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Introduction

Quantum chromodynamics (QCD), the theory of strong interaction, gives rise
to a rich hadronic spectrum with pions as its lightest representatives. Due
to the large coupling at low energies, however, this sector cannot be treated
perturbatively and, so far, numerous of more or less efficient alternative tech-
niques have been developed to handle the underlying phenomenology.

Especially the light mesons are very well described by chiral perturba-
tion theory (ChPT), an effective field theory which captures the pions as the
Nambu-Goldstone bosons of broken chiral symmetry and basically represents
an expansion in terms of the quark masses and momenta [1, 2]. Pion scat-
tering is one important application in ChPT, in which the experimental data
for the scattering lengths agree to high accuracy with the theoretically de-
termined values [3]. Yet, the aesthetic obstacle is that ChPT can be derived
only based on pure considerations of symmetry. So far, there is no way to
determine the coefficients of the involved operators, the so-called low energy
constants, directly from QCD [4].

Quite the contrary is the case in lattice QCD, a non-perturbative method
in which the discrete lattice represents a distinct regularization scheme in
order to solve the functional integral of QCD. The big impact of lattice QCD
is that its structure is perfectly fit to perform numerical simulations and,
hence, to investigate the hadronic spectrum and important observables of
QCD such as scattering lengths from first principles. Algorithmic progress
and increasing computational power nowadays even allow dynamical, un-
quenched simulations. In this way, the S-wave pion scattering length a2

0
belonging to the isospin channels I = 2 has been computed by the CP-PACS
collaboration [5]. Unfortunately, the costs of such computations scale with
powers of the inverse quark mass. Thus, the simulation of light quarks is
extremely expensive [6]. For this reason, simulations are still performed with
heavier quark masses than in nature. The results are then extrapolated to
the physical point. The validity of this approach, however, strongly depends
on the underlying fitting formulae. The general idea is to employ the results
from ChPT as fitting formulae as long as the quark masses in the simulation
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are sufficiently small. The quark masses are then considered as variables and
the low energy constants as fitting parameters. As a byproduct, one obtains
numerical estimates for the involved low energy constants which can then be
compared with the phenomenologically determined values.

Since computations in lattice QCD strongly rely on the chosen lattice
action, the framework of ChPT must be properly adapted to the underlying
lattice theory in order to ensure the validity of the fitting process for a dis-
tinct observable. For the Wilson action, this has been done by developing
a Wilson chiral perturbation theory (WChPT) [7–9]. This extended effective
continuum theory takes explicitly into account the effects of a non-vanishing
lattice spacing.

In this diploma thesis, pion scattering in WChPT is studied. The aim of
the present work is to derive analytic expressions which can be used to fit
numerical data obtained from pion scattering on the lattice. We compute the
on-shell pion scattering amplitude to one loop assuming isospin symmetry for
Nf = 2. From the amplitude, we derive with the effective range formalism
analytic expressions for the scattering lengths aIl for the lowest non-vanishing
partial waves l in all isospin channels I = 0, 1, 2. These are the scattering
lengths a0

0, a2
0 and a1

1. They can be used to extrapolate lattice data from pion
scattering to the physical point.

In lattice QCD, the lattice spacing is, like the quark mass, a source of
explicit chiral symmetry breaking. Therefore, we concentrate our calculations
on two different regimes depending on the order of magnitude of the quark
mass compared with the discretization effects of the lattice spacing: 1) The
quark mass is of the same order of magnitude as the linear lattice spacing
effects. 2) Higher order lattice artifacts are not negligible any more, such that
the quark mass is of the same order of magnitude as the quadratic lattice
spacing effects. For the first scenario, the a2

0 scattering length has already
been computed [10]. In this thesis, we will compute the scattering lengths
in the second scenario for all isospin channels. From this achievement, we
will derive the corresponding expressions for the first regime and discuss the
qualitative differences of the appropriate fitting formulae. Especially the
differences to ChPT in the continuum will be discussed in detail.

The present work is structured as follows: In chapter 1, we extensively
explain the machinery of ChPT and extend it to WChPT. In chapter 2,
we apply the framework developed so far on the two quark mass scenarios
mentioned above and construct the full necessary lagrangian. Then, the
scattering amplitude is computed in chapter 3 and, finally, the scattering
lengths and the corresponding fitting formulae are extracted in chapter 4.



Chapter 1

Chiral perturbation theory

In the first chapter, the concepts of ChPT are presented. We start with a very
brief summary of QCD and its most important symmetries. Chiral symmetry
and chiral symmetry breaking will lead us directly to the ideas of ChPT. The
whole machinery will be explained in detail in the continuum such that the
inclusion of the lattice spacing through WChPT can be developed in the last
section.

1.1 Quantum chromodynamics
QCD is formulated as an SU(3) non-abelian gauge theory of color charge. It
is constructed by claiming invariance of the action with respect to a distinct
local continuous group transformation, in QCD, this is SU(3). Let ĝ(x) be a
representation of this group. If one considers, for example, a pure fermionic
lagrangian Lfer = ψ̄(i/∂ −m)ψ and performs the group transformation ψ′ =
ĝψ, one finds that Lfer is not invariant due to the derivative acting on the
product ĝψ. However, the occurrence of additional terms which break the
invariance can be compensated by introducing additional fields, gauge fields,
whose transformation properties are constructed in such a way that the whole
theory remains invariant. Finally, one can construct other SU(3) invariants
out of the new gauge fields itself. The requirement of renormalizability,
gauge invariance and Lorentz invariance then dictates the QCD lagrangian
[11]. We will not outline this procedure in more detail but simply write down
the gauge invariant QCD lagrangian and then subsequently explain the most
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important features. Here it is:1

LQCD = −1
4F

µν
a F a

µν +
∑
α

ψ̄
(α)
j (i /Djk −m(α)δjk)ψ(α)

k (1.1)

