Basics of Lattice Quantum Field Theory*

by Ulli Wolff
HU Berlin
get these notes from: www.physik.hu-berlin.de/com

2010, October 12 and 13

Abstract

$3+1$ lectures for the Graduiertenkolleg 'Mass, Spectrum, Symmetry', in October 2010 are based on these notes.

0 General remarks

Some abbreviations:
$\mathrm{PT}=$ perturbative, perturbation theory
$\mathrm{NP}=$ non PT
QFT $=$ quantum field theory
LQFT $=$ Lattice QFT
$\mathrm{QM}=$ Quantum Mechanics
UV, IR = ultraviolet, infrared
units: $\hbar=1, \quad c=1, \quad$ energy \sim mass \sim momentum \sim length $^{-1}$

- general principles QFT \leftrightarrow LQFT explained for φ^{4}
- later: discretization of gluons and quarks for QCD
\Rightarrow vertical spaces in the text below are for your hand-written decorations

[^0]
1 Lecture: Summary PT QFT \& why NP

1.1 Outline PT QFT

we emphasize:

- PT QFT (incl. renormalization) $=$ algorithm to generate the PT series in the renormalized coupling
- start from Euclidean (\rightarrow Wick rotation) action:

$$
S[\varphi]=\int d^{4} x\left\{\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}+\frac{m_{0}^{2}}{2} \varphi^{2}+\frac{g_{0}}{4!} \varphi^{4}\right\}
$$

- $\mathrm{O}(4)$ invariant $(\rightarrow$ Lorentz)
- $\quad \infty$ volume
- internal $\mathrm{Z}(2)$, phases: massive unbroken, massless, massive broken
- physics \leftrightarrow correlations

$$
\left\langle\varphi\left(x^{(1)}\right) \varphi\left(x^{(2)}\right) \cdots \varphi\left(x^{(n)}\right)\right\rangle=\frac{1}{Z} \int D \varphi \mathrm{e}^{-S[\varphi]} \varphi\left(x^{(1)}\right) \varphi\left(x^{(2)}\right) \cdots \varphi\left(x^{(n)}\right.
$$

summarized in generating functional

$$
\begin{gathered}
\mathrm{e}^{W[j]}=\left\langle\mathrm{e}^{\int d^{4} x j(x) \varphi(x)}\right\rangle, \quad W[0]=0, \\
\left\langle\varphi\left(x^{(1)}\right) \varphi\left(x^{(2)}\right) \cdots \varphi\left(x^{(n)}\right)\right\rangle_{\text {con }}=\left.\frac{\delta^{n} W}{\delta \varphi\left(x^{(1)}\right) \ldots \varphi\left(x^{(n)}\right)}\right|_{j=0} .
\end{gathered}
$$

- $\int D \varphi \ldots$ only formal, ' \mathbb{R}^{4}-fold' integral, divergences
- LQFT: define as limit of a sequence of rigorously defined finite dimensional integrals
- numerical (=NP) evaluation possible (Monte Carlo)

Standard QFT (via Feynman rules) goes like this:

- define $\int D \varphi \ldots$ for the Gaussian case $g_{0}=0$ [Wiener integral]
- for $g_{0}>0$ Taylor expand $\mathrm{e}^{-\frac{g_{0}}{4!} \int d^{4} x \varphi^{4}}$ in g_{0}
- \Rightarrow only moments of Gauss integrals required $\left[\int d x \mathrm{e}^{-\frac{1}{2} x^{2}} x^{n}\right]$
\rightarrow Feynman rules + renormalization algorithm
critique:
- definition and approximation mixed up
- there is no well-defined object, to which we then apply an approximation

1.2 A little bit of renormalization

Fourier: $\tilde{\varphi}(p)=\int d^{4} x \mathrm{e}^{-i p x} \varphi(x)$
naive:

$$
\langle\tilde{\varphi}(p) \tilde{\varphi}(q)\rangle=(2 \pi)^{4} \delta^{4}(p+q) \frac{1}{p^{2}+m_{0}^{2}}\left\{1+g_{0} \times \infty\right\}
$$

\Longrightarrow regularize, for example

$$
\begin{gathered}
\frac{1}{p^{2}+m_{0}^{2}} \rightarrow \frac{\mathrm{e}^{-p^{2} / \Lambda^{2}}}{p^{2}+m_{0}^{2}} \Longleftrightarrow \\
S_{\Lambda}[\varphi]=\int d^{4} x\left\{\frac{1}{2} \varphi\left(-\partial^{2}+m_{0}^{2}\right) \mathrm{e}^{\partial^{2} / \Lambda^{2}} \varphi+\frac{g_{0}}{4!} \varphi^{4}\right\}
\end{gathered}
$$

