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Abstract

3+1 lectures for the Graduiertenkolleg ‘Mass, Spectrum, Symmetry’, in
October 2010 are based on these notes.

0 General remarks

Some abbreviations:
PT = perturbative, perturbation theory
NP = non PT
QFT = quantum field theory
LQFT = Lattice QFT
QM = Quantum Mechanics
UV, IR = ultraviolet, infrared
units: ~ =1, c= 1, energy∼mass ∼momentum ∼ length−1

• general principles QFT↔LQFT explained for ϕ4

• later: discretization of gluons and quarks for QCD

⇒ vertical spaces in the text below are for your hand-written decorations

∗. This document has been written using the GNU TEXMACS text editor (see www.texmacs.org).
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1 Lecture: Summary PT QFT & why NP

1.1 Outline PT QFT

we emphasize:

• PT QFT (incl. renormalization) = algorithm to generate the PT series in
the renormalized coupling

• start from Euclidean (→Wick rotation) action:

S[ϕ] =

∫

d4x

{

1

2
(∂µϕ)2 +

m0
2

2
ϕ2 +

g0

4!
ϕ4

}

• O(4) invariant (→Lorentz)

• ∞ volume

• internal Z(2), phases: massive unbroken, massless, massive broken

• physics ↔ correlations

〈ϕ(x(1))ϕ(x(2))� ϕ(x(n))〉=
1

Z

∫

Dϕe−S[ϕ]ϕ(x(1))ϕ(x(2))� ϕ(x(n)

summarized in generating functional

eW [j] =
〈

e
∫

d4xj(x)ϕ(x)
〉

, W [0] = 0,

〈ϕ(x(1))ϕ(x(2))� ϕ(x(n))〉con =
δnW

δϕ(x(1))� ϕ(x(n))
|j=0 .

•
∫

Dϕ� only formal, ‘R4-fold’ integral, divergences

• LQFT: define as limit of a sequence of rigorously defined finite dimensional
integrals

• numerical (=NP) evaluation possible (Monte Carlo)

Standard QFT (via Feynman rules) goes like this:

• define
∫

Dϕ� for the Gaussian case g0 = 0 [Wiener integral]

• for g0> 0 Taylor expand e
−

g0

4!

∫

d4xϕ4

in g0

• ⇒ only moments of Gauss integrals required

[

∫

dxe
−

1

2
x2

xn
]

→Feynman rules + renormalization algorithm

critique:

• definition and approximation mixed up

• there is no well-defined object, to which we then apply an approximation
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1.2 A little bit of renormalization

Fourier: ϕ̃(p)=
∫

d4xe−ipxϕ(x)
naive:

〈ϕ̃(p)ϕ̃(q)〉=(2π)4δ4(p+ q)
1

p2 +m0
2 {1 + g0×∞}� regularize, for example

1

p2 +m0
2→

e−p
2/Λ2

p2 +m0
2 �

SΛ[ϕ] =

∫

d4x

{

1

2
ϕ(− ∂2 +m0

2)e∂
2/Λ2

ϕ+
g0

4!
ϕ4

}� now correlations are finite
match asymptotically for p2→ 0

〈ϕ̃(p)ϕ̃(q)〉≃ (2π)4δ(p+ q)
Z

p2 +mR
2 ≃ (2π)4δ(p+ q)

Z

mR
2

[

1−
p2

mR
2 +� ]

to fix Z,mR by the ‘fit’

• read off Z(g0,m0/Λ) and mR/Λ = f(g0, m0/Λ) [series in g0 !]

similarly (sketchy!)

〈ϕ̃ϕ̃ϕ̃ϕ̃ 〉con =Z2(factors)gR

• gR= g0h(g0, m0/Λ) measure of some scattering strength

• ∝ g0⇔ vanishes in the Gaussian case

Renormalizability:

• all correlations of Z−1/2ϕ̃ expressed as functions of mR, gR exist
for Λ/mR→∞

• more precisely: only the expansion coefficients in gR exist!