The fermions which carry color charge are the quarks. We express this color
by an additional index j = 1, 2, 3 on the Dirac spinor ψj. This is not to
be confused with the Dirac index which we suppress in order to keep the
notation as simply as possible. The quarks appear in six different flavors α =
u, d, s, c, b, t whoses masses vary over many orders of magnitude. The lightest
quarks, for instance, the up quark u and the down quark d, have masses
around mu = 1.5 to 3.3MeV and md = 3.5 to 6.0MeV, while the heaviest
quark, the top quark t is around 171 GeV [13]. For the low energy effective
theory, we will later restrict our calculations to the lightest quarks, the u and
d quarks, and take the effects of heavy virtual quarks into consideration by
properly adapting the effective low energy constants of the theory. Dµ

jk in
(1.1) is the covariant derivative. It is given by

/Djkψk = γµ(δjk∂µ + igAaµ
λajk
2 )ψk (1.2)

where we have summed over repeated indices. The λa are the eight group
generators for the d = 3 fundamental representation of SU(3). The Aaµ
with color-index a = 1, ..., 8 are the SU(3) gauge fields, the gluons, which
are the mediators of the strong interaction. The gauge fields themselves
transform in the adjoint representation of SU(3), unlike the quarks where
each flavor transforms as the fundamental triplet representation. g is the
strong interaction coupling constant. The first term in (1.1) is the non-
abelian Maxwell term whose gauge field strength tensor F a

µν is defined by

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν . (1.3)

The gauge fields carry color charge (in contrast to quantum electrodynam-
ics where the photons, the mediators of the electromagnetic interaction, do
not carry any electric charge). The consequence thereof is that the gluons
themselves interact, and this fact makes the theory very complicate.

Long before the discovery of QCD other symmetries of the strong inter-
action were known. These are the discrete symmetries of parity and charge
conjugation as well as flavor symmetries. One can indeed check that (1.1)
is CP invariant. Since the gluons are flavor independent, (1.1) further ex-
hibits all the properties of the free quark model. This allows to discuss flavor
symmetry independently of the complicated chromodynamic interaction.

1So far, there is no experimental evidence that the strong interaction breaks the dis-
crete symmetries of parity and charge conjugation. Therefore, we have neglected the CP
breaking but renormalizable θ-term. A detailed discussion can be found in [12].
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1.2 Chiral symmetry
We consider the lagrangian for the free quark model

Lquarks =
∑
α

ψ̄(α)(iγµ∂µ −m(α))ψ(α) = ψ̄iγµ∂µψ − ψ̄M̂ψ (1.4)

where we collected the quarks in a multiplet ψ of Nf flavors

ψ =


ψ(u)

ψ(d)

...
ψ(Nf )

 (1.5)

and defined an appropriate diagonal mass matrix M̂ . In the chiral limit
where M̂ = 0, (1.4) is invariant with respect to the following global symmetry
transformations:2

V : ψ −→ ψ′ = eiα
aTaψ, (1.6)

A : ψ −→ ψ′ = eiβ
aTaγ5ψ. (1.7)

V is called vector transformation while A defines the axial transformation
involving γ5. The T a are the N2

f −1 generators of the SU(Nf ) flavor group in
the fundamental representation, αa and βa are real continuous parameters.
Further, we sum over repeated indices. With these definitions, we can deter-
mine the corresponding symmetry currents leading to the vector current V a

µ

and to the axial vector current Aaµ:

V a
µ = ψ̄T aγµψ, (1.8)
Aaµ = ψ̄T aγµγ5ψ. (1.9)

Taking the four-divergences and imposing the classical equations of motion
we get

∂µV a
µ = ψ̄(M̂T a − T aM̂)ψ,

∂µAaµ = ψ̄(M̂T a + T aM̂)γ5ψ.
(1.10)

One immediately sees that for M̂ = 0 both the vector and the axial vector
current are conserved: ∂µV a

µ = ∂µAaµ = 0. For M̂ 6= 0, however, the axial
symmetry is explicitly broken. In the special case of degenerate quark masses,
the mass matrix M̂ commutes with all generators T a and we can conclude

2We do not discuss here the additional U(1)V ×U(1)A symmetry which leads to baryon
number conservation and to the famous Wess-Zumino-Witten anomaly.
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from (1.10) that ∂µV a
µ = 0. This means that for degenerate quark masses the

SU(Nf ) vector symmetry remains unbroken. According to Noether’s theorem
this generates a conserved symmetry charge, the vector charge

Qa(t) =
∫
V a

0 (x)d3x with dQa

dt
= 0. (1.11)

It satisfies an SU(Nf ) charge algebra

[Qa(t), Qb(t)] = ifabcQc(t) (1.12)

that allows us to organize the hadronic spectrum according to irreducible
representations of SU(Nf ).

As mentioned in the previous section, the assumption of mass degen-
eracy is definitely not fulfilled. As an approximate symmetry, though, it
makes sense for the light quarks. Compared with the QCD energy scale
ΛQCD ∼ 1GeV, the masses of the up and down quarks are very small. Their
mass difference, therefore, can be neglected in many calculations. As a con-
sequence, the masses of particles in a distinct multiplet involving only u and
d quarks like for example the pions or the nucleons are nearly degenerate. In
the present work, we perform the calculations for Nf = 2 in the limit where
indeed mu = md holds, i.e. we assume isospin symmetry.

Let us now come back to the massless case where ∂µV a
µ = ∂µAaµ = 0.