\Longrightarrow now correlations are finite
match asymptotically for $p^{2} \rightarrow 0$

$$
\langle\tilde{\varphi}(p) \tilde{\varphi}(q)\rangle \simeq(2 \pi)^{4} \delta(p+q) \frac{Z}{p^{2}+m_{R}^{2}} \simeq(2 \pi)^{4} \delta(p+q) \frac{Z}{m_{R}^{2}}\left[1-\frac{p^{2}}{m_{R}^{2}}+\ldots\right]
$$

to fix Z, m_{R} by the 'fit'

- read off $Z\left(g_{0}, m_{0} / \Lambda\right)$ and $m_{R} / \Lambda=f\left(g_{0}, m_{0} / \Lambda\right)$ [series in $g_{0}!$]
similarly (sketchy!)

$$
\langle\tilde{\varphi} \tilde{\varphi} \tilde{\varphi} \tilde{\varphi}\rangle_{\mathrm{con}}=Z^{2} \text { (factors) } g_{R}
$$

- $g_{R}=g_{0} h\left(g_{0}, m_{0} / \Lambda\right)$ measure of some scattering strength
- $\propto g_{0} \Leftrightarrow$ vanishes in the Gaussian case

Renormalizability:

- all correlations of $Z^{-1 / 2} \tilde{\varphi}$ expressed as functions of m_{R}, g_{R} exist for $\Lambda / m_{R} \rightarrow \infty$
- more precisely: only the expansion coefficients in g_{R} exist!
- independent of regularization details \leftrightarrow universality

We usually assume (and check numerically) that such structural properties proven to all orders (!!) also hold NP [\leftrightarrow lattice, see below].

1.3 Why PT is insufficient

The above approach cannot work if

- the spectrum of the free theory=zeroth order is qualitatively wrong example: confined quarks
- often one shows within PT: bound state masses $\propto \mathrm{e}^{-c / g_{R}}$
- \Rightarrow invisible in any order PT, c is uncomputable in PT

Even if this is not so: convergence of the series?
We discuss a toy example

$$
Z(\lambda)=\int_{-\infty}^{\infty} d \phi \mathrm{e}^{-\phi^{2}-\frac{\lambda}{4!} \phi^{4}}
$$

Exact answer, $K_{1 / 4}$ is a Bessel function (besselk(1/4, .) in Matlab):

$$
Z(\lambda)=\sqrt{6 / \lambda} \mathrm{e}^{3 / \lambda} K_{1 / 4}(3 / \lambda)
$$

All order PT:

$$
c_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d \lambda^{n}} Z(\lambda)\right|_{\lambda=0}=\frac{1}{n!} \int_{-\infty}^{\infty} d \phi \mathrm{e}^{-\phi^{2}} \phi^{4 n}=\frac{\Gamma(2 n+1 / 2)}{\Gamma(n+1)}
$$

Like all PT: asymptotic expansion:

- radius of convergence zero
- Dyson argument: must be so, since $Z(\lambda), \lambda<0$ non existing
- but: asymptotic series

$$
\left|Z(\lambda)-\sum_{n=0}^{N} c_{n} \lambda^{n}\right| \propto \lambda^{N+1} \quad \text { as } \quad \lambda \searrow 0
$$

Figure 1. Perturbative series at various truncation orders.

Figure 2. Difference between PT and exact.

Figure 3. Relative approximation error at small λ : loops make precision!

- at $\lambda<0.5$: PT precise, high orders good (QED like)
- at $\lambda \approx 2$: 3-4 'loop' optimal (1%), higher worse (QCD, high energy)
- at $\lambda \approx 5$: 1 'loop' optimal (10%), higher orders useless (QCD, tau mass?)
- at $\lambda>12[\lambda / 4!>1 / 2]$: PT hopeless though $Z(\lambda)$ smooth and boring..

2 Lecture: Elementary lattice technology

We are motivated to try to formulate NP QFT....

2.1 Discretized space time

- grid already for PDEs
- reasonable: never ∞ resolution
$\Longrightarrow \varphi(x)$ not for $x \in \mathbb{R}^{4}$ but only $x \in(a \mathbb{Z})^{4}$, hypercubic lattice with spacing a :

$$
x_{\mu}=a n_{\mu}, \quad n_{\mu} \text { integer }, \quad[a]=\text { length }
$$

obvious idea:

$$
\int D \varphi \ldots \longrightarrow \prod_{x} \int_{-\infty}^{\infty} d \varphi(x) \ldots
$$

- better, but still infinite-fold
- still not obviously rigorous and still not for Computers

2.2 Classical continuum limit

- what becomes of $S[\varphi]=\int d^{4} x \ldots$?
- first: discretized classical field theory
- imagine: φ still exists on \mathbb{R}^{4}, approximate by only using values on $(a \mathbb{Z})^{4}$

$$
\partial_{\mu} \varphi(x) \rightarrow \partial_{\mu}^{\mathrm{lat}} \varphi(x)=\frac{1}{a}[\varphi(x+a \hat{\mu})-\varphi(x)]
$$

or

$$
\begin{gathered}
\partial_{\mu}^{* \operatorname{lat}} \varphi(x)=\frac{1}{a}[\varphi(x)-\varphi(x-a \hat{\mu})], \\
\hat{0}=(1,0,0,0), \quad \hat{1}=(0,1,0,0), \quad \ldots
\end{gathered}
$$