• independent of regularization details ↔ universality

We usually assume (and check numerically) that such structural properties proven
to all orders (!!) also hold NP [↔ lattice, see below].
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1.3 Why PT is insufficient

The above approach cannot work if

• the spectrum of the free theory=zeroth order is qualitatively wrong
example: confined quarks

• often one shows within PT : bound state masses ∝ e−c/gR

• ⇒ invisible in any order PT, c is uncomputable in PT

Even if this is not so: convergence of the series?
We discuss a toy example

Z(λ) =

∫

−∞

∞

dφe
−φ2−

λ

4!
φ4

Exact answer, K1/4 is a Bessel function (besselk(1/4,.) in Matlab):

Z(λ)= 6/λ
√

e3/λ
K1/4(3/λ)

All order PT:

cn=
1

n!

dn

dλn
Z(λ)|λ=0 =

1

n!

∫

−∞

∞

dφe−φ
2

φ4n=
Γ(2n+ 1/2)

Γ(n+1)

Like all PT: asymptotic expansion:

• radius of convergence zero

• Dyson argument: must be so, since Z(λ), λ< 0 non existing

• but: asymptotic series
∣

∣

∣

∣

∣

Z(λ)−
∑

n=0

N

cnλ
n

∣

∣

∣

∣

∣

∝λN+1 as λց 0
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Figure 1. Perturbative series at various truncation orders.
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Figure 2. Difference between PT and exact.
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Figure 3. Relative approximation error at small λ: loops make precision!

• at λ< 0.5: PT precise, high orders good (QED like)

• at λ≈ 2: 3-4 ‘loop’ optimal (1%), higher worse (QCD, high energy)

• at λ≈ 5: 1 ‘loop’ optimal (10%), higher orders useless (QCD, tau mass?)

• at λ> 12 [λ/4!> 1/2]: PT hopeless though Z(λ) smooth and boring..
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2 Lecture: Elementary lattice technology

We are motivated to try to formulate NP QFT....

2.1 Discretized space time

• grid already for PDEs

• reasonable: never ∞ resolution� ϕ(x) not for x∈R4 but only x∈ (aZ)4, hypercubic lattice with spacing a:

xµ= anµ, nµ integer, [a] = length

obvious idea:
∫

Dϕ� .�∏

x

∫

−∞

∞

dϕ(x)� .,
• better, but still infinite-fold

• still not obviously rigorous and still not for Computers

2.2 Classical continuum limit

• what becomes of S[ϕ] =
∫

d4x� .?
• first: discretized classical field theory

• imagine: ϕ still exists on R4, approximate by only using values on (aZ)4

∂µϕ(x)→ ∂µ
latϕ(x)=

1

a
[ϕ(x+ aµ̂)− ϕ(x)]
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or

∂µ
∗ latϕ(x) =

1
a

[ϕ(x)− ϕ(x− aµ̂)],

0̂ = (1, 0, 0, 0), 1̂ = (0, 1, 0, 0), � .�
∂µ
latϕ(x)= ∂µϕ(x)+ O(a), ∂µ

latϕ(x) = ∂µϕ(x+ aµ̂/2) +O(a2)

S lat = a4
∑

x

{

1

2
(∂µ

latϕ)2 +
m0

2

2
ϕ2 +

g0

4!
ϕ4

}

≈S

partial ‘integration’ (ϕ, χ must decay at ∞):

a4
∑

x

ϕ∂µ
latχ=− a4

∑

x

(∂µ
∗ latϕ)χ

We now drop ‘lat’ [clear from context]

symmetrized standard Laplacian:

∂µ∂µ
∗ϕ(x) = ∂µ

∗∂µϕ(x) =
∑

µ

[ϕ(x+ aµ̂)+ ϕ(x− aµ̂)− 2ϕ(x)]

Discretized action → classical field eqn. (− ∂µ
∗∂µ+m0

2)ϕ+(g0/6)ϕ3 = 0

This may be generalized to Maxwell theory for example to compute cavities...

2.3 Finite volume

Periodic boundary conditions (and a> 0), demand

ϕ(x±Lµ̂) = ϕ(x), L/a integer

• only (L/a)4 independent points, {ϕ(x)} ↔ R
(L/a)4

• now a4
∑

x
� . finite sum (in S)

∫

Dϕ� .�∏

x

∫

−∞

∞

dϕ(x)� .
rigorously defined (L/a)4-fold ordinary integral.

