligned}
& 11^{0} \bmod 15=1 \bmod 15=(0 \cdot 15+1) \bmod 15=1 \\
& 11^{1} \bmod 15=11 \bmod 15=(0 \cdot 15+11) \bmod 15=11 \\
& 11^{2} \bmod 15=121 \bmod 15=(8 \cdot 15+1) \bmod 15=1 \\
& 11^{3} \bmod 15=1331 \bmod 15=(88 \cdot 15+11) \bmod 15=11
\end{aligned} \begin{array}{r}
\longrightarrow r=2(\text { für } y=11) \longrightarrow \operatorname{gcd}\left(11^{2 / 2} \pm 1,15\right) \\
\quad \longrightarrow \operatorname{gcd}(12,15) \cdot \operatorname{gcd}(10,15)=3 \cdot 5=15
\end{array}
$$

Trick 1: Transformation of the problem (III)
Example: $N=15 \rightarrow y=2,4,7,8,11,13$, oder 14 .
Alternatively, choose $y=7$ (instead of $y=11$).

Trick 1: Transformation of the problem (III)

Example: $N=15 \rightarrow y=2,4,7,8,11,13$, oder 14 .
Alternatively, choose $y=7$ (instead of $y=11$).

$$
\begin{aligned}
& 7^{0} \bmod 15= 1 \bmod 15= \\
& 7^{1} \bmod 15=(0 \cdot 15+1) \bmod 15=1 \\
& 7^{2} \bmod 15= 49 \bmod 15= \\
& 7^{3} \bmod 15=(0 \cdot 15+7) \bmod 15=7 \\
& 7^{4} \bmod 15=2401 \bmod 15=(22 \cdot 15+4) \bmod 15=4 \\
& 7^{5} \bmod 15=16807 \bmod 15=(160 \cdot 15+1) \bmod 15=13 \\
&(1120 \cdot 15+7) \bmod 15=1 \\
& \longrightarrow r=4(\text { für } y=7) \longrightarrow \operatorname{gcd}\left(7^{4 / 2} \pm 1,15\right) \\
& \longrightarrow \operatorname{gcd}(50,15) \cdot \operatorname{gcd}(48,15)=5 \cdot 3=15
\end{aligned}
$$

Trick 1: Transformation of the problem

(III)

Example: $N=15 \rightarrow y=2,4,7,8,11,13$, oder 14 .
Alternatively, choose $y=7$ (instead of $y=11$).

$$
\begin{aligned}
& 7^{0} \bmod 15= 1 \bmod 15= \\
& 7^{1} \bmod 15=(0 \cdot 15+1) \bmod 15=1 \\
& 7^{2} \bmod 15= 49 \bmod 15= \\
& 7^{3} \bmod 15=(0 \cdot 15+7) \bmod 15=7 \\
& 7^{4} \bmod 15=2401 \bmod 15=(22 \cdot 15+4) \bmod 15=4 \\
& 7^{5} \bmod 15=16807 \bmod 15=(160 \cdot 15+1) \bmod 15=13 \\
&(1150 \cdot 15+7) \bmod 15=1 \\
& \longrightarrow r=4(\text { für } y=7) \longrightarrow \operatorname{gcd}\left(7^{4 / 2} \pm 1,15\right) \\
& \longrightarrow \operatorname{gcd}(50,15) \cdot \operatorname{gcd}(48,15)=5 \cdot 3=15
\end{aligned}
$$

Note: The choice of $y=14$ results in a failure!

Trick 2: Quantum Fourier transform QFT (I)

Problem: the efforts to find the period r grow exponentially with the size of N !

Trick 2: Quantum Fourier transform QFT (I)

Problem: the efforts to find the period r grow exponentially with the size of N !

Solution: Make use of the very specific properties of the (quantum) Fourier transform.

Trick 2: Quantum Fourier transform QFT (I)

Problem: the efforts to find the period r grow exponentially with the size of N !

Solution: Make use of the very specific properties of the (quantum) Fourier transform.