While the corresponding vector charges Qa itself form a closed algebra, this
is not the case for the axial charges Q5a(t) =

∫
Aa0(x)d3x whose commutation

relations are not independent from the vector charges:

[Qa(t), Q5b(t)] = ifabcQ5c(t), (1.13)
[Q5a(t), Q5b(t)] = ifabcQc(t). (1.14)

Defining a left-handed and a right-handed charge

Qa
L = 1

2(Qa +Q5a) and Qa
R = 1

2(Qa −Q5a) (1.15)

allows us to rewrite the commutation relations (1.12), (1.13) and (1.14) such
that Qa

L and Qa
R separately fulfill the closure condition:

[Qa
L(t), Qb

L(t)] = ifabcQc
L(t), (1.16)

[Qa
R(t), Qb

R(t)] = ifabcQc
R(t), (1.17)

[Qa
L(t), Qb

R(t)] = 0. (1.18)

These commutation relations are called chiral algebra and its symmetry
charges generate the chiral symmetry SU(Nf )L × SU(Nf )R in which both
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SU(Nf )L and SU(Nf )R are independent from each other. On the level of the
symmetry currents, one defines correspondingly a left-handed current J a

µL

and a right-handed current J a
µR as linear independent combinations of the

vector and axial currents:

J a
µL = 1

2(V a
µ + Aaµ) = ψ̄γµ

1 + γ5

2 T aψ (1.19)

J a
µR = 1

2(V a
µ − Aaµ) = ψ̄γµ

1− γ5

2 T aψ (1.20)

Taking the four-divergence of the left- and right-handed current and imposing
(1.10) we see again, as expected, that for M̂ = 0 both currents are conserved,
i.e. ∂µJ a

µL = ∂µJ a
µR = 0. Equations (1.19) and (1.20) are a good starting

point to get a deeper understanding of chirality. The operators

PL = 1 + γ5

2 and PR = 1− γ5

2 (1.21)

hold the property of being projection operators with PL+PR = 1 and PLPL =
PL resp. PRPR = PR. With some simple algebra, therefore, we can write the
left-handed and the right-handed current (1.19) and (1.20) as

J a
µL = ψ̄LγµT

aψL , (1.22)
J a
µR = ψ̄RγµT

aψR . (1.23)

Each current consists at any time only of independent left-handed or right-
handed spinors. This justifies the name chiral SU(Nf )L × SU(Nf )R symme-
try.3

If chiral symmetry was realized in nature as an exact symmetry, we would
expect a chiral partner of degenerate mass and opposite parity for each ob-
served particle. To every pseudoscalar meson like a pion, for instance, one
would expect to find also a scalar counterpart. Since chiral symmetry is,
though, explicitly broken by the mass term, we expect the spectrum of the
two multiplets to differ only due to the strength of the explicit symmetry
breaking term. In nature, however, we do not observe the appropriate scalar
mesons. The same statement holds in the barionic sector where the multi-
plets of positive parity do not have a corresponding counterpart of negative
parity.

One can explain this fact if one assumes that the global chiral symmetry
is spontaneously broken down to a SU(Nf ) vector symmetry. According to

3The word “chiral” stems from ancient Greek η χειρ = hand. The left hand and
the right hand cannot be translated or rotated into each other. Analogously, the chiral
SU(N)L × SU(N)R transformation means independent symmetry properties between left-
handed and right-handed spinors.
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the Nambu-Goldstone theorem every broken symmetry generator produces
one massless spin zero particle, a Goldstone boson. As chiral symmetry is
also explicitly broken, the Goldstone bosons are not exactly massless, but
acquire a small mass.

This scenario fits perfectly into the phenomenological picture: The pions
are very much lighter than the 1− vector mesons, the rho mesons. The same
holds for the two SU(3) octets of pseudoscalar mesons and vector mesons,
though, to a lesser extent due to the comparatively big mass of the strange
quark. This suggests that we can interpret the pseudoscalar mesons as the
Nambu Goldstone Bosons of the spontaneously broken chiral symmetry.

The pions as the lightest dynamical degrees of freedom in QCD form the
starting point for chiral perturbation theory. The idea is to incorporate all the
relevant symmetries of QCD as well as its symmetry breaking pattern in an
effective field theory. Then, the pions no longer appear as composite particles
but enter the theory as a multiplet of elementary pseudoscalar fields. At low
energies, only the pions propagate mediating the dynamics of QCD. All heavy
degrees of freedom are integrated out and enter the theory through effective
low energy constants. In the pioneering work on chiral perturbation theory
from Gasser and Leutwyler [1, 2] the effective theory is constructed in such a
way that it leads to the same Ward identities which one encounters in QCD.
Hence, the considerations of global symmetry are reproduced correctly at
quantum level. However, there is no way of deriving the effective lagrangian
from the underlying theory. There are only pure symmetry arguments which
dictate the structure of the involved operators. Yet, the low energy constants
multiplying these operators must be determined by experiment. Once they
are fixed, however, the theory provides us with a useful tool to study low
energy QCD. This is the main intention of chiral perturbation theory.

1.3 Chiral perturbation theory in the contin-
uum

To explain the main features of chiral perturbation theory we first parameter-
ize the relevant degrees of freedom, i.e. the pions as the Goldstone bosons.
Then we explicitly construct the chiral effective lagrangian and finally we
investigate the range of applicability of chiral perturbation theory.

