Taking worm algorithms from spin models to Abelian lattice gauge theory

BY ULLI WOLFF

Humboldt University (Berlin), 15/01/2013

Subjects touched upon:

- Ising model = prototype model for
 - almost all concepts in statistical physics, e.g. phase transitions, universality,...
 - simplest lattice quantum field theory (imaginary time), scalar particles, spontaneous symmetry breaking, "Higgs"
- Monte Carlo simulation, standard and worm
 - in principle exact up to statistical errors, alternatives:
 - exact solution in $D \leq 2$ only (Onsager)
 - $\circ \quad \mbox{systematic weak/strong coupling (= low/high temperature) expansion series (truncated!)}$
- Ising spin model → Ising lattice gauge theory (gauge theory⇔particle physics, standard model)

Ising model, our notation

- hypercubic torus, D dimensions
- sites x, directions μ
- spin configurations $s \equiv \{s(x) = \pm 1\}$

Euclidean action/Hamiltonian:

$$-S(s) = \beta \sum_{x\mu} s(x)s(x+\hat{\mu})$$

partition function:

$$Z_0 = \sum_s e^{-S(s)} \rightarrow Z_2(u, v) = \sum_s s(u)s(v)e^{-S(s)}$$

fundamental correlation:

$$\langle s(u)s(v)\rangle = \frac{Z_2(u,v)}{Z_0} = G(u-v)$$

Monte Carlo method

$$\langle \mathcal{O} \rangle = \sum_{s} \underbrace{P(s)}_{e^{-S(s)}/Z_0} \mathcal{O}(s) \qquad [\text{example: } \mathcal{O}(s) = s(u)s(v)]$$

• draw $s^{(1)}, s^{(2)}, \dots, s^{(N)}$ each with probability P(s)

• estimate
$$\langle \mathcal{O} \rangle \simeq \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(s^{(i)})$$

• error $\propto 1/\sqrt{N}$

problem:

- no practicable method to independently draw with P(s) for large lattices at $\beta \approx \beta_{\text{critical}}$
- generate $s^{(i)} \rightarrow s^{(i+1)}$ in a Markov chain, disadvantage:
- autocorrelations, error has large (diverging) prefactor (CSD)

in addition:

 $\langle s(u)s(v)\rangle \propto \exp{[-|u-v|/\xi]}, \quad \langle [s(u)s(v)]^2\rangle = 1, \quad \text{bad signal/noise}$

All order strong coupling reformulation

- $Z_0, Z_2(, Z_4...)$ have expansions in β
- convergent for all β in a finite volume
- this includes $\beta \approx \beta_c, \xi \gg 1$
- but: contributions $\sim \beta^{\text{volume}}$ will be important!
- [normal (truncated) s.c.: $V \to \infty$ term by term in Z_2/Z_0]

expand for each link independently:

$$e^{\beta\sigma(x)\sigma(x+\hat{\mu})} = \sum_{k=0}^{\infty} \frac{\beta^k}{k!} \sigma(x)^k \sigma(x+\hat{\mu})^k \quad [below: k \to k(x,\mu) \equiv k_{\mu}(x)]$$

alternative form: $e^{\beta\sigma(x)\sigma(x+\hat{\mu})} = \cosh\beta \sum_{k=0,1} (\tanh\beta)^k \sigma(x)^k \sigma(x+\hat{\mu})^k$

 \implies use expansion on each link + sum over original spins [trivial: even power of each s(x) required \rightarrow constraints on $\{k(x, \mu)\}$

The break-through of Prokof'ev and Svistunov

- Z_0 has been simulated as $\sum_{g \in \mathcal{G}_0} \dots$ in ancient history [Berg & Förster, 1981]
 - $\circ \quad k(x,\mu) \to k(x,\mu) \pm 1 \text{ on small (plaquette) loops}$
 - \circ additional steps
 - \circ not efficient, critical slowing down
- P&S: enlarge the ensemble

$$\mathcal{Z} = \sum_{u,v} Z_2(u,v) = \sum_{g \in \mathcal{G}_2} \beta^{\sum_{x\mu} k(x,\mu)} W[k] \qquad \mathcal{G}_2 = \bigcup_{u,v} \mathcal{G}_{2|_{u,v}}$$

