Ulli Wolff, Masy 2012, background material for CP1.

1 Perfect trapezoidal integrator for periodic analytic functions

In CP1 it was experimentally found the approximation

$$
\begin{equation*}
T_{N}(f)=h\left(\frac{1}{2} f_{0}+f_{1}+f_{2}+\ldots+f_{N-1}+\frac{1}{2} f_{N}\right) \approx \frac{1}{2} I_{0}(\beta) \tag{1}
\end{equation*}
$$

with 1

$$
h=\frac{\pi}{N}, \quad x_{i}=i h, \quad f_{i} \equiv f\left(x_{i}\right), \quad f(x)=\frac{1}{2 \pi} \mathrm{e}^{\beta \cos (x)}
$$

approximates the Bessel function

$$
\begin{equation*}
I_{0}(\beta)=\int_{0}^{\pi} \frac{d \varphi}{\pi} \mathrm{e}^{\beta \cos (\varphi)}=\int_{0}^{2 \pi} \frac{d \varphi}{2 \pi} \mathrm{e}^{\beta \cos (\varphi)} \tag{2}
\end{equation*}
$$

without the usual error of $\mathrm{O}\left(N^{-2}\right)$. It has machine precision instead for $N=12$ or so. In this note we explain why this is so and estimate the in fact exponential convergence. All this is well-known to the experts, of course.

1.1 Euler Mac-Laurin

First we note

$$
\begin{equation*}
2 T_{N}=h\left(f_{0}+f_{1}+\ldots+f_{2 N-1}\right) \tag{3}
\end{equation*}
$$

due to periodicity, $f_{0}=f_{2 N}$. Next we expand the (analytic) integrand

$$
\begin{equation*}
\int_{u}^{u+h} d x f(x)=\int_{u}^{u+h} d x \sum_{k=0}^{\infty} \frac{(x-u)^{k}}{k!} f^{(k)}(u)=\sum_{k=0}^{\infty} \frac{h^{k+1}}{(k+1)!} f^{(k)}(u) \tag{4}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\int_{u}^{u+h} d x f(x)=\sum_{k=0}^{\infty}(-)^{k} \frac{h^{k+1}}{(k+1)!} f^{(k)}(u+h) . \tag{5}
\end{equation*}
$$

By symmetrizing over both variants we get

$$
\begin{equation*}
\int_{u}^{u+h} d x f(x)=\frac{1}{2} \sum_{k=0}^{\infty} \frac{h^{k+1}}{(k+1)!}\left[f^{(k)}(u)+(-)^{k} f^{(k)}(u+h)\right] . \tag{6}
\end{equation*}
$$

[^0]Adding this up for all subintervals

$$
\begin{gather*}
\int_{0}^{2 \pi} d x f(x)-2 T_{N}(f)=h^{2} \sum_{k=1}^{\infty} \frac{h^{2 k-1}}{(2 k+1)!} \sum_{n=0}^{2 N-1} f^{(2 k)}\left(x_{n}\right) \tag{7}\\
=h^{2} \sum_{k=1}^{\infty} \frac{h^{2 k-2}}{(2 k+1)!} 2 T_{N}\left(f^{(2 k)}\right),
\end{gather*}
$$

all odd derivatives cancel and we have moved the zero'th order to the left hand side. This is essentially the Euler Mac-Laurin formula for estimating the difference between an integral and the approximating Riemann sum. In particular, the right hand side starts at order h^{2}.

For our peridioic function we may now iterate this as follows

$$
\begin{equation*}
\underbrace{\int_{0}^{2 \pi} d x f^{\prime \prime}(x)}_{=0}-2 T_{N}\left(f^{\prime \prime}\right)=h^{2} \sum_{k=1}^{\infty} \frac{h^{2 k-2}}{(2 k+1)!} 2 T_{N}\left(f^{(2 k+2)}\right) \tag{8}
\end{equation*}
$$

which puts the original error to $\mathrm{O}\left(h^{4}\right)$ with the integral vanishing by periodicity.
By iterating this process we may show that the error vanishes faster than any power of N^{-1}. In the second example we have integrated $\sin (x)$ from 0 to π and did find N^{-2} errors. If we want to replace this by an integral over a periodic function we have to take $|\sin (x)|$ which is not analytic!!!