We will develop the theory in terms of charge eigenstates πi as linear
combinations of the physical pion fields π+, π− and π0. With an appropriate
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phase convention they are related as

π1 = 1√
2

(π+ + π−) , π2 = i√
2

(π+ − π−) , π3 = π0 . (1.24)

These fields are collected in a vector ~π = (π1, π2, π3). In a next step we
incorporate the pattern of chiral symmetry breaking. Spontaneous symmetry
breaking occurs if the groundstate of a theory is not invariant under a global
symmetry which is present in the lagrangian. Let G be the full symmetry
group of the lagrangian and H be a subgroup of G which leaves the ground
state invariant. The bottom line is that there exists an isomorphic mapping
ϕ between the coset space G/H and the Goldstone boson fields

~π
g−→ ϕ(g, ~π) (1.25)

where g ∈ G is a representative of the chiral symmetry [4]. Such a mapping
can be written in terms of an SU(2) matrix field

Σ = exp(i~σ~π/f) (1.26)

where ~σ are the Pauli matrices. Furthermore, we introduced the pion decay
constant for dimensional reasons. With this parametrization, Σ transforms
bilinearly with respect to chiral transformations g

Σ g−→ LΣR† (1.27)

where L and R are two independent SU(2) matrices [4]. We refer to (1.26)
as the exponential parametrization of the pion fields. Note, however, that it
does not define a vector space because Σ(λ~π) 6= λΣ(~π), i.e. in this param-
eterization, the pion fields transform with a nonlinear representation of the
symmetry group G.

We now embark upon the construction of the effective lagrangian. We will
follow mainly the derivation in [12] and, therefore, adapt our notation to the
caseNf = 3.4 In order to correctly treat the classical symmetries at the quan-
tum level we switch for a moment to the path integral framework to define a
generating functional W of the theory. For this purpose, we slightly modify
the QCD lagrangian (1.1). We take the chiral lagrangian with M̂ = 0 and
add local external sources coupling to distinct currents and densities. The
currents in question are the left-handed and the right-handed currents (1.19)
and (1.20) as well as the corresponding singlet currents where T a = 1. The

4One simply replaces ~σ~π by the SU(3) analogon ~λ~π with the eight Gell-Mann matrices
in (1.26)



10

densities are the scalar densities ψ̄ψ and ψ̄T aψ as well as the pseudoscalar
densities ψ̄γ5ψ and ψ̄γ5T

aψ. Including the sources lµ(x), rµ(x), s(x) and
p(x) the lagrangian reads

L(lµ, rµ, s, p) = −1
4F

µν
a F a

µν + ψ̄i /Dψ − ψ̄γµ
1 + γ5

2 lµψ − ψ̄γµ
1− γ5

2 rµψ

−ψ̄L(s+ ip)ψR − ψ̄R(s− ip)ψL. (1.28)

The source functions are space-time dependent 3× 3 matrices given by

lµ = l0µ + laµT
a, rµ = r0

µ + raµT
a, s = s0 + saT a, p = p0 + paT a (1.29)

where a = 1, ..., 8 and the T a are the generators of an SU(3) group in the
fundamental representation. Further, we have written the scalar density and
the pseudoscalar density as

ψ̄ψ = ψ̄RψL + ψ̄LψR and ψ̄γ5ψ = ψ̄RψL − ψ̄LψR (1.30)

using the projection operators PL and PR from the previous section. One
gets the QCD lagrangian (1.1) by setting lµ = rµ = p = 0 and s = M̂ .
Setting all external sources equal to zero we obtain by construction the QCD
lagrangian in the chiral limit. The left handed current (1.19), for instance,
is computed by

J a
µL = − ∂L

∂lµa(x) = ψ̄(x)γµ
1 + γ5

2 T aψ(x). (1.31)

The external sources, now, allow us to define a generating functional via the
path integral as

WQCD =
∫
DψDψ̄DAaµ ei

∫
d4xLQCD(ψ,ψ̄,Aaµ,lµ,rµ,s,p). (1.32)

If one knows the generating functional W of a theory, one can compute
any desired matrix element of currents by taking functional derivatives with
respect to the corresponding external sources. For example, the vacuum
expectation value of the scalar density is computed by

〈0|ψ̄(x)ψ(x)|0〉 = i
δ lnW
δs0(x)

∣∣∣∣∣s=M̂
lµ=rµ=pµ= 0

. (1.33)

At a first glance, this approach looks like an increase in complexity. The
point, however, is that it allows us to connect QCD with the low energy
effective theory by simultaneously considering the effect of the sources in
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QCD and in the effective theory. The aim of the low energy expansion is to
maintain only the relevant degrees of freedom at the energy of interest, i.e.,
the Goldstone bosons. Hence, we write down a generating functional Weff
depending solely on the Goldstone fields and the sources:

Weff =
∫
DΣ ei

∫
d4xLeff(Σ,lµ,rµ,s,p), (1.34)

where Σ is the parameterization defined in (1.26). This means that we have
to construct Leff in such a way that it reproduces the generating functional
of the underlying theory in the low energy limit:

lim
E→0

WQCD[lµ, rµ, s, p] ≡ Weff [lµ, rµ, s, p]. (1.35)

We only need to make sure that all the symmetries are mapped correctly
from LQCD to Leff and that we have precise control over the range of the low
energy expansion. The latter is done later by introducing a power counting
scheme. The former will be investigated now.

The modified QCD lagrangian (1.28) exhibits an exact local, chiral SU(3)L
× SU(3)R invariance if we claim the external fields to transform as gauge
fields. (This is the reason for the slightly artificial choice of matrices in
(1.29).)

ψL → L(x)ψL, ψR → R(x)ψR,
lµ → L(x)lµL†(x) + i∂µL(x)L†(x),
rµ → R(x)lµR†(x) + i∂µR(x)R†(x),

(s+ ip) → L(x)(s+ ip)R†(x). (1.36)

L(x) represents the local SU(3)L transformations and R(x) the local SU(3)R
transformations. In order to preserve these symmetries in the generating
functional we construct Leff explicitly with these symmetries. In princi-
ple, this means that we extend the mapping (1.25) to a local symmetry
~π → ϕ(g(x), ~π). In [1], it is shown that a sufficient condition for the Greens
functions obtained from an effective lagrangian to obey the Ward identities
of QCD is to incorporate the local SU(3)L×SU(3)R symmetry of the external
fields in the effective theory. This is the reason why the correct mapping of
the symmetries of the QCD lagrangian to the effective theory also holds at
quantum level and, hence, that (1.35) makes sense at all.