We may label

xµ= 0, a, 2a,� , L− a
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or equivalently (for even L/a)

xµ=−
L

2
,−

L

2
+ a,� , 0,� , L

2
− a

The same points appear in a different order! Asymm. only apparent:
L

2
,−

L

2
Symmetries:

• discrete translations

• O(4,Z) hypercubic subgroup of O(4,R)

◦ rotations by π/2 through any plane

◦ reflections

◦ 2× 192 elements

◦ restoration of O(4,R) in continuum limit (later)

2.4 Lattice Fourier

One direction and L=∞ at first:
∫

−∞

∞ dp

2π
eip(x−y) = δ(x− y)� ∫

−π/a

π/a dp

2π
eip(x−y) =

1

a
δx,y

• Brillouin zone [−π/a, π/a], 2π/a periodic

• a
∑

x

1

a
δx,y=1 =

∫

dxδ(x− y)

• smallest ∆x= a ↔ |p|6π/a cutoff

Now finite L:
1

L

∑

p

eip(x−y) =
1

a
δx,y
per with p∈

2π

L
Z

for example

p=0,
2π

L
, 2

2π

L
,� , (L/a− 1)

2π

L
=

2π

a
−

2π

L

• δx,y
per = δx,y±L

per → ‘per’ dropped again

• D= 4 each component pµ as above

• δx,y= 1 if xµ= yµ modL for all µ

f̃ (p) = a4
∑

x

e−ip·xf(x), f(x)=
1

L4

∑

p

eip·xf̃ (p)
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summary:

• UV cutoff: xµ discrete (steps a> 0)

• IR cutoff: pµ discrete (2π/L> 0)

• UV+IR: everything discrete and finite, limits can then be investigated

2.5 The lattice path integral

Obvious proposal now:

eW [j] =
1

Z

[

∏

x

∫

dϕ(x)

]

e−S[ϕ]+a4
∑

x
j(x)ϕ(x)

correlations:
δ

δj(x)
→

1

a4
∂

∂j(x)

Dimensions, dimensionless: aϕ, am0, L/a, g0 ⇒

an〈ϕ(0)ϕ(x(2))� ϕ(x(n))〉= f(x(i)/a, am0, g0, L/a)

• these are well defined bare correlations

• may or may not be expanded in g0

• usually L/a→∞ exists at fixed x(i)/a, am0, g0

• Computer: at large L/a insensitive to value (see below)

• continuum limit (, renormalization) more complicated:

match:

L−4〈ϕ̃(p)ϕ̃(− p)〉=
Z

p̂2 +mR
2

at p= 0 and p= p∗= (2π/L, 0, 0, 0) [p̂∗
2≈ p∗

2] to obtain

Z =Z(am0, g0, L/a), amR= f(am0, g0, L/a)

One may show now (Fourier)

ln
[

a2〈ϕ(0)ϕ(x)〉
]

≃−mR |x| at large |x|

• ξ=mR
−1 is a correlation length exposed in physical correlations
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• scaling region (continuum, UV cutoff limit) is reached if we tune am0 such
that a/ξ= amR≪ 1 holds (for some g0)

• thermodynamic region (∼ infinite volume, IR cutoff limit): L/ξ=LmR≫ 1

Renormalized coupling (sketchy):

a−12〈ϕ̃ϕ̃ϕ̃ϕ̃ 〉con =Z2(factors)gR

Now all correlations are conjectured to have a NP UV+IR limit

Z−n/2〈ϕ(x(1))ϕ(x(2))� ϕ(x(n))〉=mR
n f(mRx

(i); gR)× [1 +O(a2mR
2 )�

Symanzik

+O(e−cmRL)�
Lüscher

]

• we may or may not expand in gR

• if we do we may or may not approximate the true answer (c.f. sect. 1.3)

• really: dimensionless numbers only, lattice a for ‘book keeping’ only

• really: the same for Z: universal ↔physics ↔ ratios where Z drops out

• if we know amR = # and mR is identified with a mass in nature ⇒ a may
be quoted in GeV−1 for a given set of lattice parameters

3 Lecture: QCD discretized on a lattice

Non Abelian gauge theory was formulated on discretized space time by Wilson.