The Quantum Fourier transform (QFT)

$$
\sum_{j=0}^{K-1} x_{j}|j\rangle \xrightarrow{\mathrm{QFT}} \sum_{k=0}^{K-1} y_{k}|k\rangle, y_{k}=\sum_{j=0}^{K-1} x_{j} \mathrm{e}^{2 \pi i \frac{j k}{K}}
$$

is completely analogous to the classical discrete Fourier transform (DFT), except the fact that in the QFT the amplitudes are transformed.

Trick 2: Quantum Fourier transform (II)

Relevant properties of the (Q)FT:

1. A possible period r in $x_{0,1, \ldots, K-1}$ changes into a period K / r in the $y_{0,1, \ldots, K-1}$.

Trick 2: Quantum Fourier transform (II)

Relevant properties of the $(\mathrm{Q}) \mathrm{FT}$:

1. A possible period r in $x_{0,1, \ldots, K-1}$ changes into a period K / r in the $y_{0,1, \ldots, K-1}$.
2. A constant shift transforms into a phase factor

$$
\sum_{j=0}^{K-1} x_{j}|j+l\rangle \xrightarrow{\mathrm{QFT}} \sum_{k=0}^{K-1} \mathrm{e}^{2 \pi i \frac{k l}{K}} y_{k}|k\rangle,
$$

but the (measurable) probabilities remain unchanged
$\left(\left|\mathrm{e}^{2 \pi i \frac{k l}{K}} y_{k}\right|^{2}=\left|y_{k}\right|^{2}\right)$.

Efficiency of the Quantum Fourier transform QFT

Efficiency:

- Classical discrete fast Fourier transform: scales as $K 2^{K}$.
- Quantum Fourier transform (QFT): scales as K^{2}.

Efficiency of the Quantum Fourier transform QFT

Efficiency:

- Classical discrete fast Fourier transform: scales as $K 2^{K}$.
- Quantum Fourier transform (QFT): scales as K^{2}.

Quantum parallelism transforms a difficult into a simple problem.

Efficiency of the Quantum Fourier transform QFT

Efficiency:

- Classical discrete fast Fourier transform: scales as $K 2^{K}$.
- Quantum Fourier transform (QFT): scales as K^{2}.

Quantum parallelism transforms a difficult into a simple problem.
Fourier transforms are really of massive practical interest!

Efficiency of the Quantum Fourier transform QFT

Efficiency:

- Classical discrete fast Fourier transform: scales as $K 2^{K}$.
- Quantum Fourier transform (QFT): scales as K^{2}.

Quantum parallelism transforms a difficult into a simple problem.
Fourier transforms are really of massive practical interest!
Problem: The results of the QFT (the amplitudes y_{k}) are not directly accessible (wave-function collapse)!

Shor for factorizing 15 (I): 2 registers

The Shor algorithm given explicitly for the example of factorizing the number $N=15$.

Two registers are needed:
Register 1: $k=3$ qubits for representing the numbers 0 to $7(\leq N / 2)$

Shor for factorizing 15 (I): 2 registers

The Shor algorithm given explicitly for the example of factorizing the number $N=15$.

Two registers are needed:
Register 1: $k=3$ qubits for representing the numbers 0 to $7(\leq N / 2)$
Register 2: $m=4$ qubits for the numbers 0 to $15(\leq N)$

Shor for factorizing 15 (1): 2 registers

The Shor algorithm given explicitly for the example of factorizing the number $N=15$.

Two registers are needed:
Register 1: $k=3$ qubits for representing the numbers 0 to $7(\leq N / 2)$
Register 2: $m=4$ qubits for the numbers 0 to $15(\leq N)$
Choose a number $y \leq 15($ with $\operatorname{gcd}(y, 15)=1)$, e.g. $y=11$.

Shor for factorizing 15 (I): 2 registers

The Shor algorithm given explicitly for the example of factorizing the number $N=15$.

Two registers are needed:
Register 1: $k=3$ qubits for representing the numbers 0 to $7(\leq N / 2)$
Register 2: $m=4$ qubits for the numbers 0 to $15(\leq N)$
Choose a number $y \leq 15($ with $\operatorname{gcd}(y, 15)=1)$, e. g. $y=11$.
The Shor algorithm can be split into 4 steps:

1. Initialization: Set all 7 qubits to $|0\rangle$: $|0000000\rangle\left(=\left|\Psi_{1}\right\rangle_{1}\left|\Phi_{1}\right\rangle_{2}\right)$.