\Longrightarrow

$$
\begin{gathered}
\partial_{\mu}^{\mathrm{lat}} \varphi(x)=\partial_{\mu} \varphi(x)+\mathrm{O}(a), \quad \partial_{\mu}^{\mathrm{lat}} \varphi(x)=\partial_{\mu} \varphi(x+a \hat{\mu} / 2)+\mathrm{O}\left(a^{2}\right) \\
S^{\text {lat }}=a^{4} \sum_{x}\left\{\frac{1}{2}\left(\partial_{\mu}^{\mathrm{lat}} \varphi\right)^{2}+\frac{m_{0}^{2}}{2} \varphi^{2}+\frac{g_{0}}{4!} \varphi^{4}\right\} \approx S
\end{gathered}
$$

partial 'integration' (φ, χ must decay at $\infty)$:

$$
a^{4} \sum_{x} \varphi \partial_{\mu}^{\mathrm{lat}} \chi=-a^{4} \sum_{x}\left(\partial_{\mu}^{* \text { lat }} \varphi\right) \chi
$$

We now drop 'lat' [clear from context] symmetrized standard Laplacian:

$$
\partial_{\mu} \partial_{\mu}^{*} \varphi(x)=\partial_{\mu}^{*} \partial_{\mu} \varphi(x)=\sum_{\mu}[\varphi(x+a \hat{\mu})+\varphi(x-a \hat{\mu})-2 \varphi(x)]
$$

Discretized action \rightarrow classical field eqn. $\left(-\partial_{\mu}^{*} \partial_{\mu}+m_{0}^{2}\right) \varphi+\left(g_{0} / 6\right) \varphi^{3}=0$
This may be generalized to Maxwell theory for example to compute cavities...

2.3 Finite volume

Periodic boundary conditions (and $a>0$), demand

$$
\varphi(x \pm L \hat{\mu})=\varphi(x), \quad L / a \text { integer }
$$

- only $(L / a)^{4}$ independent points, $\{\varphi(x)\} \leftrightarrow \mathbb{R}^{(L / a)^{4}}$
- now $a^{4} \sum_{x} \ldots$. finite sum (in S)

$$
\int D \varphi \ldots \longrightarrow \prod_{x} \int_{-\infty}^{\infty} d \varphi(x) \ldots
$$

rigorously defined $(L / a)^{4}$-fold ordinary integral.
We may label

$$
x_{\mu}=0, a, 2 a, \ldots, L-a
$$

or equivalently (for even L / a)

$$
x_{\mu}=-\frac{L}{2},-\frac{L}{2}+a, \ldots, 0, \ldots, \frac{L}{2}-a
$$

The same points appear in a different order! Asymm. only apparent: $\frac{L}{2} \triangleq-\frac{L}{2}$
Symmetries:

- discrete translations
- $\mathrm{O}(4, \mathbb{Z})$ hypercubic subgroup of $\mathrm{O}(4, \mathbb{R})$
- rotations by $\pi / 2$ through any plane
- reflections
- 2×192 elements
- restoration of $\mathrm{O}(4, \mathbb{R})$ in continuum limit (later)

2.4 Lattice Fourier

One direction and $L=\infty$ at first:

$$
\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \mathrm{e}^{i p(x-y)}=\delta(x-y) \longrightarrow \int_{-\pi / a}^{\pi / a} \frac{d p}{2 \pi} \mathrm{e}^{i p(x-y)}=\frac{1}{a} \delta_{x, y}
$$

- Brillouin zone $[-\pi / a, \pi / a], 2 \pi / a$ periodic
- $a \sum_{x} \frac{1}{a} \delta_{x, y}=1=\int d x \delta(x-y)$
- smallest $\Delta x=a \leftrightarrow|p| \leqslant \pi / a$ cutoff

Now finite L :
for example

$$
\frac{1}{L} \sum_{p} \mathrm{e}^{i p(x-y)}=\frac{1}{a} \delta_{x, y}^{\text {per }} \quad \text { with } \quad p \in \frac{2 \pi}{L} \mathbb{Z}
$$

$$
p=0, \frac{2 \pi}{L}, 2 \frac{2 \pi}{L}, \ldots,(L / a-1) \frac{2 \pi}{L}=\frac{2 \pi}{a}-\frac{2 \pi}{L}
$$