We now proceed in complete analogy to the SU(3) gauge theory of color
charge in section 1.1. Since both lµ and rµ enter the theory as gauge fields,
we construct a covariant derivative

DµΣ = ∂µΣ + ilµΣ− iΣrµ (1.37)
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and field strength tensors

Lµν = ∂µlν − ∂νlµ + i[lµ, lν ],
Rµν = ∂µrν − ∂νrµ + i[rµ, rν ]. (1.38)

If we transform
Σ→ L(x)ΣR†(x), (1.39)

then
DµΣ→ L(x)DµΣR†(x), (1.40)

and analogously we get for the field strength tensor

Lµν → L(x)LµνL†(x), Rµν → R(x)RµνR
†(x) (1.41)

Defining χ = 2B0(s+ ip) which transforms according to (1.36) like

χ→ L(x)χR†(x) (1.42)

and B0 being an appropriate constant of proportionality we have operators
with definite transformation properties at hand to construct an effective chi-
rally invariant lagrangian. Simply take Σ,Σ†, DµΣ, DµΣ†, χ, χ† and the field
strength tensors and construct chirally invariant scalar functions that re-
spect Lorentz invariance as well as parity and charge conjugation. This can
neatly be done using traces in flavor space which we will denote with angled
brackets. Take for example〈

DµΣDµΣ†
〉
→
〈
LDµΣR†RDµΣ†L†

〉
=
〈
DµΣDµΣ†

〉
(1.43)〈

χΣ† + Σχ†
〉
→
〈
LχR†RΣ†L† + LΣR†Rχ†L†

〉
=
〈
χΣ† + Σχ†

〉
(1.44)

We simply used the unitarity of both L and R as well as the cyclic property
of traces. In the same way we can construct infinitely many chiral invariant
operator functions.

We now investigate the anticipated power counting scheme in order to re-
strict our considerations to a limited number of operators. Lorentz invariance
dictates that operators involving derivatives in Fourier space must always be
∼ p2, p4, p6, ... . In the expansion every power of momentum counts as one
power in energy. As will be justified later, χ ∼ E2 and, hence, contributes
on the same level as p2. All operators on this level will be collected in the
leading order (LO) lagrangian L2. Correspondingly, we collect terms of order
E4 in the next to leading order (NLO) lagrangian L4 and so on. This allows
us to write down the structure of the low energy expansion as

Leff = L2 + L4 + L6 + . . . . (1.45)
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For low energies we consider only a limited number of operators. Let us,
therefore, at first, construct the simplest term, the L2 term. It reads

L2 = f 2

4
〈
DµΣDµΣ†

〉
+ f 2

4
〈
χΣ† + Σχ†

〉
. (1.46)

These are all the operators on the E2 level. Hence, it is the most general L2.
Remember that in the exponential representation of the Goldstone fields Σ is
always dimensionless and does not contribute with its own power in energy,
while DµΣ ∼ E. The pion decay constant of the chiral limit f is introduced
such that the dimension of the lagrangian is four. The factor of four in the
denominator is conventional.

(1.46) is still chirally invariant. Now, low energy QCD in the absence of
sources is recovered setting lµ = rµ = p = 0 and s = M̂ .

L2 = f 2

4
〈
∂µΣ ∂µΣ†

〉
+ f 2

4
〈
2B0M̂(Σ† + Σ)

〉
(1.47)

We now see that we have correctly incorporated the symmetries into our
theory: the second term is not chirally invariant any more, as in (1.4) the
mass term is responsible for the explicit symmetry breaking. Essentially,
what we have done is a so called spurion analysis. One simply promotes the
explicitly symmetry breaking term to a spurion which respects the symmetry
properties, in our case this is χ. Then, one constructs the chiral symmetric
lagrangian and finally sets the spurion to its actual physical value which
destroys chiral invariance.

The lagrangian (1.47) is now expanded in terms of the pion fields and we
can compute any desired correlation function using Feynman diagrams.5 We
will, nevertheless, encounter a serious problem. If we use the L2 lagrangian
(1.47) to compute a one loop diagram, the result will not be of order E2

any more but of order E4. How loops afflict power counting in general, can
be determined with Weinberg’s power counting scheme [14]. It states that a
diagram containing NL loops contributes at a power E2NL higher than the
tree level diagrams. Hence, using L2 to one loop increases the power counting
by a factor of E2 to E4.

In the present work, we consider chiral perturbation theory to one loop.
This is equivalent to an expansion in energy to order E4 if we use L2 at tree
level and to one loop as well as L4 at tree level only. Using L4 to one loop
would correspond to E6 and it would make sense only if we included L2 to two

5Contrary to QCD whose interaction strength increases for low momenta, the interac-
tion between the pions in the effective theory decreases for low energies and vanishes in
the chiral limit for zero momentum. This justifies the name chiral perturbation theory.
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loops, what would correspond to a two loop calculation. In the continuum
such computations have been done [15, 16], however, they are very technical
and complicated. For our final purpose to compute lattice corrections, such
an anourmous effort is not worthwhile.

For a complete one loop computation, we now need L4. Using the same
arguments as for the derivation of L2 one arrives at the following result [12]:

L4 = L1
〈
DµΣDµΣ†

〉2
+ L2

〈
DµΣDνΣ†

〉 〈
DµΣDνΣ†

〉
+ L3

〈
DµΣDµΣ†DνΣDνΣ†

〉
+ L4

〈
DµΣDµΣ†

〉 〈
χΣ† + Σχ†

〉
+ L5

〈
DµΣDµΣ†(χΣ† + Σχ†)

〉
+ L6

〈
χΣ† + Σχ†

〉2
+ L7

〈
χΣ† − Σχ†

〉2
+ L8

〈
χΣχΣ + Σχ†Σχ†

〉
+ iL9

〈
LµνD

µΣDνΣ† +RµνD
µΣ†DνΣ

〉
+ L10

〈
LµνΣRµνΣ†

〉
. (1.48)

This is the most general lagrangian of order E4.6 In the following, we will
set L7 = 0 since the corresponding operators mutually cancel unless isospin
symmetry is explicitly broken (c.f. (A.11) in appendix A). Setting again the
sources lµ = rµ = 0 and χ = M̂ we arrive at a lagrangian which can be used
to compute tree level diagrams.