Shor for factorizing 15 (II): Input preparation

2. Prepare input: Put the 1st register into the superposition of $|0\rangle$ and $|1\rangle$, i. e. the integers 0 to 7 :

$$
\begin{aligned}
&|0000000\rangle \rightarrow \frac{1}{\sqrt{8}}(\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|010\rangle}_{|2\rangle} \\
&+\cdots+\underbrace{|111\rangle}_{|7\rangle})|0000\rangle \\
&\left|\Psi_{1}\right\rangle_{1}\left|\Phi_{1}\right\rangle_{2} \rightarrow \frac{1}{\sqrt{2^{k}}} \sum_{a=0}^{2^{k}-1}|a\rangle_{1}|0\rangle_{2}
\end{aligned}
$$

Shor for factorizing 15 (III): evaluate $\boldsymbol{f}(\boldsymbol{a})$
3. Evaluate $f(a)=y^{a} \bmod N$ (here $\left.11^{a} \bmod 15\right)$ for all a in the 1st register ($0 \ldots 7$) simultaneously (quantum parallelism). Store the result in the 2 nd register:

Shor for factorizing 15 (III): evaluate $\boldsymbol{f}(\boldsymbol{a})$

3. Evaluate $f(a)=y^{a} \bmod N$ (here $\left.11^{a} \bmod 15\right)$ for all a in the 1st register $(0 \ldots 7)$ simultaneously (quantum parallelism). Store the result in the 2nd register:

$$
\begin{aligned}
& \frac{1}{\sqrt{8}}(\underbrace{|000\rangle}_{|0\rangle} \underbrace{|0001\rangle}_{|1\rangle}+\underbrace{|001\rangle}_{|1\rangle} \underbrace{|1011\rangle}_{|11\rangle} \\
& \quad+\underbrace{|010\rangle}_{|2\rangle} \underbrace{|0001\rangle}_{|1\rangle}+\cdots+\underbrace{|111\rangle}_{|7\rangle} \underbrace{|1011\rangle}_{|11\rangle})
\end{aligned}
$$

Shor for factorizing 15 (III): evaluate $\boldsymbol{f}(\boldsymbol{a})$

3. Evaluate $f(a)=y^{a} \bmod N\left(\right.$ here $\left.11^{a} \bmod 15\right)$ for all a in the 1st register $(0 \ldots 7)$ simultaneously (quantum parallelism). Store the result in the 2nd register:

$$
\begin{aligned}
& \frac{1}{\sqrt{8}}(\underbrace{|000\rangle}_{|0\rangle} \underbrace{|0001\rangle}_{|1\rangle}+\underbrace{|001\rangle}_{|1\rangle} \underbrace{|1011\rangle}_{|11\rangle} \\
&+\underbrace{|010\rangle}_{|2\rangle} \underbrace{|0001\rangle}_{|1\rangle}+\cdots+\underbrace{|111\rangle}_{|7\rangle} \underbrace{|1011\rangle}_{|11\rangle}) \\
&= \frac{1}{\sqrt{8}}([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|010\rangle}_{|2\rangle}+\underbrace{|100\rangle}_{|4\rangle}+\underbrace{|110\rangle}_{|6\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
&+[\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|011\rangle}_{|3\rangle}+\underbrace{|101\rangle}_{|5\rangle}+\underbrace{|111\rangle}_{|7\rangle}] \underbrace{|1011\rangle}_{|11\rangle})
\end{aligned}
$$

Shor for factorizing 15 (IV): r in 1st register (1)
The result of the simultaneous evaluation of $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{y}^{\boldsymbol{a}} \bmod \boldsymbol{N}$ (here $\left.\mathbf{1 1}^{\boldsymbol{a}} \bmod \mathbf{1 5}\right)$ for all \boldsymbol{a} in 1st register $(\mathbf{0} \ldots \mathbf{7})$ is in the 2 nd register:

Shor for factorizing 15 (IV): r in 1st register (1)
The result of the simultaneous evaluation of $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{y}^{\boldsymbol{a}} \bmod \boldsymbol{N}$ (here $\left.\mathbf{1 1}^{\boldsymbol{a}} \bmod \mathbf{1 5}\right)$ for all \boldsymbol{a} in 1 st register $(\mathbf{0} \ldots \mathbf{7})$ is in the 2 nd register:

$$
\begin{aligned}
& \frac{\mathbf{1}}{\sqrt{8}} \\
& ([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|010\rangle}_{|2\rangle}+\underbrace{|100\rangle}_{|4\rangle}+\underbrace{|110\rangle}_{|6\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
& \quad+[\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|011\rangle}_{|3\rangle}+\underbrace{|101\rangle}_{|5\rangle}+\underbrace{|111\rangle}_{|7\rangle}] \underbrace{|1011\rangle}_{|11\rangle})
\end{aligned}
$$

Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{y}^{\boldsymbol{a}} \bmod \boldsymbol{N}$ (here $\left.\mathbf{1 1}^{\boldsymbol{a}} \bmod \mathbf{1 5}\right)$ for all \boldsymbol{a} in 1 st register $(\mathbf{0} \ldots \mathbf{7})$ is in the 2 nd register:

$$
\begin{aligned}
\frac{1}{\sqrt{8}} & ([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|010\rangle}_{|2\rangle}+\underbrace{|100\rangle}_{|4\rangle}+\underbrace{|110\rangle}_{|6\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
& +[\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|011\rangle}_{|3\rangle}+\underbrace{|101\rangle}_{|5\rangle}+\underbrace{|111\rangle}_{|7\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) \\
\left|\Psi_{3}\right\rangle_{1}\left|\Phi_{3}\right\rangle_{2} & =\frac{1}{\sqrt{2^{k}}} \sum_{a=0}^{2^{k}-1}|a\rangle_{1}\left|\boldsymbol{y}^{a} \bmod N\right\rangle_{2} \\
A & \frac{2}{2}-l_{=}^{\sum^{r}} \sum_{l=0}^{r-1}\left[\frac{1}{\sqrt{r(A+1)}} \sum_{j=0}^{A}|l+j r\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod N\right\rangle_{2}
\end{aligned}
$$

Shor for factorizing 15 (IV): r in 1st register (1)

The result of the simultaneous evaluation of $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{y}^{\boldsymbol{a}} \bmod \boldsymbol{N}$ (here $\left.\mathbf{1 1}^{\boldsymbol{a}} \bmod \mathbf{1 5}\right)$ for all \boldsymbol{a} in 1 st register $(\mathbf{0} \ldots \mathbf{7})$ is in the 2 nd register:

$$
\begin{aligned}
& \frac{1}{\sqrt{8}}([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|010\rangle}_{|2\rangle}+\underbrace{|100\rangle}_{|4\rangle}+\underbrace{|110\rangle}_{|6\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
&+ {[\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|011\rangle}_{|3\rangle}+\underbrace{|101\rangle}_{|5\rangle}+\underbrace{|111\rangle}_{|7\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) } \\
&\left|\Psi_{3}\right\rangle_{1}\left|\Phi_{3}\right\rangle_{2}=\frac{1}{\sqrt{2^{k}}} \sum_{a=0}^{2^{k}-1}|a\rangle_{1}\left|y^{a} \bmod \boldsymbol{N}\right\rangle_{2} \\
& A<\frac{2}{k}^{k}-l \\
&= \sum_{l=0}^{r-1}\left[\frac{1}{\sqrt{r(A+1)}} \sum_{j=0}^{A}|l+j r\rangle_{1}\right]\left|y^{l} \bmod \boldsymbol{N}\right\rangle_{2}
\end{aligned}
$$

Register 1 contains now the period r of interest, but only for identical measurement results in register 2!