• geometric structure needs to be taken into account to have

• exact gauge invariance in the regularized theory

• considered crucial for renormalizability and universality

• unlike continuum we will need no gauge fixing

• which is very problematic beyond PT...

3.1 Gauge invariance

Consider a complex matter field ψ(x) with N components that transforms under
a local SU(N):

ψ(x)→ h(x)ψ(x), h(x)∈SU(N)
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In the continuum, a gauge field is a ‘device’ to construct a covariant derivative;

Dµψ(x)≡ (∂µ+Aµ(x))ψ(x)→ (∂µ+Aµ
′ (x))h(x)ψ(x)= (!)h(x)Dµψ(x)

• including A→A ′, Dµψ transforms like ψ

• requires Aµ
′ = hAµh

−1− (∂µh)h−1 = hAµh
−1 +h∂µh

−1

equivalent (1st order in ε):

εµDµψ(x)≃ exp(εµAµ)× ψ(x+ ε)− ψ(x)

• parallel transport x←x+ ε with 1≈ exp(εµAµ)∈SU(N) before comparing

• infinitesimal transformation ⇒Aµ∈Lie algebra

• exp(εµAµ
′ )≈h(x)exp(εµAµ)h

−1(x+ ε): eats h(x+ ε), spits out h(x)

This is the clue for derivative � difference, lattice covariant derivative:

Dµψ(x)=U(x, µ)ψ(x+ aµ̂)− ψ(x)

Dµ
∗ψ(x)= ψ(x)−U(x− aµ̂ , µ)−1 ψ(x− aµ̂)

• U(x, µ)→ h(x)U(x, µ)h−1(x+ aµ̂)

• finite transport, U(x, µ)∈Lie group SU(N) [U−1 =U †,det(U) = 1]

• U(x, µ) lives on the links of the lattice

• configuration ≡ set of 4× (L/a)4 SU(N) matrices

3.2 Wilson Yang-Mills action

Matter part of the action gauge invariant by using covariant differences, but
→ need invariant action for U(x, µ) itself

• S[ϕ] suppresses variation via (∂µϕ)2

• gauge actions must suppress curvature

continuum: [Dµ,Dν]ψ=Fµνψ→− tr(Fµν)
2, Fµν(x)→h(x)Fµν(x)h

−1(x)

2 paths: x←x+ aµ̂← x+ aµ̂ + aν̂ and x←x+ aν̂←x+ aµ̂ + aν̂ (picture!)
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transporters: U(x, µ)U(x+ aµ̂ , ν)−U(x, ν)U(x+ aν̂ , µ)=M � 0 ↔
curvature around plaquette (x, µ, ν).

MM † =2−U�(x, µ, ν)−U�

†(x, µ, ν) 06 tr(MM †) = 0⇔M = 0

Upl(x, µ, ν) =U(x, µ)U(x+ aµ̂ , ν)U †(x+ aν̂ , µ)U †(x, ν)

gauge behavior:

U�(x, µ, ν)→h(x)U�(x, µ, ν)h−1(x)

Wilson action:

S[U ] =
β

2N

∑

x,µ� ν tr[1−U�(x, µ, ν)]> 0

equivalent:

S[U ] = β
∑

x,µ<ν

[

1−
1

N
Re trU�

]

One can demonstrate the classical continuum limit:

• Aµ(x) given in R4, U(x, µ) = exp[aAµ(x)] on x∈ (aZ)4:

S[U ]≈−
β

2N
a4

∑

x,µ,ν

1

2
tr (Fµν)

2≈−
1

2g2

∫

d4x tr (Fµν)
2 with β=

2N

g2

3.3 Dirac Wilson fermions

Euclidean fermions in the continuum:

S =

∫

d4xψ (γµDµ+m0)ψ

{γµ, γν}=2δµν , γµ
† = γµ.