- $\delta_{x, y}^{\mathrm{per}}=\delta_{x, y \pm L}^{\mathrm{per}} \rightarrow$ 'per' dropped again
- $D=4$ each component p_{μ} as above
- $\delta_{x, y}=1$ if $x_{\mu}=y_{\mu} \bmod L$ for all μ

$$
\tilde{f}(p)=a^{4} \sum_{x} \mathrm{e}^{-i p \cdot x} f(x), \quad f(x)=\frac{1}{L^{4}} \sum_{p} \mathrm{e}^{i p \cdot x} \tilde{f}(p)
$$

summary:

- UV cutoff: x_{μ} discrete (steps $a>0$)
- IR cutoff: p_{μ} discrete $(2 \pi / L>0)$
- UV+IR: everything discrete and finite, limits can then be investigated

2.5 The lattice path integral

Obvious proposal now:

$$
\mathrm{e}^{W[j]}=\frac{1}{Z}\left[\prod_{x} \int d \varphi(x)\right] \mathrm{e}^{-S[\varphi]+a^{4} \sum_{x} j(x) \varphi(x)}
$$

correlations: $\frac{\delta}{\delta j(x)} \rightarrow \frac{1}{a^{4}} \frac{\partial}{\partial j(x)}$
Dimensions, dimensionless: $a \varphi, a m_{0}, L / a, g_{0} \Rightarrow$

$$
a^{n}\left\langle\varphi(0) \varphi\left(x^{(2)}\right) \cdots \varphi\left(x^{(n)}\right)\right\rangle=f\left(x^{(i)} / a, a m_{0}, g_{0}, L / a\right)
$$

- these are well defined bare correlations
- may or may not be expanded in g_{0}
- usually $L / a \rightarrow \infty$ exists at fixed $x^{(i)} / a, a m_{0}, g_{0}$
- Computer: at large L / a insensitive to value (see below)
- continuum limit (\triangleq renormalization) more complicated:
match:

$$
L^{-4}\langle\tilde{\varphi}(p) \tilde{\varphi}(-p)\rangle=\frac{Z}{\hat{p}^{2}+m_{R}^{2}}
$$

at $p=0$ and $p=p_{*}=(2 \pi / L, 0,0,0)\left[\hat{p}_{*}^{2} \approx p_{*}^{2}\right]$ to obtain

$$
Z=Z\left(a m_{0}, g_{0}, L / a\right), \quad a m_{R}=f\left(a m_{0}, g_{0}, L / a\right)
$$

One may show now (Fourier)

$$
\ln \left[a^{2}\langle\varphi(0) \varphi(x)\rangle\right] \simeq-m_{R}|x| \quad \text { at large } \quad|x|
$$

- $\xi=m_{R}^{-1}$ is a correlation length exposed in physical correlations
- scaling region (continuum, UV cutoff limit) is reached if we tune $a m_{0}$ such that $a / \xi=a m_{R} \ll 1$ holds (for some g_{0})
- thermodynamic region (\sim infinite volume, IR cutoff limit): $L / \xi=L m_{R} \gg 1$ Renormalized coupling (sketchy):

$$
a^{-12}\langle\tilde{\varphi} \tilde{\varphi} \tilde{\varphi} \tilde{\varphi}\rangle_{\text {con }}=Z^{2} \text { (factors) } g_{R}
$$

Now all correlations are conjectured to have a NP UV + IR limit

$$
Z^{-n / 2}\left\langle\varphi\left(x^{(1)}\right) \varphi\left(x^{(2)}\right) \cdots \varphi\left(x^{(n)}\right)\right\rangle=m_{R}^{n} f\left(m_{R} x^{(i)} ; g_{R}\right) \times[1+\underbrace{\mathrm{O}\left(a^{2} m_{R}^{2}\right)}_{\text {Symanzik }}+\underbrace{\mathrm{O}\left(\mathrm{e}^{-c m_{R} L}\right)}_{\text {Lüscher }}]
$$

- we may or may not expand in g_{R}
- if we do we may or may not approximate the true answer (c.f. sect. 1.3)
- really: dimensionless numbers only, lattice a for 'book keeping' only
- really: the same for Z : universal \leftrightarrow physics \leftrightarrow ratios where Z drops out
- if we know $a m_{R}=\#$ and m_{R} is identified with a mass in nature $\Rightarrow a$ may be quoted in GeV^{-1} for a given set of lattice parameters

3 Lecture: QCD discretized on a lattice

Non Abelian gauge theory was formulated on discretized space time by Wilson.

- geometric structure needs to be taken into account to have
- exact gauge invariance in the regularized theory
- considered crucial for renormalizability and universality
- unlike continuum we will need no gauge fixing
- which is very problematic beyond PT...