- PS 'worm' algorithm works on \mathcal{G}_2 :
 - $\circ \quad k(u,\mu) \to k(u,\mu) \pm 1 \text{ combined with } u \to u + \hat{\mu}$ [or $k(u-\hat{\mu},\mu) \to k(u-\hat{\mu},\mu) \pm 1 \ u \to u - \hat{\mu}$]
 - a defect moves, constraint preserved
 - (practically) no critical slowing down

- more efficient moves $\mathcal{G}_0 \ni g \to g' \in \mathcal{G}_0$ by cutting through \mathcal{G}_2
- the intermediate configurations are extremely useful:

$$G(x) = \langle \sigma(x)\sigma(0) \rangle = \frac{\langle \delta_{x,u-v} \rangle_g}{\langle \delta_{u,v} \rangle_g}, \qquad \langle \delta_{u,v} \rangle_g = \chi^{-1}, \quad \langle . \rangle_g \equiv \langle . \rangle_{g \in \mathcal{G}_2}$$

• all-x 2-point function = histogram u - v of sampled graphs

A very simple generalization $[\rho > 0, \rho(0) = 1]$:

$$\mathcal{Z} = \sum_{u,v} Z_2(u,v) \rho^{-1}(u-v) = \sum_{g \in \mathcal{G}_2} \beta^{\sum_l k(x,\mu)} W[k] \rho^{-1}(u-v)$$

$$G(x) = \langle \sigma(x)\sigma(0) \rangle = \frac{\langle \delta_{x,u-v} \rangle_g}{\langle \delta_{u,v} \rangle_g} \times \rho(x)$$

- use a guess $\rho(x) \approx \langle \sigma(x)\sigma(0) \rangle$
- then $\langle \delta_{x,u-v} \rangle_g$: guess \rightarrow exact answer
- $\langle \delta_{x,u-v} \rangle_g \approx \text{const} \Rightarrow \text{all bins } u v \text{ get} \approx \text{same statistics} \Rightarrow \text{signal/noise } x \text{-independent!}$

Triviality of φ^4

A 'QFT central limit theorem'....

- Aizenman's rigorous proofs (bounds) for D > 4 use
 - \circ our $g \in \mathcal{G}_2$ representation for Ising
 - plus: replica and percolation ideas
- Translate into MC estimators for any D (incl. D=4)
- Result

$$g_R = -\frac{\chi_4}{\chi^2} (m_R)^D = 2z^D \langle \mathcal{X} \rangle_{(g,g') \in \mathcal{G}_2 \times \mathcal{G}_2} \quad \mathcal{X} \in \{0,1\}, z = m_R L$$

 $(R \leftrightarrow \text{renormalized}, \mathcal{X} = 1 \leftrightarrow 4 \text{ defects connected in a bond percolation cluster defined by } k + k' > 0$

- no numerical cancellation for connected χ_4
- Lebowitz inequality manifest

Wegner/Wilson lattice gauge theory

- lattice as before
- Z(2) spin field $s(x) = \pm 1 \rightarrow Z(2)$ -link field $\sigma(x, \mu) \equiv \sigma_{\mu}(x) = \pm 1$
- gradient coupling $\frac{1}{2}(\partial_{\mu}s)^2 = 1 s(x)s(x + \hat{\mu}) \rightarrow$ curvature coupling [like Maxwell $(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2$]:

$$-S(\sigma) = \beta \sum_{x,\mu < \nu} \sigma_p(x,\mu,\nu)$$

local gauge invariance (group $Z(2)^{\# \text{ of sites}}$) [analog: $A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha$]:

$$S(\sigma) = S(\sigma'), \quad \sigma'(x,\mu) = s(x)\sigma(x,\mu)s(x+\hat{\mu}), \quad s(x) = \pm 1$$
$$Z_0 = \sum_{\sigma} e^{-S(\sigma)}, \quad \langle \mathcal{O} \rangle = \frac{1}{Z_0} \sum_{\sigma} \mathcal{O}(\sigma)e^{-S(\sigma)}$$

• only invariant $\mathcal{O}(\sigma) = \mathcal{O}(\sigma')$ have $\langle \mathcal{O} \rangle \neq 0$ and are physical

- example: $\mathcal{O}(\sigma) = \prod_i \sigma(x_i, \mu_i)$ where links $\{(x_i, \mu_i)\}$ are a closed curve on the lattice (Wilson loop)
- special case: straight line closing by periodicity (Polyakov line) we split: $x = (x_0, \vec{x})$ (\vec{x} : D - 1 dimensional), $\pi(\vec{x}) := \prod_{x_0} \sigma_0(x)$,

 $\langle \pi(\vec{x}) \rangle = 0 \text{ (by symmetry)}, \quad \langle \pi(\vec{x})\pi(\vec{y}) \rangle = G(\vec{x} - \vec{y})$

- confined (disordered phase): 'area law': $G(\vec{x}) \propto e^{-KL_0|\vec{x}|}$
- K generalizes $1/\xi$, mass gap

Worm \rightarrow jellyfish (Irukandji?)