One problem of our low energy effective theory is that it is not renor-
malizable. In renormalized perturbation theory divergences can always be
cancelled at any order by appropriate counterterms. In a non-renormalizable
theory, this is not possible and one needs different counterterms at every
higher order one considers. When we constructed Leff , we realized inde-
pendently of renormalizability that the full low energy expansion contains
infinitely many free parameters. We can, however, try to use the free pa-
rameters to renormalize the theory up to the order of expansion. The basic
idea from Gasser and Leutwyler [1, 2], therefore, was to renormalize the low
energy constants Li from the NLO lagrangian L4 in order to get finite results
from one-loop computations with the LO lagrangian L2. What is actually
done is that one performs the functional integral (1.32) with L2 as lagrangian
and an appropriate regularization, extracts the divergences and absorbs them
in the Gasser-Leutwyler (GL) constants Li.

The method outlined in [12] is based on the background field method
whose main idea is to expand the field configuration Σ around the matrix Σ∗
which solves the classical equations of motion. One then writes

Σ = Σ∗ + δΣ = Σ∗ei∆ = Σ∗ + iΣ∗∆− 1
2Σ∗∆2 + . . . . (1.49)

6We do not consider any terms which consist only of pure sources like, for example,〈
χχ†

〉
or 〈LµνLµν〉.
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δΣ represents the quantum fluctuations which one parmetrizes, for instance,
with an SU(3) matrix as exp(λa∆a). The LO lagrangian is now expanded
up to O(∆2). Since Σ∗ satisfies the equations of motion, there is no term
linear in ∆ and one is left with an effective quadratic form in ∆. In [12] it
is further shown that performing the functional integral over ∆ results in an
effective action in Σ∗ which, if applied to the computation of matrix elements
at tree level, corresponds to a one loop computation of the original action
in Σ. Using dimensional regularization we can extract the operators in Σ∗
that are multiplied by divergences. The clou is that these operators exhibit
precisely the structure of the operators of the NLO lagrangian L4(Σ∗) which
is used at tree level only, and, therefore, all divergences can be absorbed into
the GL coefficients. This means that one renormalizes the whole generating
functional to one loop.

If one carries out the rather technical renormalization process, the GL
coefficients Li are written as

Li = Lri − µ−ε
γi

32π2

( 2
d− 4 − γ + ln(4π) + 1

)
. (1.50)

Lri denote the renormalized GL coefficients, µ is the renormalization scale and
γ = −Γ′(1) = 0.577... is the Euler-Mascheroni constant. One immediately
sees that the expression diverges for d = 4. The γi are the renormalization
constants and are listed in table 1.1. Note that they are given for the SU(2)
case where we will perform our computation.

With the renormalized GL constants, we need not worry about renor-
malization any more, as long as we do not leave the one loop level with the
lagrangian given above. The application of the method now always works
equally:

1. Expand L2 in terms of the pion fields to any desired order and compute
all tree level and one loop matrix elements of the process

2. Calculate the appropriate tree level matrix elements with L4

3. Replace the bare low energy constants with its renormalized counter-
parts in the sum of all diagrams. The result is finite by construction.

i 1 2 3 4 5 6 7 8 9 10
SU(2) γi

1
12

1
6 0 1

8
1
4

3
32 0 0 1

6 −
1
6

Table 1.1: Renormalization coefficients
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The last task still undone is to justify that in our power counting scheme
χ ∼ E2 holds indeed. Dimensional analysis in (1.47) dictates the mass
dimension of the quantity 2B0 M̂ to be two. To get a physical interpretation
of this quantity we expand (1.47) in terms of the pion fields. Since we assume
isospin symmetry with mu = md = m, χ further simplifies to

χ = 2B0m1 = M2
0 1 (1.51)

where 1 is the 2× 2 unit matrix and where we have defined

2B0m = M2
0 , (1.52)

for simplicity of notation. The expansion is now straightforward and reads
up to O(π4)

L2 = 1
2 ∂µ~π · ∂

µ~π − 1
2 M

2
0~π

2 (1.53)

+ 1
6f 2

(
(~π · ∂µ~π)(~π · ∂µ~π)− (∂µ~π · ∂µ~π)~π2

)
+ 1

4!
M2

0
f 2 ~π

4.

This looks like a canonically normalized bosonic lagrangian with an interac-
tion part consisting of derivative couplings and pure polynomial couplings.
Since pions are bosons, we can indeed interpret the factor M2

0 in front of
the quadratic portion of the fields as the squared tree level mass of the pion.
Hence, we can conclude that the linear expansion in the mass of the quarks
corresponds to a quadratic expansion in the pion mass, which justifies the
assertion that χ ∼ E2.