1.2 Estimate of the convergence rate by a contour method

We rewrite I_{0} as contour integral

$$
\begin{equation*}
I_{0}(\beta)=\oint \frac{d z}{2 \pi i z} g(z), \quad g(z)=\mathrm{e}^{\beta\left(z+z^{-1}\right) / 2}=g\left(z^{-1}\right) \tag{9}
\end{equation*}
$$

which in the original form is around a unit circle but may be deformed (avoiding to cross the origin). Our approximation may be written

$$
\begin{equation*}
T_{N}=\frac{1}{N} \sum_{\left\{z_{n}\right\}} g\left(z_{n}\right), \quad z_{n}=\mathrm{e}^{2 \pi i n / N} \tag{10}
\end{equation*}
$$

Note that here N is comparable to $2 N$ of the previous subsection.
To also write T_{N} as a contour integral we note first the identity

$$
\begin{equation*}
\prod_{n}\left(z-z_{n}\right)=z^{N}-1 . \tag{11}
\end{equation*}
$$

Both sides must coincide as they are polynomials of degree N with z_{n} as zeros and the highest power z^{N} with coefficient one. By differentiating the log we derive

$$
\begin{equation*}
\frac{1}{N} \sum_{n} \frac{1}{z-z_{n}}=\frac{z^{N-1}}{z^{N}-1} \tag{12}
\end{equation*}
$$

This may be employed to write (10) as a contour integral with the help of the residue theorem

$$
\begin{equation*}
T_{N}=\left[\oint_{>}-\oint_{<}\right] \frac{d z}{2 \pi i z} \frac{z^{N}}{z^{N}-1} g(z) \tag{13}
\end{equation*}
$$

with one integral along a circle with a radius larger than unity and with a smaller one such that effectively each pole at z_{n} is encircled in a positive sense and $g\left(z_{n}\right)$ is the residue. A transformation $z \rightarrow z^{-1}$ reflects the larger into the smaller circle yielding

$$
\begin{equation*}
T_{N}=\oint_{<} \frac{d z}{2 \pi i z} \frac{1+z^{N}}{1-z^{N}} g(z) \tag{14}
\end{equation*}
$$

and then

$$
\begin{equation*}
\Delta_{N}=T_{N}-I_{0}=2 \oint_{<} \frac{d z}{2 \pi i z} \frac{z^{N}}{1-z^{N}} g(z) . \tag{15}
\end{equation*}
$$

We want to compute this integral by a saddlepoint approximation and anticipate a saddle point of order $1 / N$. To have a clear-cut power counting we change variables to $\alpha=z N$ and write

$$
\begin{equation*}
\Delta_{N}=2 N^{-N} \oint \frac{d \alpha}{2 \pi i \alpha} \mathrm{e}^{N S(\alpha)} \tag{16}
\end{equation*}
$$

with

$$
\begin{equation*}
S(\alpha)=\ln (\alpha)+(\beta / 2) \alpha^{-1} . \tag{17}
\end{equation*}
$$

where we have dropped terms that correspond to higher order $1 / N$ corrections. The saddle point is at

$$
\begin{equation*}
\bar{\alpha}=\beta / 2 \tag{18}
\end{equation*}
$$

and setting (for real β) $\alpha=\bar{\alpha}+i \eta$ for the path of steepest descent thru $\bar{\alpha}$ we find

$$
\begin{equation*}
\Delta_{N}=\delta_{N}\left(1+\mathrm{O}\left(N^{-1}\right)\right) \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta_{N}=2 N^{-N} \mathrm{e}^{N S(\bar{\alpha})} \frac{1}{\bar{\alpha}} \int_{-\infty}^{\infty} \frac{d \eta}{2 \pi} \mathrm{e}^{-\frac{1}{2} N S^{\prime \prime}(\bar{\alpha}) \eta^{2}}=\frac{2 N^{-N}}{\bar{\alpha} \sqrt{2 \pi N S^{\prime \prime}(\bar{\alpha})}} \mathrm{e}^{N S(\bar{\alpha})} . \tag{20}
\end{equation*}
$$

Inserting numbers we find

$$
\begin{equation*}
\delta_{N}=\sqrt{\frac{2}{\pi N}}\left(\frac{2 N}{\mathrm{e} \beta}\right)^{-N} . \tag{21}
\end{equation*}
$$

In a brief test under matlab this gives an excellent description of the error. An impression is given in Figure 1. Note that for $N>10$, the approximation is so excellent, that the deviation is covered by roundoff noise, i.a. T_{N} is practically at machine precision.

Figure 1. Relative error of Δ_{N} for $b=1$ and $N=4 \ldots 10$.

[^0]: 1. The normalization $1 / 2 \pi$ was not there before, but is nicer.
