The kaon mass in 2+1+1 flavor twisted mass Wilson ChPT

Oliver Bär and Ben Hörz Humboldt Universität zu Berlin

> Lattice 2013, Mainz August I 2013

 $D^{\dagger}D \ge \mu^2$

• $N_f = 2$ twisted mass term: $m + i\sigma_3 \mu$

Advantages

- Dirac operator bounded from below:
- Twisted mass renormalizes multiplicatively only
- Simplified renormalization in some cases
- Automatic O(a) improvement at maximal twist
- Drawbacks
 - Tuning to maximal twist needed
 - Parity and isospin breaking → leads to pion mass splitting

$$\Delta_{\pi}^2 = M_{\pi^0}^2 - M_{\pi^{\pm}}^2 = \mathcal{O}(a^2)$$

Frezzotti et al `01

Frezzotti, Rossi `04

Frezzotti, Rossi `04

Splitting is of $O(a^2)$ and vanishes in the continuum limit

la sussiise usthen leves				
In practice rather large:	Ensemble	$aM_{\pi^{\pm}}$	aM_{π^0}	M_{π^0}/M_{π^\pm}
• $N_f = 2 + 1 + 1$	A30.32	0.1234	0.0611	0.50
	A40.32	0.1415	0.0811	0.57
• $a \approx 0.09 \text{ fm}(A)$	A40.24	0.1445	0.0694	0.48
$a \approx 0.08 \text{ fm (B)}$	A60.24	0.1727	0.1009	0.58
$a \approx 0.06 \text{ fm (D)}$	A80.24	0.1987	0.1222	0.61
$u \sim 0.00 \mathrm{IIII} (\mathrm{D})$	A100.24	0.2215	0.157	0.71
	A80.24s	0.1982	0.1512	0.76
Herdoiza et al (ETMC) 2013	A100.24s	0.2215	0.1863	0.84
arXiv:1303.3516	B25.32	0.1064	0.0605	0.57
	B35.32	0.1249	0.071	0.57
	B55.32	0.154	0.1323	0.86
	B75.32	0.1808	0.1557	0.86
	B85.24	0.1931	0.1879	0.97
	D15.48	0.0695	0.0561	0.81
	D20.48	0.0797	0.0651	0.82
	D30.48	0.0978	0.086	0.88
	D45.32sc	0.1198	0.0886	0.74

Consequences of a large pion mass splitting:

Modified quark mass dependence because of chiral logs involving the neutral pion mass

$$M_{\pi^{\pm},\text{NLO}}^{2} = M_{\pm}^{2} \left(1 + \frac{M_{0}^{2}}{32\pi^{2}f^{2}} \ln \frac{M_{0}^{2}}{\Lambda_{3}^{2}} + C_{M_{\pm}}a^{2} \right) \qquad \text{OB 2010}$$
$$f_{\pi,\text{NLO}} = f \left(1 - \frac{1}{32\pi^{2}f^{2}} \left(M_{\pm}^{2} \ln \frac{M_{\pm}^{2}}{\Lambda_{4}^{2}} + M_{0}^{2} \ln \frac{M_{0}^{2}}{\Lambda_{4}^{2}} \right) + C_{f}a^{2} \right)$$

 $\Lambda_3, \Lambda_4, C_{M_\pm}, C_f$: LECs of the NLO Lagrangian

ightarrow Impact on the chiral extrapolation for $M_0 \ll M_\pm$

• Enhanced FV corrections: I-loop ChPT predicts FV corrections $\propto \exp(-M_{\pi}L)$ Colangelo et al 2010, OB 2010

> Rule of thumb: Corrections small for $M_\pi L \sim 4$ large for $M_\pi L \sim 2$

Herdoiza et al (ETMC) 2013 arXiv:1303.3516

Ensemble	aM_{π^\pm}	aM_{π^0}	M_{π^0}/M_{π^\pm}	$M_{\pi^{\pm}}L$	$M_{\pi^0}L$
A30.32	0.1234	0.0611	0.50	3.9	2.0
A40.32	0.1415	0.0811	0.57	4.5	2.6
A40.24	0.1445	0.0694	0.48	3.5	1.7
A60.24	0.1727	0.1009	0.58	4.1	2.4
A80.24	0.1987	0.1222	0.61	4.8	2.9
A100.24	0.2215	0.157	0.71	5.3	3.8
A80.24s	0.1982	0.1512	0.76	4.8	3.6
A100.24s	0.2215	0.1863	0.84	5.3	4.5
B25.32	0.1064	0.0605	0.57	3.4	1.9
B35.32	0.1249	0.071	0.57	4.0	2.3
B55.32	0.154	0.1323	0.86	4.9	4.2
B75.32	0.1808	0.1557	0.86	5.8	5.0
B85.24	0.1931	0.1879	0.97	4.6	4.5
D15.48	0.0695	0.0561	0.81	3.3	2.7
D20.48	0.0797	0.0651	0.82	3.8	3.1
D30.48	0.0978	0.086	0.88	4.7	4.1
D45.32sc	0.1198	0.0886	0.74	3.8	2.8