Obvious discretization, ‘naive’ lattice fermions

Snaive = a4
∑

x

ψ (γµD̃µ+m0)ψ

with symmetrized (antihermitean) derivative

D̃µψ(x)=
1

2
(Dµ+Dµ

∗)ψ(x) =
1

2a

[

U(x, µ)ψ(x+ aµ̂)−U−1(x− aµ̂ , µ)ψ(x− aµ̂)
]
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Problem: species doubling. Free case, Fourier expansion

[γµ∂̃µ+m0]ue
ip·x= [iγµp̃µ+m0]ue

ip·x, p̃µ=
1

a
sin(apµ)

• when all components have apµ≪ 1 ⇒ p̃µ≈ pµ ↔ classical continuum limit

• but also if apµ= π− aqµ with aqµ≪ 1 p̃µ≈ qµ

• not one area in Brillouin zone, but 24 = 16 ⇒ the continuum limit has 16
degenerate ‘flavors’

The Wilson term cures this:

SW = a4
∑

x

ψ (γµD̃µ+m0−
ar

2
DµDµ

∗)ψ

• extra term = O(a) distortion if all apµ≪ 1, but suppresses ‘doubler’ modes

• clean spectrum

• but no more chiral symmetry (distinguishing zero mass):

{

γ5, γµD̃µ+m0−
ar

2
DµDµ

∗
}

=0⇔m0 = 0 true only for r= 0

• the reason is ‘deep’ (Nielsen Ninomiya no go theorem)

• alternative discretizations: staggered, twisted mass and others

• Ginsparg Wilson: Modified chiral symmetry on the lattice
(O(a) extra terms in transformations)

• No NP formulation exists for chiral gauge theories (and thus the complete
Standard Model) so far! [chiral gauge invariance crucial for renormaliz-
ability]

3.4 Fermion simulation

• ψ(x), ψ (x) are Grassmann valued

• they must be integrated exactly using:
∫

∏

x,α

dψαdψα e
−a8

∑

x,y
ψ (x)A(x,y)ψ(y)+a4

∑

x
(jψ−ψj)

=det(A) e
−a8

∑

x,y
j (x)A−1(x,y)j(y)
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For currents JΓ = ψ Γψ for example

〈JΓ(x)JΓ(y)〉=
1

Z

∫

DU det(A[U ])e−S[U ]
[

− tr(ΓA−1(x, y)ΓA−1(y, x)Γ +discon.
]

• Monte Carlo with effective Boltzmann det(A[U ])e−S[U ] in U only

• nonlocal funnction(‘al’) of U(x, µ)

• well developed (Pseudofermions, Hybrid Monte Carlo), but costly!

4 A few problems

4.1 Two point function and spectrum

Some background first. You should know (or believe for the moment) the
Feynman-Kac formula in quantum mechanics. A Hamiltonian

Ĥ =
1

2
p̂2 +V (x̂)

is related to the Euclidean path integral over periodic orbits by

Z = tr e−T Ĥ =

∫

x(0)=x(T )

Dx(t) e−S[x(t)] =
∑

n

e−TEn

with

S =

∫

0

T

dt

{

1

2
ẋ2 + V (x)

}

and

〈x(0)x(t)〉=
1

Z

∫

Dxe−Sx(0)x(t) =
1

Z

∑

m,n

|〈m|x̂ |n〉|2 e−(T−t)Em−tEn

for the two point correlation.
If the Euclidean time extent is much larger than the inverse gap

T (E1 − E0) ≫ 1 and t ≪ T , then we isolate the ground state and the two point
function knows the excitation spectrum

〈x(0)x(t)〉≃
∑

n

|〈0|x̂ |n〉|2e−t(En−E0).
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In LQFT these things are very similar in the time-momentum form

a3
∑

xK e−i pK ·xK 〈ϕ(0)ϕ(x)〉=∆(x0, pK )∝ e−tE(pK )

where E(pK ) is the gap in the channel of momentum pK , the energy of the lowest
state relative to the vacuum as required in QFT. In particular at pK = 0, E(0K ) =
mR is the energy of the lightest particle at rest, that can be excited from the
vacuum by the field operator ϕ̂ analogous to x̂ in QM.

• derive the propagator in momentum space for a free scalar particle

a4
∑

xK e−ip·x〈ϕ(0)ϕ(x)〉=
1

p̂2 +m0
2

• Fourier transform to ∆(x0, pK ) for an infinite lattice and compute E(pK ).
Hint: Consider the p0 integration as a line integral inC and close the contour.