1.4 Effective theory with lattice corrections
As already mentioned in the previous section, one needs a distinct regular-
ization to perform the functional integral of the theory in question. Essen-
tially, a regulator introduces a cutoff which makes the ill-defined divergent
path integral finite, yet, cutoff dependent. The physical observables, how-
ever, cannot depend on the regularization scheme and, therefore, the cutoff
finally must be removed. Such a physical input forms the starting point
for the Callan-Symanzik equation, one special realization of the renormal-
ization group equations. With these equations, one can determine so-called
beta function which describes the dependence of the coupling constant on
the renormalization scale. We will not discuss the theory of renormalization
here, however, we will use the associated result, that QCD is an asymptoti-
cally free theory which means that the coupling constant decreases at higher
momenta and finally vanishes for infinite momenta.
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In lattice regularization, Euclidean space-time is discretized by a hyper-
cubic lattice with lattice spacing a. Now, the lattice spacing is the regulator
and the cutoff can be interpreted as the momentum proportional to 1

a
. Since

QCD is an asymptotically free theory, its beta function has a zero fixed point
of the coupling constant for infinite momenta. This means that, at least the-
oretically, the theory has a well defined continuum limit for vanishing lattice
spacing. The continuum limit in lattice QCD, however, is still a highly non
trivial task. One usually fits the numerical data obtained at different finite
lattice spacings and then extrapolates its values to the continuum.

Unfortunately, the number of floating point operations (flops) in todays
simulations scales besides the volume and the lattice spacing dependence
roughly speaking with the third power of the inverse quark mass [6]. This
is the reason why the simulation of light quarks is extremely expensive. Al-
though there lies big hope on new algorithms like the domain wall decomposi-
tion hybrid monte carlo algorithm whose quark mass dependence is supposed
to scale only linearly with the inverse quark mass [17], simulations are not
yet performed at the physical point but with quarks much heavier than in
nature. One hopes to get faithful results by a subsequent extrapolation of
the data to the physical point.

In a concrete computation one may proceed as follows: one simulates an
observable like the scattering length on the lattice for various quark masses
and determines the corresponding lattice spacing. Simultaneously, one de-
termines the “physical” value of another reference observable corresponding
to this artificial choice of quark masses.7 One usually chooses an observable
which strongly depends on the quark mass, for example the pion mass. In
our example, one gets scattering lengths for different pion masses. Then, one
can fit the observables (e.g. the scattering length) of different pion masses
to an underlying fitting formula and extrapolate them to the physical point
of the real world, i.e. Mπ ' 135 MeV.

The validity of such an approach strongly relies on the underlying fitting
formulae. This is the point where ChPT enters the game, because, as an
expansion in the quark masses, the formulae can be well suited as fitting
formulae with the pion masses as variables. For this reason, we will finally
express the observable, in our case the scattering lengths, in terms of the
physical pion mass. ChPT that we have discussed so far, yet, only holds for
the continuum. In order to take into account the lattice artifacts we extend
the framework of ChPT to the lattice. First, though, we discuss the main

7The bare quark mass on a lattice is simply a number without direct physical meaning
and primarily serves as a free parameter. Each choice, however, corresponds to a distinct
realization of observables, for example a pion which is three times larger than in the real
world.
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ideas of lattice QCD.
In the standard formulation of lattice QCD by Wilson [18] the quark

fields ψ(x) reside on the sites x of the lattice and carry color, flavor and
Dirac indices as in the continuum theory. The gauge fields are associated to
the links of the lattice, represented through a field of SU(3) matrices U(x, µ)
where µ indicates the space-time direction of the lattice links. In analogy to
the continuum one can now construct a lattice gauge transformation

ψ(x)→ Ω(x)ψ(x), U(x, µ)→ Ω(x)U(x, µ)Ω(x+ aµ̂)−1 (1.54)

where µ̂ denotes the unit vector in direction µ. With this definition the
forward difference operator

∇µψ(x) = 1
a

[U(x, µ)ψ(x+ aµ̂)− ψ(x)] (1.55)

is gauge covariant. With the appropriate backward difference operator ∇∗µ
the lattice Dirac operator is defined as8

D = 1
2{γµ(∇∗µ +∇µ)− a∇∗µ∇µ}. (1.56)

The last term in (1.56), referred to as Wilson term, has no analogue to the
continuum Dirac operator. It is introduced to remove the fermion doublers
adding a 1/a correction to their masses and, thus, making them infinitely
heavy in the continuum limit. We can now write down the gauge invariant
QCD action on the lattice by

Slat = 1
g2

0

∑
p

tr{1− U(p)}+ a4∑
x

ψ̄(x)(D +m0)ψ(x). (1.57)

The sum over p denotes the sum over all oriented plaquettes p while U(p) is
the product of gauge field variables around p. m0 is the bare lattice quark
mass. Besides the color gauge symmetry, the Wilson action (1.57) exhibits
the discrete symmetries of charge conjugation, parity and time reversal. The
O(4) rotational invariance of Euclidean space-time, however, is reduced to
the discrete hypercubic group. Analogously, the continuous translational
invariance breaks down to the discrete translational symmetry in the lattice
spacing. Note that even for m0 = 0 the theory is not chirally invariant any
more due to the Wilson term which explicitly breaks chiral symmetry. We
have regard to that by an additive mass renormalization proportional to 1/a:

m = Zm(m0 −
c

a
) . (1.58)

8For simplicity, we have set the Wilson parameter r equal to one.
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c
a

= mc is termed to as the critical mass. It can be defined, for instance, as
the value where the pion becomes massless. For the distinct observable “pion
mass”, chirality is “restored” in that sense that the pion becomes massles
in the chiral limit, just like in the continuum. Note, however, that this
procedure does not at all restore chirality in the theory.

In the previous section we discussed ChPT as the low energy effective
theory of QCD which is valid only up to a certain energy scale. We now
extend the discussion of effective theory to lattice theory. One can consider
the momentum cutoff induced by the lattice spacing in a purely mathemat-
ical sense as a scale of new physics. Lattice QCD, then, is described as a
continuous effective theory where the continuous QCD lagrangian (1.1) sim-
ply receives additive corrections through operators of higher dimension. The
resulting Symanzik effective action [19] can be considered as an expansion in
the lattice spacing

Seff =
∫
d4x

{
L0 + aL1 + a2L2 + . . .