Shor for factorizing 15 (V): r in 1st register (2)

The searched for period r (here $\boldsymbol{r}=\mathbf{2}$) is the distance between the components $(|0\rangle,|2\rangle,|4\rangle,|6\rangle$ or $|1\rangle,|3\rangle,|5\rangle,|7\rangle)$ in the 1 st register for a single state of the 2 nd register (1 or 11).

$$
\begin{array}{r}
\frac{1}{\sqrt{8}}([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|010\rangle}_{|2\rangle}+\underbrace{|100\rangle}_{|4\rangle}+\underbrace{|110\rangle}_{|6\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
+[\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|011\rangle}_{|3\rangle}+\underbrace{|101\rangle}_{|5\rangle}+\underbrace{|111\rangle}_{|7\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) \\
\left|\Psi_{3}\right\rangle_{1}\left|\Phi_{3}\right\rangle_{2} \stackrel{A<\frac{2^{k}-l}{=}}{=} \sum_{l=0}^{r-1}\left[\frac{1}{\sqrt{r(A+1)}} \sum_{j=0}^{A}|\boldsymbol{l}+\boldsymbol{j} r\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
\end{array}
$$

Only the multiple repetition of the experiment yields the period \boldsymbol{r}.

Shor for factorizing 15 (V): r in 1st register (2)

The searched for period r (here $\boldsymbol{r}=\mathbf{2}$) is the distance between the components $(|0\rangle,|2\rangle,|4\rangle,|6\rangle$ or $|1\rangle,|3\rangle,|5\rangle,|7\rangle)$ in the 1 st register for a single state of the 2 nd register (1 or 11).

$$
\begin{gathered}
\frac{1}{\sqrt{8}}([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|010\rangle}_{|2\rangle}+\underbrace{|100\rangle}_{|4\rangle}+\underbrace{|110\rangle}_{|6\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
+[\underbrace{|001\rangle}_{|1\rangle}+\underbrace{|011\rangle}_{|3\rangle}+\underbrace{|101\rangle}_{|5\rangle}+\underbrace{|111\rangle}_{|7\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) \\
\left|\Psi_{3}\right\rangle_{1}\left|\Phi_{3}\right\rangle_{2} \stackrel{A 2^{2^{k}-l}=}{=} \sum_{l=0}^{r-1}\left[\frac{1}{\sqrt{r(A+1)}} \sum_{j=0}^{A}|l+j r\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
\end{gathered}
$$

Only the multiple repetition of the experiment yields the period \boldsymbol{r}.
The mean number of necessary repetitions grows exponentially with the number of digits of \boldsymbol{N} !

Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

$$
\begin{aligned}
& \longrightarrow \frac{\mathbf{1}}{\mathbf{2}}([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|100\rangle}_{|4\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
& +[\underbrace{|000\rangle}_{|0\rangle}+\underbrace{e^{i \pi}|100\rangle}_{-|4\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) \\
& \left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
\end{aligned}
$$

Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

$$
\begin{aligned}
& \longrightarrow \frac{\mathbf{1}}{\mathbf{2}}([\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|100\rangle}_{|4\rangle}] \underbrace{|0001\rangle}_{|1\rangle} \\
& +[\underbrace{|000\rangle}_{|0\rangle}+\underbrace{e^{i \pi}|100\rangle}_{-|4\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) \\
& \left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
\end{aligned}
$$

Independent of register 2 every measurement yields either $\mathbf{0}$ or a multiple of the new period $\mathbf{2}^{k} / r$ (here 4 due to $\boldsymbol{r}=\mathbf{2}$ and $\boldsymbol{k}=\mathbf{3}$):

- $|0\rangle \equiv|000\rangle$: failure \longrightarrow new attempt.

Shor for factorizing 15 (VI): QFT

4. Application of the QFT onto register 1:

$$
\begin{aligned}
\longrightarrow \frac{1}{2}(& {[\underbrace{|000\rangle}_{|0\rangle}+\underbrace{|100\rangle}_{|4\rangle}] \underbrace{|0001\rangle}_{|1\rangle} } \\
& +[\underbrace{|000\rangle}_{|0\rangle}+\underbrace{e^{i \pi}|100\rangle}_{-|4\rangle}] \underbrace{|1011\rangle}_{|11\rangle}) \\
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}= & \frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|j \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
\end{aligned}
$$

Independent of register 2 every measurement yields either $\mathbf{0}$ or a multiple of the new period $2^{k} / \boldsymbol{r}$ (here 4 due to $\boldsymbol{r}=\mathbf{2}$ and $\boldsymbol{k}=\mathbf{3}$):

- $|0\rangle \equiv|000\rangle$: failure \longrightarrow new attempt.
$\bullet|4\rangle \equiv|100\rangle: r=\mathbf{2}^{k=3} / 4=8 / 4=\mathbf{2}$ (success!).