 $Z_0 = \sum_{\sigma} \dots \rightarrow$ all order graph expansion strictly analogous to spin case

- expand: $e^{\beta\sigma_p} = \cosh\beta\sum_{n=0,1} (\tanh\beta\sigma_p)^n, n \to n(x, \mu, \nu) \equiv n_{\mu\nu}(x)$
- for each plaquette config. $\{n(x, \mu, \nu) = 0, 1\}$ we sum over $\sigma(x, \mu)$ \Rightarrow constraint on $n(x, \mu, \nu)$, in words: at each link an even # of $n(x, \mu, \nu) = 1$ must touch
- subset of n = 1 plaquettes which form a closed surface [generalized: even branchings, disconnected components...]

$$Z_0 = \sum_{n} (\tanh\beta)^{\sum_{x,\mu < \nu} n_{\mu\nu}(x)} \delta[\partial^*_{\mu} n_{\mu\nu}]$$
$$\delta[\partial^*_{\mu} n_{\mu\nu}] := \prod_{x\mu} \delta_{\partial^*_{\mu} n_{\mu\nu},\text{even}}$$

• updates preserving constraint, cube flip (CF): $n \to 1 - n$ on plaquettes forming a 3-cube (in D dim). \to works, but CSD

Attempts to generalize PS idea

- \rightarrow allow surfaces with defects
- which kind? smallest possible?

$$Z_j = \sum_{\sigma} e^{-S(\sigma)} \prod_{x\mu} \sigma(x,\mu)^{j(x,\mu)}, \quad j(x,\mu) \in \{0,1\}$$

- symmetries $\Rightarrow Z_j \neq 0$ only if:
 - $\circ \quad \partial_{\mu}^{*} j_{\mu}(x) = 0 \mod 2 \quad [\text{like } k(x, \mu) \text{ for } \mathcal{G}_{0} \text{ graphs}]$
 - \circ *j* has zero winding number in all dirs
 - Wilson loops, pairs of Pol. lines, or very irregular networks
- c.f. spin model: global Z(2) symm. \Rightarrow even number of defects
 - \circ discrete, two = smallest nontrivial set

$$\mathcal{Z} = \sum_{j} Z_{j} R^{-1}(j_{\mu}) = \sum_{n} (\tanh\beta)^{\sum_{x,\mu < \nu} n_{\mu\nu}(x)} R^{-1}(\partial_{\mu}^{*} n_{\mu\nu})$$

• correct algos, but we could not find an R that keeps defect set 'small' and yields efficient dynamics; one (of many) attempt

$$R^{-1}(j) = \mathrm{e}^{-\kappa \sum_{x,\mu} j(x,\mu)}$$

- \rightarrow concentrate on improving $\langle \pi(\vec{x})\pi(0) \rangle$ (Polyakov)
- $j_{\vec{u},\vec{v}}$ current corresponding to two Polyakov lines
 - shift of lines + flip 'ladder' of $n(x, \mu, \nu)$
 - plus CF for ergodicity (done around defect lines)
- take $R \propto e^{-\alpha |\vec{u} \vec{v}|}$ with expected area law

same improvement of the correlator as in the Ising model

Conclusions

- PS: very simple clever idea, could have been done long ago
- not covered here: successful generalizations to O(N) sigma models (N-vector model), CP(N) models and 2D fermions
- not just a new algorithm, but simulation of nontrivially transformed model ('partial duality transformation')
- merits may depend on observables of interest
- generalization to gauge models very nontrivial (as with clusters)
- reason different geometry:
 - \circ configs: loops \rightarrow surfaces
 - \circ defects: points \rightarrow loops [much 'larger' manifold]
- not covered here: the high precision estimates of the string tension allow for interesting checks of the low energy effective string model description of gauge theories (Symanzik, Lüscher)

did you see the jellyfish?