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1 Perfect trapezoidal integrator for periodic ana-
lytic functions

In CP1 it was experimentally found the approximation

TN(f) =h

(

1

2
f0+ f1+ f2+	 + fN−1+

1

2
fN

)

≈
1

2
I0(β) (1)

with1

h=
π

N
, xi= ih, fi≡ f(xi), f(x)=

1

2π
eβcos(x)

approximates the Bessel function

I0(β) =

∫

0

π dϕ

π
eβcos(ϕ)=

∫

0

2π dϕ

2π
eβcos(ϕ) (2)

without the usual error of O(N−2). It has machine precision instead for N = 12
or so. In this note we explain why this is so and estimate the in fact exponential
convergence. All this is well-known to the experts, of course.

1.1 Euler Mac-Laurin

First we note

2TN = h(f0+ f1+	 + f2N−1) (3)

due to periodicity, f0= f2N. Next we expand the (analytic) integrand

∫

u

u+h

dxf(x)=

∫

u

u+h

dx
∑

k=0

∞
(x−u)k

k!
f (k)(u)=

∑

k=0

∞
hk+1

(k+1)!
f (k)(u) (4)

and similarly
∫

u

u+h

dxf(x)=
∑

k=0

∞

(−)k
hk+1

(k+1)!
f (k)(u+h). (5)

By symmetrizing over both variants we get

∫

u

u+h

dxf(x) =
1

2

∑

k=0

∞
hk+1

(k+1)!
[f (k)(u) + (−)kf (k)(u+h)]. (6)

1. The normalization 1/2π was not there before, but is nicer.
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Adding this up for all subintervals

∫

0

2π

dxf(x)− 2TN(f)=h2
∑

k=1

∞
h2k−1

(2k+1)!

∑

n=0

2N−1

f (2k)(xn) (7)

=h2
∑

k=1

∞
h2k−2

(2k+1)!
2TN(f

(2k)),

all odd derivatives cancel and we have moved the zero’th order to the left hand
side. This is essentially the Euler Mac-Laurin formula for estimating the difference
between an integral and the approximating Riemann sum. In particular, the right
hand side starts at order h2.

For our peridioic function we may now iterate this as follows

∫

0

2π

dxf ′′(x)�
=0

− 2TN(f
′′)= h2

∑

k=1

∞
h2k−2

(2k+1)!
2TN(f

(2k+2)) (8)

which puts the original error to O(h4) with the integral vanishing by periodicity.

By iterating this process we may show that the error vanishes faster than any

power of N−1. In the second example we have integrated sin (x) from 0 to π and did
find N−2 errors. If we want to replace this by an integral over a periodic function
we have to take |sin (x)| which is not analytic!!!

1.2 Estimate of the convergence rate by a contour method

We rewrite I0 as contour integral

I0(β) =

∮

dz

2πiz
g(z), g(z) = eβ(z+z−1)/2= g(z−1) (9)

which in the original form is around a unit circle but may be deformed (avoiding to
cross the origin). Our approximation may be written

TN =
1

N

∑

{zn}

g(zn), zn=e2πin/N. (10)

Note that here N is comparable to 2N of the previous subsection.

To also write TN as a contour integral we note first the identity
∏

n

(z − zn) = zN − 1. (11)

Both sides must coincide as they are polynomials of degree N with zn as zeros and
the highest power zN with coefficient one. By differentiating the log we derive

1

N

∑

n

1

z− zn
=

zN−1

zN − 1
(12)
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This may be employed to write (10) as a contour integral with the help of the residue
theorem

TN =

[
∮

>

−

∮

<

]

dz

2πiz

zN

zN − 1
g(z) (13)

with one integral along a circle with a radius larger than unity and with a smaller one
such that effectively each pole at zn is encircled in a positive sense and g(zn) is the
residue. A transformation z→ z−1 reflects the larger into the smaller circle yielding

TN =

∮

<

dz

2πiz

1+ zN

1− zN
g(z) (14)

and then

∆N =TN − I0=2

∮

<

dz

2πiz

zN

1− zN
g(z). (15)

We want to compute this integral by a saddlepoint approximation and anticipate a
saddle point of order 1/N . To have a clear-cut power counting we change variables
to α= zN and write

∆N =2N−N

∮

dα

2πiα
eNS(α) (16)

with

S(α)= ln (α)+ (β/2)α−1. (17)

where we have dropped terms that correspond to higher order 1/N corrections. The
saddle point is at

α = β/2 (18)

and setting (for real β) α=α + iη for the path of steepest descent thru α we find

∆N = δN(1+O(N−1)) (19)

with

δN =2N−NeNS(α ) 1

α

∫

−∞

∞ dη

2π
e
−

1

2
NS ′′(α )η2

=
2N−N

α 2πNS ′′(α )
√ eNS(α ). (20)

Inserting numbers we find

δN =
2

πN

√

(

2N

eβ

)

−N

. (21)

In a brief test under matlab this gives an excellent description of the error. An
impression is given in Figure 1. Note that for N > 10, the approximation is so
excellent, that the deviation is covered by roundoff noise, i.a. TN is practically at
machine precision.
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Figure 1. Relative error of ∆N for b=1 and N =4	 10.
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