 \blacktriangleright Significant FV corrections expected due to small M_{π^0}

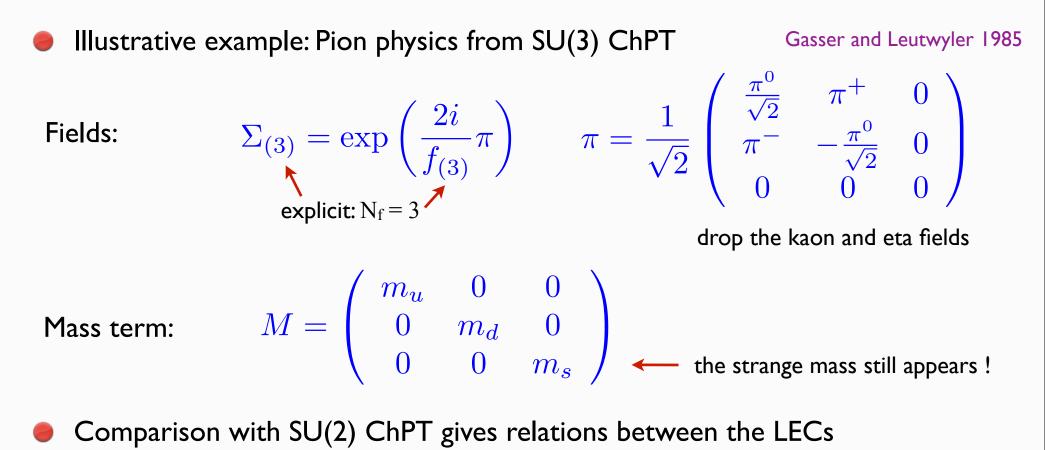
- Natural question: Impact of the pion mass splitting on other observables?
- Rest of this talk: Kaon mass

ChPT for $N_f = 2 + 1 + 1$ flavors

N_f = 2+1+1 tm QCD involves four flavors with mass term

$$M = \begin{pmatrix} M_l & 0 \\ 0 & M_h \end{pmatrix} \qquad 4 \times 4 \text{ matrix} \qquad \text{Frezzotti and Rossi 2004}$$

 $M_l = m + i\sigma^3 \mu_l$ light sector, up and down quark mass


 $M_h = m + i \sigma^1 \mu_h + \delta \sigma^3$ heavy sector, strange and charm quark mass

- Standard procedure to set up ChPT involves four flavors and treats D and Ds mesons as pseudo Goldstone bosons
 - \blacktriangleright only valid for $m_c \approx m_s$, i.e. $M_D = M_K$ Abdel-Rehim et al 2006

 $M_D\gtrsim M_K$ Münster and Sudmann 2011

 \blacktriangleright not applicable to phenomenologically relevant case with $M_D \gg M_K$

How to construct charmless ChPT ?

$$f_{(2)} = f_{(3)} \left(1 + 8 \frac{B_{(3)} m_s}{f_{(3)}^2} L_4 \right)$$

Shows the leading m_s dependence of $f_{(2)}$ (chiral logs ignored)

Recall: SU(3) SU(2) ChPT expands around $\frac{m_s = 0}{m_s \neq 0}$

How to construct charmless ChPT ?

Follow the same strategy to construct charmless tm WChPT:

- Starting point: Chiral lagrangian for $N_f = 2 + 1 + 1$ tm QCD
- Drop the heavy D and D_s meson fields
- Absorb the remaining m_c dependence in the LECs, e.g.

$$f_{(3)} = f_{(4)} \left(1 + 8 \frac{B_{(4)} m_c}{f_{(4)}^2} L_4 \right)$$
$$W_{0,(3)} = W_{0,(4)} \left(1 + 8 \frac{B_{(4)} m_c}{f_{(4)}^2} W_6 \right)$$

as on slide before

 W_0, W_6 : LECs associated with nonzero lattice spacing Rupak and Shoresh 2002

Final result reads (schematically)

$$\mathcal{L}^{\mathrm{SU}(4)}(f_{(4)}, B_{(4)}, W_{0,(4)}, m_c) \rightarrow \mathcal{L}^{\mathrm{SU}(3)}(f_{(3)}, B_{(3)}, W_{0,(3)})$$

no explicit m_c dependence !