Shor for factorizing 15 (VII): analysis

$$
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
$$

Problem: measurement yields $\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle$ with $\boldsymbol{j}=\mathbf{0}, \mathbf{1}, \ldots, r-1$.

Shor for factorizing 15 (VII): analysis

$$
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
$$

Problem: measurement yields $\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle$ with $\boldsymbol{j}=\mathbf{0}, \mathbf{1}, \ldots, r-1$.
$\boldsymbol{j}=\mathbf{0} \rightarrow$ failure, but the probability decreases for increasing \boldsymbol{N}.

Shor for factorizing 15 (VII): analysis

$$
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|j \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
$$

Problem: measurement yields $\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle$ with $\boldsymbol{j}=\mathbf{0}, \mathbf{1}, \ldots, r-1$.
$j=\mathbf{0} \rightarrow$ failure, but the probability decreases for increasing N.
Larger $\boldsymbol{N} \longrightarrow$ generally larger period \boldsymbol{r} and larger \boldsymbol{j}.
Example $\boldsymbol{N}=15$ with $\boldsymbol{y}=11$: no problem, since $r=2 \rightarrow j=0,1$.

Shor for factorizing 15 (VII): analysis

$$
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
$$

Problem: measurement yields $\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle$ with $\boldsymbol{j}=\mathbf{0}, \mathbf{1}, \ldots, r-1$.
$j=\mathbf{0} \rightarrow$ failure, but the probability decreases for increasing N.
Larger $\boldsymbol{N} \longrightarrow$ generally larger period \boldsymbol{r} and larger \boldsymbol{j}.
Example $N=15$ with $\boldsymbol{y}=11$: no problem, since $r=2 \rightarrow j=0,1$.
r from $\boldsymbol{j} \cdot 2^{k} / r$: method of continued fractions.

Shor for factorizing 15 (VII): analysis

$$
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|j \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
$$

Problem: measurement yields $\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle$ with $\boldsymbol{j}=\mathbf{0}, \mathbf{1}, \ldots, r-1$.
$j=\mathbf{0} \rightarrow$ failure, but the probability decreases for increasing N.
Larger $\boldsymbol{N} \longrightarrow$ generally larger period \boldsymbol{r} and larger \boldsymbol{j}.
Example $N=15$ with $\boldsymbol{y}=11$: no problem, since $r=2 \rightarrow j=0,1$.
r from $j \cdot 2^{k} / r$: method of continued fractions.
Important: $\mathbf{2}^{\boldsymbol{k}}$ and \boldsymbol{r} grow exponentially with \boldsymbol{N},
but $\mathbf{2}^{\boldsymbol{k}} / \boldsymbol{r}$ only polynomially!

Shor for factorizing 15 (VII): analysis

$$
\left|\Psi_{4}\right\rangle_{1}\left|\Phi_{4}\right\rangle_{2}=\frac{1}{r} \sum_{l=0}^{r-1}\left[\sum_{j=0}^{r-1} \mathrm{e}^{2 \pi i \frac{l j}{r}}\left|j \frac{2^{k}}{r}\right\rangle_{1}\right]\left|\boldsymbol{y}^{l} \bmod \boldsymbol{N}\right\rangle_{2}
$$

Problem: measurement yields $\left|\boldsymbol{j} \frac{2^{k}}{r}\right\rangle$ with $\boldsymbol{j}=0,1, \ldots, r-1$.
$j=\mathbf{0} \rightarrow$ failure, but the probability decreases for increasing N.
Larger $\boldsymbol{N} \longrightarrow$ generally larger period \boldsymbol{r} and larger \boldsymbol{j}.
Example $N=15$ with $\boldsymbol{y}=11$: no problem, since $r=2 \rightarrow j=0,1$.
r from $j \cdot 2^{k} / r$: method of continued fractions.
Important: $\mathbf{2}^{\boldsymbol{k}}$ and \boldsymbol{r} grow exponentially with \boldsymbol{N},
but $\mathbf{2}^{\boldsymbol{k}} / \boldsymbol{r}$ only polynomially!
Number of operations incl. probability for failures grows only polynomially with N !!!

