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Subjects touched upon:

• Ising model = prototype model for

◦ almost all concepts in statistical physics, e.g.
phase transitions, universality,...

◦ simplest lattice quantum field theory (imaginary time),
scalar particles, spontaneous symmetry breaking,
“Higgs”

• Monte Carlo simulation, standard and worm

◦ in principle exact up to statistical errors, alternatives:

◦ exact solution in D6 2 only (Onsager)

◦ systematic weak/strong coupling (= low/high tempera-
ture) expansion series (truncated!)

• Ising spin model → Ising lattice gauge theory
(gauge theory↔particle physics, standard model)
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Ising model, our notation

• hypercubic torus, D dimensions

• sites x, directions µ

• spin configurations s≡{s(x)=±1}

Euclidean action/Hamiltonian:

−S(s)= β
∑

xµ

s(x)s(x+ µ̂)

partition function:

Z0=
∑

s

e−S(s) → Z2(u, v)=
∑

s

s(u)s(v)e−S(s)

fundamental correlation:

〈s(u)s(v)〉= Z2(u, v)

Z0
=G(u− v)
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Monte Carlo method

〈O〉=
∑

s

P (s)

�

e−S(s)/Z0

O(s) [ example:O(s)= s(u)s(v)]

• draw s(1), s(2),	 , s(N) each with probability P (s)

• estimate 〈O〉≃ 1

N

∑
i=1

N O(s(i))

• error ∝1/ N
√

problem:

• no practicable method to independently draw with P (s) for
large lattices at β≈ βcritical

• generate s(i)→ s(i+1) in a Markov chain, disadvantage:

• autocorrelations, error has large (diverging) prefactor (CSD)

in addition:
〈s(u)s(v)〉∝ exp [−|u−v |/ξ], 〈[s(u)s(v)]2〉=1, bad signal/noise
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All order strong coupling reformulation

• Z0, Z2 (, Z4	 ) have expansions in β

• convergent for all β in a finite volume

• this includes β≈ βc, ξ≫ 1

• but: contributions ∼βvolume will be important!

• [normal (truncated) s.c.: V →∞ term by term in Z2/Z0]

expand for each link independently:

eβσ(x)σ(x+ µ̂)=
∑

k=0

∞
βk

k!
σ(x)kσ(x+ µ̂)k [below: k→ k(x, µ)≡ kµ(x)]

alternative form: eβσ(x)σ(x+µ̂)= coshβ
∑

k=0,1
(tanhβ)k σ(x)kσ(x+ µ̂)k

� use expansion on each link + sum over original spins
[trivial: even power of each s(x) required → constraints on {k(x, µ)}
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Z0=
∑

g∈G0
β
∑

x,µ
k(x,µ)

W [k]

• graphs g with k(x, µ)= 0,	 ,∞
• divergence: ∂µ

∗kµ(x)= 0 (mod 2)

• W [k] =
∏

x,µ

1

k(x, µ)!

⇒β 〈σσ〉n.n.= 〈k(x, µ)〉g∈G0=O(1)

Z2(u, v)=
∑

g∈G2|u,v
β
∑

x,µ
k(x,µ)

W [k]

• ∂µ
∗kµ(x)= δx,u+ δx,v (mod 2)

• ‘defects/sources’ at u and v

• G2|u,u
= G0
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The break-through of Prokof’ev and Svistunov

• Z0 has been simulated as
∑

g∈G0

	 in ancient history
[Berg & Förster, 1981]

◦ k(x, µ)→ k(x, µ)± 1 on small (plaquette) loops

◦ additional steps

◦ not efficient, critical slowing down

P&S: enlarge the ensemble

Z =
∑

u,v

Z2(u, v)=
∑

g∈G2

β
∑

xµ
k(x,µ)

W [k] G2=∪u,vG2|u,v

• PS ‘worm’ algorithm works on G2:

◦ k(u, µ)→ k(u, µ)± 1 combined with u→ u+ µ̂

[or k(u− µ̂ , µ)→ k(u− µ̂ , µ)± 1 u→u− µ̂]

◦ a defect moves, constraint preserved

◦ (practically) no critical slowing down
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• more efficient moves G0∋ g→ g ′∈ G0 by cutting through G2

• the intermediate configurations are extremely useful:

G(x)= 〈σ(x)σ(0)〉= 〈δx,u−v〉g
〈δu,v〉g

, 〈δu,v〉g= χ−1, 〈.〉g≡〈.〉g∈G2

• all-x 2-point function = histogram u− v of sampled graphs
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A very simple generalization [ρ> 0, ρ(0)= 1]:

Z =
∑

u,v

Z2(u, v)ρ
−1(u− v)=

∑

g∈G2

β
∑

l
k(x,µ)W [k]ρ−1(u− v)

G(x)= 〈σ(x)σ(0)〉= 〈δx,u−v〉g
〈δu,v〉g

× ρ(x)

• use a guess ρ(x)≈〈σ(x)σ(0)〉

• then 〈δx,u−v〉g: guess →exact answer

• 〈δx,u−v〉g≈ const ⇒all bins u− v get≈same statistics ⇒
signal/noise x-independent!
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ξeff= log-deriv.
t= separation

Ising model on
L2= 642

β= 0.42
ξ= 11.88...
(exact)

[details:
time-slices,
exp→cosh ]
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Triviality of ϕ
4

A ‘QFT central limit theorem’....