OB and B. Hörz in preparation

Application: The kaon mass in the LCE regime

- LO Lagrangian: $\mathcal{L}_{LO} = \mathcal{L}_2 + \mathcal{L}_{a^2}$ Note:
 - We assume maximal twist \rightarrow no O(a) terms
 - LCE regime
- Tree level masses:

charged pion $M_{\pm}^2 = 2B\mu_l$ neutral pion $M_0^2 = 2B\mu_l + 2c_2a^2$ all kaons $M_K^2 = B(\mu_l + \mu_h - \delta)$

• Key features of compution of M_K to NLO:

- Additional vertices from \mathcal{L}_{a^2}
- **O** Keep track of $M_{\pm}^2 \neq M_0^2$ in pion propagators

Application: The kaon mass in the LCE regime

Comments

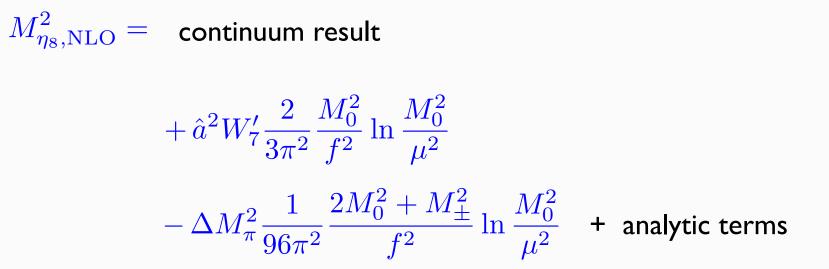
- Converges to the known Gasser-Leutwyler result in the continuum limit $a \rightarrow 0$
- $a \neq 0$: Two additonal chiral logs involving the kaon and neutral pion mass
- Neutral pion log contains no unknown LECs, size determined by mass splitting
- Neutral pion logs is prone to large FV effects

How large is this correction ?

Pion log correction:

$$\frac{\Delta M_K}{M_K} = \frac{\Delta M_\pi^2}{2M_K^2} \frac{M_0^2}{64\pi^2 f^2} \left[\ln \frac{M_0^2}{\mu^2} + \delta_{\rm FV}(M_0L) \right]$$

Estimates from data:


Ensemble	aM_{π^\pm}	aM_{π^0}	M_K	af	L/a	$\frac{\Delta M_K}{M_K} \left[\%\right]$	$\frac{\Delta M_{K,\rm stat}}{M_K} \left[\%\right]$
A30.32	0.1234	0.0611	0.25150(29)	0.046	32	0.02	0.12
A40.32	0.1415	0.0811	0.25666(23)	0.048	32	0.12	0.09
A40.24	0.1445	0.0694	0.25884(43)	0.046	24	0.10	0.16
A60.24	0.1727	0.1009	0.26695(52)	0.051	24	0.14	0.19
A80.24	0.1987	0.1222	0.27706(61)	0.054	24	0.27	0.22
A100.24	0.2215	0.1570	0.28807(34)	0.056	24	0.37	0.12
A80.24s	0.1982	0.1512			24		
A100.24s	0.2215	0.1863	0.26502(90)	0.055	24	0.32	0.34
B25.32	0.1064	0.0605	0.21240(50)	0.040	32	0.003	0.24
B35.32	0.1249	0.0710	0.21840(28)	0.043	32	0.09	0.13
B55.32	0.1540	0.1323	0.22799(34)	0.046	32	0.17	0.15
B75.32	0.1808	0.1557	0.23753(32)	0.049	32	0.23	0.13
B85.24	0.1931	0.1879	0.24476(44)	0.049	24	0.06	0.18
D15.48	0.0695	0.0561			48		
D20.48	0.0797	0.0651			48		
D30.48	0.0978	0.0860			48		
D45.32sc	0.1198	0.0886			32		

Herdoiza et al (ETMC) 2013, Baron et al (ETMC) 2010

Conclusions and Outlook

- Current twisted mass simulations have a sizable pion mass splitting
- WChPT can accomodate the large splitting and provides (modified) ChPT formulae
- Presented here:
 - "Charmless" chiral Lagrangian for $N_f = 2 + 1 + 1$ tm QCD
 - Kaon mass to NLO (in the LCE regime)
- Next step: Kaon decay constant f_K (requires "charmless" expression of the axial vector current ...)

η_8 mass to NLO

The kaon mass to NLO

 $M_{K,\rm NLO}^2 =$ continuum result

$$+ \hat{a}^2 W_{78}' \frac{M_K^2}{4\pi^2 f^4} \ln \frac{M_K^2}{\mu^2} + \hat{a}^2 W_{68}' \frac{M_0^2}{2\pi^2 f^4} \ln \frac{M_0^2}{\mu^2} + \text{analytic}$$

 $W'_{78} = 2W'_7 + W'_8$ $W'_{68} = 2W'_6 + W'_8$