• Do you find mR
2 =m0

2 before and/or after taking the continuum limit?

• What about the dispersion relation pK 2 +m2
√

?

• What is the momentum space Dirac Wilson propagator? Consider again
computing mR for the usual choice r=1.

4.2 Invariant group measure, Monte Carlo

The gauge links are integrated over SU(N). To have a gauge invariant theory the
measure must be invariant under group multiplications by g, h ∈ SU(N) from
either side,

I[f ] =

∫

SU(N)

dUf(U) =

∫

SU(N)

dUf(gUh)

has to hold for any function f on SU(N). We demand it to be normalized, I = 1 if
f ≡ 1.

• To get the idea, discuss the analogous (but trivial) case of invariant sum-
mation over an arbitrary finite group.

We now specialize to N = 2. There is the quaternionic parameterization

U(u)= u0 + i uK · τK , u0
2 +uK 2 = 1= |u|2

A few problems 15



which identifies SU(2) with the sphere S3 in Euclidean four space.

• Argue that
1

2π2

∫

d4uδ(|u| − 1)f(U(u))

is a correct way to write the invariant integration.
Hint: U→ gUh corresponds to an SO(4) rotation of (u0, uK ).

• In the end, we need to integrate by Monte Carlo. For a Metropolis update,
we want to propose, at a given ‘old’ U , a move U → UV with a random
V ∈SU(2). This has to be generated such that

◦ V and V −1 are proposed with the same probability

◦ there is a control parameter that limits the distance of V from the
unit element (to have a decent acceptance rate).

• Given a flat perfect random number generator, design an algorithm for V

• Discuss how, if U ∈ SU(3), your proposal can be embedded in SU(3) via
two or more SU(2) subgroups, such that all SU(3) elements can be reached
under multiple moves. This is how many updates in quenched QCD work
in principle.

4.3 Confinement at strong coupling

Wilson loop: A closed loop on the lattice is given by a cyclic sequence of points
C = {x1, x2, � , xn} such that (xi, xi+1) are nearest neigbors (cyclic: xn+1 = x1).
Setting xi+1 = xi+ aµ̂i the Wilson loop observable is

W (C) = tr[U(x1, µ1)U(x2, µ2)�U(xn, µn)]

• Convince yourself that W is gauge invariant

For a rectangular loop Ct,l of size t× l in a plane one can show that

〈W (Ct,l)〉∝ e−tV (l) (t→∞)

holds where V (l) is a definition of the potential between heavy quarks due to
their interaction with the gluons. One confinement criterion is the linear rise

confinement↔V (l)∝ σ× l (l→∞)
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at large distance, in a way σ is the gauge-analog of a mass gap.

• Compute Z =
∫

∏

x,µ
dU(x, µ)e−S[U ] as an expansion in β (strong coupling

expansion) to leading nontrivial order

• to do this prove first (for SU(N), N > 3)

Iαβγδ=

∫

dUUαβUγδ
∗ =

1

N
δαδ δβγ ,

∫

dUUαβUγδ=0=

∫

dUUαβ

hints:

◦ use the left and right invariance of the measure

◦ δαβ is the only SU(N) invariant tensor to build Iαβγδ

• derive the average plaquette
1

N
〈Re trU�〉 in this approximation

• now compute 〈W (Ct,l)〉 to leading order and prove confinement at small β

• what is a2σ in this approximation?

Note that: a) small β is far from the continuum limit, hence the above is qualita-
tive at best b) confinement is a very natural situation in Lattice Yang Mills

• prove rigorously that confinement persists in the continuum limit β→∞
[this will win you a prestigeous prize!]

5 Further study

The lattice formulation of QFT has been intensely investigated for several decades
now. This has led to a number of textbooks on the subject. The ones known to
the author are:

• Ref. [1] by one of the founding fathers of the field who performed first sim-
ulations is rather old by now. Nevertheless it can still serve as an easily
readable first introduction.

• Real text books are [2],[3],[4],[5],[6] and one should have a look, which style
and content suits one.

• [7] is a QFT book with the connection to critical phenomena in view. Its
volume is impressive.

• [8] and [9] are lecture notes of courses previously taught at HU

In particular in the books one may find a lot more references.
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