• Aizenman’s rigorous proofs (bounds) for D> 4 use

◦ our g ∈ G2 representation for Ising

◦ plus: replica and percolation ideas

• Translate into MC estimators for any D (incl. D=4)

• Result

gR=−χ4

χ2
(mR)

D=2zD〈X 〉(g,g ′)∈G2×G2 X ∈{0, 1}, z=mRL

(R↔ renormalized, X =1↔4 defects connected in a bond percolation cluster defined by k+k′>0

• no numerical cancellation for connected χ4

• Lebowitz inequality manifest
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Wegner/Wilson lattice gauge theory

• lattice as before

• Z(2) spin field s(x)=±1 → Z(2)-link field σ(x, µ)≡σµ(x)=±1

• gradient coupling
1

2
(∂µs)

2=1− s(x)s(x+ µ̂) →
curvature coupling [like Maxwell (∂µAν − ∂νAµ)

2]:

parallel transport:

1

2
[right ◦ up −up ◦ right]2=1−

σ(x, µ)σ(x+ µ̂ , ν)σ(x, ν)σ(x+ ν̂ , µ)
=: 1−σp(x, µ,ν) ‘plaquette’
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x
x+µ

σ(  ,µ)x

νx+

σ( ,ν)x

−S(σ)= β
∑

x,µ<ν

σp(x, µ,ν)
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local gauge invariance (group Z(2)# of sites) [analog: Aµ→Aµ+ ∂µα]:

S(σ)=S(σ ′), σ ′(x, µ)= s(x)σ(x, µ)s(x+ µ̂), s(x)=±1

Z0=
∑

σ

e−S(σ), 〈O〉= 1

Z0

∑

σ

O(σ)e−S(σ)

• only invariant O(σ)=O(σ ′) have 〈O〉� 0 and are physical

• example: O(σ)=
∏

i
σ(xi, µi) where links {(xi, µi)} are a closed

curve on the lattice (Wilson loop)

• special case: straight line closing by periodicity (Polyakov line)

we split: x=(x0, xQ ) (xQ : D− 1 dimensional), π(xQ ): =
∏

x0
σ0(x),

〈π(xQ )〉=0 (by symmetry), 〈π(xQ )π(yQ )〉=G(xQ − yQ )

• confined (disordered phase): ‘area law’: G(xQ )∝ e−KL0|xQ |

• K generalizes 1/ξ, mass gap
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Worm → jellyfish (Irukandji?)

Z0=
∑

σ

	 → all order graph expansion strictly analogous to spin case

• expand: eβσp= coshβ
∑

n=0,1
(tanhβσp)

n, n→n(x, µ,ν)≡nµν(x)

• for each plaquette config. {n(x, µ,ν)=0,1} we sum over σ(x, µ)
⇒ constraint on n(x, µ,ν), in words:
at each link an even # of n(x, µ,ν)= 1 must touch

• subset of n=1 plaquettes which form a closed surface
[generalized: even branchings, disconnected components...]

Z0=
∑

n

(tanhβ)
∑

x,µ<ν
nµν(x)δ[∂µ

∗nµν]

δ[∂µ
∗nµν]: =

∏

xµ

δ∂µ
∗nµν ,even

• updates preserving constraint, cube flip (CF): n → 1 − n on
plaquettes forming a 3-cube (in D dim). → works, but CSD
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Attempts to generalize PS idea

• → allow surfaces with defects

• which kind? smallest possible?

Zj=
∑

σ

e−S(σ)
∏

xµ

σ(x, µ)j(x,µ), j(x, µ)∈{0, 1}

• symmetries ⇒ Zj � 0 only if:

◦ ∂µ
∗jµ(x)= 0 mod 2 [like k(x, µ) for G0 graphs]

◦ j has zero winding number in all dirs

◦ Wilson loops, pairs of Pol. lines, or very irregular net-
works

• c.f. spin model: global Z(2) symm. ⇒ even number of defects

◦ discrete, two = smallest nontrivial set
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Z =
∑

j

ZjR
−1(jµ)=

∑

n

(tanhβ)
∑

x,µ<ν
nµν(x)R−1(∂µ

∗nµν)

• correct algos, but we could not find an R that keeps defect set
‘small’ and yields efficient dynamics; one (of many) attempt

R−1(j)= e
−κ

∑
x,µ

j(x,µ)

• → concentrate on improving 〈π(xQ )π(0)〉 (Polyakov)
• juQ ,vQ current corresponding to two Polyakov lines

◦ shift of lines + flip ‘ladder’ of n(x, µ, ν)

◦ plus CF for ergodicity (done around defect lines)

• take R∝ e−α|uQ −vQ | with expected area law

same improvement of the correlator as in the Ising model
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Conclusions

• PS: very simple clever idea, could have been done long ago

• not covered here: successful generalizations to O(N) sigma
models (N -vector model), CP(N) models and 2D fermions

• not just a new algorithm, but simulation of nontrivially trans-
formed model (‘partial duality transformation’)

• merits may depend on observables of interest

• generalization to gauge models very nontrivial (as with clusters)

• reason different geometry:

◦ configs: loops → surfaces

◦ defects: points → loops [much ‘larger’ manifold]

• not covered here: the high precision estimates of the string ten-
sion allow for interesting checks of the low energy effective string
model description of gauge theories (Symanzik, Lüscher)

did you see the jellyfish?
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