3.1 Gauge invariance

Consider a complex matter field $\psi(x)$ with N components that transforms under a local $\mathrm{SU}(N)$:

$$
\psi(x) \rightarrow h(x) \psi(x), \quad h(x) \in \mathrm{SU}(N)
$$

In the continuum, a gauge field is a 'device' to construct a covariant derivative;

$$
D_{\mu} \psi(x) \equiv\left(\partial_{\mu}+A_{\mu}(x)\right) \psi(x) \rightarrow\left(\partial_{\mu}+A_{\mu}^{\prime}(x)\right) h(x) \psi(x)=(!) h(x) D_{\mu} \psi(x)
$$

- including $A \rightarrow A^{\prime}, D_{\mu} \psi$ transforms like ψ
- requires $A_{\mu}^{\prime}=h A_{\mu} h^{-1}-\left(\partial_{\mu} h\right) h^{-1}=h A_{\mu} h^{-1}+h \partial_{\mu} h^{-1}$
equivalent (1st order in ε):

$$
\varepsilon_{\mu} D_{\mu} \psi(x) \simeq \exp \left(\varepsilon_{\mu} A_{\mu}\right) \times \psi(x+\varepsilon)-\psi(x)
$$

- parallel transport $x \leftarrow x+\varepsilon$ with $1 \approx \exp \left(\varepsilon_{\mu} A_{\mu}\right) \in \operatorname{SU}(N)$ before comparing
- infinitesimal transformation $\Rightarrow A_{\mu} \in$ Lie algebra
- $\exp \left(\varepsilon_{\mu} A_{\mu}^{\prime}\right) \approx h(x) \exp \left(\varepsilon_{\mu} A_{\mu}\right) h^{-1}(x+\varepsilon)$: eats $h(x+\varepsilon)$, spits out $h(x)$

This is the clue for derivative \longrightarrow difference, lattice covariant derivative:

$$
\begin{gathered}
D_{\mu} \psi(x)=U(x, \mu) \psi(x+a \hat{\mu})-\psi(x) \\
D_{\mu}^{*} \psi(x)=\psi(x)-U(x-a \hat{\mu}, \mu)^{-1} \psi(x-a \hat{\mu})
\end{gathered}
$$

- $U(x, \mu) \rightarrow h(x) U(x, \mu) h^{-1}(x+a \hat{\mu})$
- finite transport, $U(x, \mu) \in$ Lie group $\mathrm{SU}(N)\left[U^{-1}=U^{\dagger}, \operatorname{det}(U)=1\right]$
- $U(x, \mu)$ lives on the links of the lattice
- configuration \equiv set of $4 \times(L / a)^{4} \mathrm{SU}(N)$ matrices

3.2 Wilson Yang-Mills action

Matter part of the action gauge invariant by using covariant differences, but \rightarrow need invariant action for $U(x, \mu)$ itself

- $S[\varphi]$ suppresses variation via $\left(\partial_{\mu} \varphi\right)^{2}$
- gauge actions must suppress curvature
continuum: $\left[D_{\mu}, D_{\nu}\right] \psi=F_{\mu \nu} \psi \rightarrow-\operatorname{tr}\left(F_{\mu \nu}\right)^{2}, \quad F_{\mu \nu}(x) \rightarrow h(x) F_{\mu \nu}(x) h^{-1}(x)$
2 paths: $x \leftarrow x+a \hat{\mu} \leftarrow x+a \hat{\mu}+a \hat{\nu}$ and $x \leftarrow x+a \hat{\nu} \leftarrow x+a \hat{\mu}+a \hat{\nu}$ (picture!)
transporters: $U(x, \mu) U(x+a \hat{\mu}, \nu)-U(x, \nu) U(x+a \hat{\nu}, \mu)=M \neq 0 \leftrightarrow$ curvature around plaquette (x, μ, ν).

$$
\begin{gathered}
M M^{\dagger}=2-U_{\square}(x, \mu, \nu)-U_{\square}^{\dagger}(x, \mu, \nu) \quad 0 \leqslant \operatorname{tr}\left(M M^{\dagger}\right)=0 \Leftrightarrow M=0 \\
U_{\mathrm{pl}}(x, \mu, \nu)=U(x, \mu) U(x+a \hat{\mu}, \nu) U^{\dagger}(x+a \hat{\nu}, \mu) U^{\dagger}(x, \nu)
\end{gathered}
$$

gauge behavior:

$$
U_{\square}(x, \mu, \nu) \rightarrow h(x) U_{\square}(x, \mu, \nu) h^{-1}(x)
$$

Wilson action:

$$
S[U]=\frac{\beta}{2 N} \sum_{x, \mu \neq \nu} \operatorname{tr}\left[1-U_{\square}(x, \mu, \nu)\right] \geqslant 0
$$

equivalent:

$$
S[U]=\beta \sum_{x, \mu<\nu}\left[1-\frac{1}{N} \operatorname{Retr} U_{\square}\right]
$$

One can demonstrate the classical continuum limit:

- $A_{\mu}(x)$ given in $\mathbb{R}^{4}, U(x, \mu)=\exp \left[a A_{\mu}(x)\right]$ on $x \in(a \mathbb{Z})^{4}$:

$$
S[U] \approx-\frac{\beta}{2 N} a^{4} \sum_{x, \mu, \nu} \frac{1}{2} \operatorname{tr}\left(F_{\mu \nu}\right)^{2} \approx-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left(F_{\mu \nu}\right)^{2} \quad \text { with } \quad \beta=\frac{2 N}{g^{2}}
$$

3.3 Dirac Wilson fermions

Euclidean fermions in the continuum:

$$
\begin{aligned}
& S=\int d^{4} x \bar{\psi}\left(\gamma_{\mu} D_{\mu}+m_{0}\right) \psi \\
& \left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}, \quad \gamma_{\mu}^{\dagger}=\gamma_{\mu} .
\end{aligned}
$$

Obvious discretization, 'naive' lattice fermions

$$
S_{\text {naive }}=a^{4} \sum_{x} \bar{\psi}\left(\gamma_{\mu} \tilde{D}_{\mu}+m_{0}\right) \psi
$$

with symmetrized (antihermitean) derivative

$$
\tilde{D}_{\mu} \psi(x)=\frac{1}{2}\left(D_{\mu}+D_{\mu}^{*}\right) \psi(x)=\frac{1}{2 a}\left[U(x, \mu) \psi(x+a \hat{\mu})-U^{-1}(x-a \hat{\mu}, \mu) \psi(x-a \hat{\mu})\right]
$$

Problem: species doubling. Free case, Fourier expansion

$$
\left[\gamma_{\mu} \tilde{\partial}_{\mu}+m_{0}\right] u \mathrm{e}^{i p \cdot x}=\left[i \gamma_{\mu} \tilde{p}_{\mu}+m_{0}\right] u \mathrm{e}^{i p \cdot x}, \quad \tilde{p}_{\mu}=\frac{1}{a} \sin \left(a p_{\mu}\right)
$$

- when all components have $a p_{\mu} \ll 1 \Rightarrow \tilde{p}_{\mu} \approx p_{\mu} \leftrightarrow$ classical continuum limit
- but also if $a p_{\mu}=\pi-a q_{\mu}$ with $a q_{\mu} \ll 1 \tilde{p}_{\mu} \approx q_{\mu}$
- not one area in Brillouin zone, but $2^{4}=16 \Rightarrow$ the continuum limit has 16 degenerate 'flavors'

The Wilson term cures this:

$$
S_{W}=a^{4} \sum_{x} \bar{\psi}\left(\gamma_{\mu} \tilde{D}_{\mu}+m_{0}-\frac{a r}{2} D_{\mu} D_{\mu}^{*}\right) \psi
$$

- extra term $=\mathrm{O}(a)$ distortion if all $a p_{\mu} \ll 1$, but suppresses 'doubler' modes
- clean spectrum
- but no more chiral symmetry (distinguishing zero mass):

$$
\left\{\gamma_{5}, \gamma_{\mu} \tilde{D}_{\mu}+m_{0}-\frac{a r}{2} D_{\mu} D_{\mu}^{*}\right\}=0 \Leftrightarrow m_{0}=0 \text { true only for } r=0
$$

- the reason is 'deep' (Nielsen Ninomiya no go theorem)
- alternative discretizations: staggered, twisted mass and others
- Ginsparg Wilson: Modified chiral symmetry on the lattice ($\mathrm{O}(a)$ extra terms in transformations)
- No NP formulation exists for chiral gauge theories (and thus the complete Standard Model) so far! [chiral gauge invariance crucial for renormalizability]

3.4 Fermion simulation

- $\psi(x), \bar{\psi}(x)$ are Grassmann valued
- they must be integrated exactly using:
$\int \prod_{x, \alpha} d \psi_{\alpha} d \bar{\psi}_{\alpha} \mathrm{e}^{-a^{8} \sum_{x, y^{\prime}} \bar{\psi}(x) A(x, y) \psi(y)+a^{4} \sum_{x}(\bar{j} \psi-\bar{\psi} j)}=\operatorname{det}(A) \mathrm{e}^{-a^{8} \sum_{x, y} \bar{j}(x) A^{-1}(x, y) j(y)}$

For currents $J_{\Gamma}=\bar{\psi} \Gamma \psi$ for example

$$
\left\langle J_{\Gamma}(x) J_{\Gamma}(y)\right\rangle=\frac{1}{Z} \int D U \operatorname{det}(A[U]) \mathrm{e}^{-S[U]}\left[-\operatorname{tr}\left(\Gamma A^{-1}(x, y) \Gamma A^{-1}(y, x) \Gamma+\text { discon. }\right]\right.
$$

- Monte Carlo with effective Boltzmann $\operatorname{det}(A[U]) \mathrm{e}^{-S[U]}$ in U only
- nonlocal funnction('al') of $U(x, \mu)$
- well developed (Pseudofermions, Hybrid Monte Carlo), but costly!

