Quantum Information and Quantum ComputerSS 20188. Exercise14.06.2018

Task 1

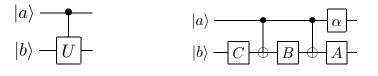
For the construction of complicated algorithms not only the 1-qubit gates but also the conditional 2-qubit gates play an important role. However, the often adopted universal quantum gate contains only a single conditional 2-qubit gate, the *CNOT*. How is it possible to formulate arbitrary conditional 2-qubit gates, i. e. 2-qubit gates with a control and a target qubit in which a specific unitary transformation is applied to the target qubit, if the control qubit is in the state $|1\rangle$? A derivation is based on the following two propositions:

Proposition 1: Let \hat{U} describe a unitary 1-qubit transformation. Then there is a set of real numbers α, β, γ , and δ which allow for writing any \hat{U} as

$$\hat{\mathbf{U}} = e^{i\alpha} \hat{\mathbf{R}}_z(\beta) \hat{\mathbf{R}}_y(\gamma) \hat{\mathbf{R}}_z(\delta)$$

with the rotations $\hat{\mathbf{R}}_x(\alpha)$ by the angle α around the x axis.

- **Proposition 2:** Let \hat{U} describe a unitary 1-qubit transformation. Then there is a set of unitary 1-qubit operators \hat{A} , \hat{B} , and \hat{C} for which $\hat{A}\hat{B}\hat{C} = \hat{I}$ and $\hat{U} = e^{i\alpha}\hat{A}\hat{X}\hat{B}\hat{X}\hat{C}$ with the phase factor α is valid.
 - a) Proof proposition 2 by using proposition 1 with $\hat{A} = \hat{R}_z(\beta) \hat{R}_y(\gamma/2)$, $\hat{B} = \hat{R}_y(-\gamma/2) \hat{R}_z(-(\delta + \beta)/2)$ and $\hat{C} = \hat{R}_z((\delta - \beta)/2)$.
 - b) Explain the equivalence of the two circuits



where α stands for the qubit operation $\hat{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$.

Task 2

- a) Verify the following useful identities: $\hat{H}\hat{X}\hat{H} = \hat{Z}, \ \hat{H}\hat{Y}\hat{H} = -\hat{Y}, \ \text{and} \ \hat{H}\hat{Z}\hat{H} = \hat{X}.$
- b) Use the result obtained in a) to show that, besides a possible global phase factor, the relation $\hat{H}\hat{T}\hat{H} = \hat{R}_x(\pi/4)$ holds.
- c) In order to achieve a universal quantum gate with the set of gates $\{\hat{H}, \hat{S}, \hat{T}, \hat{U}_{CNOT}\}$ it must be possible to perform also a qubit rotation by an arbitrary angle. To achieve this goal, it must be possible to perform a rotation by an angle α that is not commensurable with 2π , i. e. α is an irrational fraction of 2π . Show that such a rotation is achieved by the transformation $\hat{U} = \hat{T}\hat{H}\hat{T}\hat{H}$. Asked differently, which rotation is associated with the transformation \hat{U} ?