4 A few problems

4.1 Two point function and spectrum

Some background first. You should know (or believe for the moment) the Feynman-Kac formula in quantum mechanics. A Hamiltonian

$$
\hat{H}=\frac{1}{2} \hat{p}^{2}+V(\hat{x})
$$

is related to the Euclidean path integral over periodic orbits by

$$
Z=\operatorname{tr}^{-T \hat{H}}=\int_{x(0)=x(T)} D x(t) \mathrm{e}^{-S[x(t)]}=\sum_{n} \mathrm{e}^{-T E_{n}}
$$

with

$$
S=\int_{0}^{T} d t\left\{\frac{1}{2} \dot{x}^{2}+V(x)\right\}
$$

and

$$
\left.\langle x(0) x(t)\rangle=\frac{1}{Z} \int D x \mathrm{e}^{-S} x(0) x(t)=\frac{1}{Z} \sum_{m, n}|\langle m| \hat{x}| n\right\rangle\left.\right|^{2} \mathrm{e}^{-(T-t) E_{m}-t E_{n}}
$$

for the two point correlation.
If the Euclidean time extent is much larger than the inverse gap $T\left(E_{1}-E_{0}\right) \gg 1$ and $t \ll T$, then we isolate the ground state and the two point function knows the excitation spectrum

$$
\left.\langle x(0) x(t)\rangle \simeq \sum_{n}|\langle 0| \hat{x}| n\right\rangle\left.\right|^{2} \mathrm{e}^{-t\left(E_{n}-E_{0}\right)}
$$

In LQFT these things are very similar in the time-momentum form

$$
a^{3} \sum_{\vec{x}} \mathrm{e}^{-i \vec{p} \cdot \vec{x}}\langle\varphi(0) \varphi(x)\rangle=\Delta\left(x_{0}, \vec{p}\right) \propto \mathrm{e}^{-t E(\vec{p})}
$$

where $E(\vec{p})$ is the gap in the channel of momentum \vec{p}, the energy of the lowest state relative to the vacuum as required in QFT. In particular at $\vec{p}=0, E(\overrightarrow{0})=$ m_{R} is the energy of the lightest particle at rest, that can be excited from the vacuum by the field operator $\hat{\varphi}$ analogous to \hat{x} in QM .

- derive the propagator in momentum space for a free scalar particle

$$
a^{4} \sum_{\vec{x}} \mathrm{e}^{-i p \cdot x}\langle\varphi(0) \varphi(x)\rangle=\frac{1}{\hat{p}^{2}+m_{0}^{2}}
$$

- Fourier transform to $\Delta\left(x_{0}, \vec{p}\right)$ for an infinite lattice and compute $E(\vec{p})$.

Hint: Consider the p_{0} integration as a line integral in \mathbb{C} and close the contour.

- Do you find $m_{R}^{2}=m_{0}^{2}$ before and/or after taking the continuum limit?
- What about the dispersion relation $\sqrt{\vec{p}^{2}+m^{2}}$?
- What is the momentum space Dirac Wilson propagator? Consider again computing m_{R} for the usual choice $r=1$.

4.2 Invariant group measure, Monte Carlo

The gauge links are integrated over $\mathrm{SU}(N)$. To have a gauge invariant theory the measure must be invariant under group multiplications by $g, h \in \operatorname{SU}(N)$ from either side,

$$
I[f]=\int_{\mathrm{SU}(N)} d U f(U)=\int_{\mathrm{SU}(N)} d U f(g U h)
$$

has to hold for any function f on $\operatorname{SU}(N)$. We demand it to be normalized, $I=1$ if $f \equiv 1$.

- To get the idea, discuss the analogous (but trivial) case of invariant summation over an arbitrary finite group.

We now specialize to $N=2$. There is the quaternionic parameterization

$$
U(u)=u_{0}+i \vec{u} \cdot \vec{\tau}, \quad u_{0}^{2}+\vec{u}^{2}=1=|u|^{2}
$$

which identifies $\mathrm{SU}(2)$ with the sphere S_{3} in Euclidean four space.

- Argue that

$$
\frac{1}{2 \pi^{2}} \int d^{4} u \delta(|u|-1) f(U(u))
$$

is a correct way to write the invariant integration.
Hint: $U \rightarrow g U h$ corresponds to an $\mathrm{SO}(4)$ rotation of $\left(u_{0}, \vec{u}\right)$.

- In the end, we need to integrate by Monte Carlo. For a Metropolis update, we want to propose, at a given 'old' U, a move $U \rightarrow U V$ with a random $V \in \mathrm{SU}(2)$. This has to be generated such that
- V and V^{-1} are proposed with the same probability
- there is a control parameter that limits the distance of V from the unit element (to have a decent acceptance rate).
- Given a flat perfect random number generator, design an algorithm for V
- Discuss how, if $U \in \mathrm{SU}(3)$, your proposal can be embedded in $\mathrm{SU}(3)$ via two or more $\mathrm{SU}(2)$ subgroups, such that all $\mathrm{SU}(3)$ elements can be reached under multiple moves. This is how many updates in quenched QCD work in principle.

4.3 Confinement at strong coupling

Wilson loop: A closed loop on the lattice is given by a cyclic sequence of points $\mathcal{C}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $\left(x_{i}, x_{i+1}\right)$ are nearest neigbors (cyclic: $x_{n+1}=x_{1}$). Setting $x_{i+1}=x_{i}+a \hat{\mu_{i}}$ the Wilson loop observable is

$$
W(\mathcal{C})=\operatorname{tr}\left[U\left(x_{1}, \mu_{1}\right) U\left(x_{2}, \mu_{2}\right) \cdots U\left(x_{n}, \mu_{n}\right)\right]
$$

- Convince yourself that W is gauge invariant

For a rectangular loop $\mathcal{C}_{t, l}$ of size $t \times l$ in a plane one can show that

$$
\left\langle W\left(\mathcal{C}_{t, l}\right)\right\rangle \propto \mathrm{e}^{-t V(l)} \quad(t \rightarrow \infty)
$$

holds where $V(l)$ is a definition of the potential between heavy quarks due to their interaction with the gluons. One confinement criterion is the linear rise

$$
\text { confinement } \leftrightarrow V(l) \propto \sigma \times l \quad(l \rightarrow \infty)
$$

at large distance, in a way σ is the gauge-analog of a mass gap.

- Compute $Z=\int \prod_{x, \mu} d U(x, \mu) \mathrm{e}^{-S[U]}$ as an expansion in β (strong coupling expansion) to leading nontrivial order
- to do this prove first (for $\operatorname{SU}(N), N \geqslant 3$)

$$
\begin{aligned}
& \quad I_{\alpha \beta \gamma \delta}=\int d U U_{\alpha \beta} U_{\gamma \delta}^{*}=\frac{1}{N} \delta_{\alpha \delta} \delta_{\beta \gamma}, \quad \int d U U_{\alpha \beta} U_{\gamma \delta}=0=\int d U U_{\alpha \beta} \\
& \text { hints: }
\end{aligned}
$$

- use the left and right invariance of the measure
- $\quad \delta_{\alpha \beta}$ is the only $\mathrm{SU}(N)$ invariant tensor to build $I_{\alpha \beta \gamma \delta}$
- derive the average plaquette $\frac{1}{N}\left\langle\operatorname{Re} \operatorname{tr} U_{\square}\right\rangle$ in this approximation
- now compute $\left\langle W\left(\mathcal{C}_{t, l}\right)\right\rangle$ to leading order and prove confinement at small β
- what is $a^{2} \sigma$ in this approximation?

Note that: a) small β is far from the continuum limit, hence the above is qualitative at best b) confinement is a very natural situation in Lattice Yang Mills

- prove rigorously that confinement persists in the continuum limit $\beta \rightarrow \infty$ [this will win you a prestigeous prize!]

5 Further study

The lattice formulation of QFT has been intensely investigated for several decades now. This has led to a number of textbooks on the subject. The ones known to the author are:

- Ref. [1] by one of the founding fathers of the field who performed first simulations is rather old by now. Nevertheless it can still serve as an easily readable first introduction.
- Real text books are [2],[3],[4],[5],[6] and one should have a look, which style and content suits one.
- [7] is a QFT book with the connection to critical phenomena in view. Its volume is impressive.
- [8] and [9] are lecture notes of courses previously taught at HU

In particular in the books one may find a lot more references.

Bibliography

[1] M. Creutz, Quarks, Gluons, and Lattices, Cambridge University Press, Cambridge, 1983.
[2] I. Montvay, G. Münster, Quantum Fields on a Lattice, Cambridge University Press, Cambridge, 1994.
[3] H. Rothe, Lattice Gauge Theories: an Introduction, World Scientific Publishing Company, City, 2005.
[4] J. Smit, Introduction to Quantum Fields on a Lattice, Cambridge University Press, Cambridge, 2002.
[5] T. Degrand, Lattice Methods for Quantum Chromodynamics, World Scientific Publishing Company, City, 2006.
[6] C. Gattringer, C. Lang, Quantum Chromodynamics on the Lattice: an Introductory Presentation, Springer, Berlin, 2009.
[7] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1996.
[8] R. Sommer, Introduction to lattice gauge theories, lecture notes, WS 2008/2009 www-zeuthen.desy.de/alpha \rightarrow talks.
[9] U. Wolff, Quantum field theory: A bottom-up lattice approach (a living document $=$ completely incomplete), lecture notes, SS 2010
www. physik.hu-berlin.de/com/teachingandseminars/ss2010qft.

[^0]: *. This document has been written using the GNU $\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\mathrm{MACS}}$ text editor (see www.texmacs.org).