}
. (1.59)

L0 is the continuous QCD lagrangian, L1 consists of operators of dimension
5 like, for example, ψ̄DµDµψ, correspondingly, L2 is of mass dimension 6 and
so on.9 The constraint on the Lk is simply to respect the symmetries of the
lattice action, i.e. one claims gauge invariance and hypercubic symmetry as
well as C, P and T invariance.

The effective action (1.59) is well suited to be incorporated into the frame-
work of ChPT. We expect that for small masses and lattice spacings the dom-
inant contribution in Seff stems from L0, wherefore the theory will exhibit
the same chiral symmetry breaking pattern as in the continuum with pions
as Nambu-Goldstone bosons. The idea is to embed the lattice spacing a in
the power counting scheme which so far consisted only of the quark mass m
and the momentum p2. Further, the operators of each Lk in question must
be investigated with respect to their chiral transformation properties. They
can then be included via spurion analysis into a chiral perturbation theory
for Wilson fermions (WChPT). The difference compared to the method out-
lined in section 1.3 is that besides the mass term, now also the lattice spacing
is promoted to a spurion matrix field which guarantees the construction of
chirally invariant terms with the appropriate pion fields. After setting the
spurion to its original constant value the chiral theory explicitly breaks chiral
symmetry like the corresponding Symanzik theory.

In [20] it is shown that up to O(a) the effective lagrangian can be written
9The notation must not be confused with the previous section where the leading order

lagrangian of ChPT was also called L2.
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as
Leff = LQCD + C aψ̄σµνFµνψ +O(a2) (1.60)

where C is a complicated function of the gauge coupling of order unity.
Hence, we have QCD with a Pauli term. The chiral symmetry breaking for
this term is the same as for the mass term in continuum QCD and we can
simply incorporate it into the chiral lagrangian by promoting a to a spurion
ρ̂ and proceed in analogy to the quark mass. The additional term at leading
order, for instance, is

LLO(ρ̂) ∼
〈
ρ̂Σ† + Σ ρ̂†

〉
. (1.61)

after setting the spurion to its constant value we get

LLO(ρ) = −f
2

4 ρ
〈
Σ† + Σ

〉
(1.62)

where we defined
ρ̂ = 2W0a1 = ρ1 . (1.63)

W0 is a constant of proportionality with mass dimension 3 such that the
power counting scheme for the lattice spacing is of order E2 like for χ and
p2. The minus sign in (1.62) is due to Euclidean space-time since from now
on, we will perform all our computations in Euclidean space-time. The NLO
O(a) terms are constructed in [8] and the corresponding O(a2) terms in [9].
With these ingredients we can write down the full chiral effective lagrangian
in Euclidean space-time with lattice corrections up to O(a2). As usual, we
divide it into a LO and a NLO contribution. The NLO part is further divided
into the portion from continuous ChPT and an additional lattice part such
that LNLO = L4 + L′4. In the notation of [9] these read:

L2 = f 2

4 〈∂µΣ ∂µΣ†〉 − f 2

4 M
2
0

〈
Σ + Σ†

〉
− f 2

4 ρ
〈
Σ + Σ†

〉
(1.64)

and at NLO for the continuum

L4 = −L1
〈
∂µΣ ∂µΣ†

〉2

−L2
〈
∂µΣ ∂νΣ†

〉 〈
∂µΣ ∂νΣ†

〉
−L3

〈
∂µΣ ∂µΣ† ∂νΣ ∂νΣ†

〉
+L4 M

2
0

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
+L5 M

2
0

〈
∂µΣ ∂µΣ†(Σ + Σ†)

〉
−L6 M

4
0

〈
Σ + Σ†

〉2

−L8 M
4
0

〈
ΣΣ + Σ†Σ†

〉
(1.65)
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as well as the lattice part

L′4 = W4 ρ
〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
+W5 ρ

〈
∂µΣ ∂µΣ†(Σ + Σ†)

〉
−W6 ρM

2
0

〈
Σ + Σ†

〉2

−W8 ρM
2
0

〈
ΣΣ + Σ†Σ†

〉
−W ′

6 ρ
2
〈
Σ + Σ†

〉2

−W ′
8 ρ

2
〈
ΣΣ + Σ†Σ†

〉
. (1.66)

Note that including the lattice spacing modifies the pion mass to

M2
0 = 2B′(m0 −mcr) (1.67)

where the mass renormalization Zm was absorbed into B′. We will have to
determine the critical mass later on.

Since we restrict our calculation to chiral SU(2), not all operators of LNLO
in (1.65) and (1.66) are linearly independent. In appendix A, we derive
relations involving traces of operators. With these formulae one can collect
all linear dependent operators and, thus, reduce the number of low energy
constants. Using (A.20), (A.21) and (A.10) from appendix A we get the
following simplifications:

L1
〈
∂µΣ ∂µΣ†

〉2
+ L3

〈
∂µΣ ∂µΣ† ∂νΣ ∂νΣ†

〉
= (L1 + 1

2L3)
〈
∂µΣ ∂µΣ†

〉2
, (1.68)

L4 M
2
0

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
+ L5 M

2
0

〈
∂µΣ ∂µΣ†(Σ + Σ†)

〉
= (L4 + 1

2L5)M2
0

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
, (1.69)

L6M
4
0

〈
Σ + Σ†

〉2
+ L8M

4
0

〈
ΣΣ + Σ†Σ†

〉
= (L6 + 1

2L8)M4
0

〈
Σ + Σ†

〉2
. (1.70)

With L′4 it works analogously. The definitions

L13 := L1 + 1
2L3, L45 := L4 + 1

2L5, L68 := L6 + 1
2L8,

W45 := W4 + 1
2W5, W68 := W6 + 1

2W8, W ′
68 := W ′

6 + 1
2W

′
8,
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now allow us to rewrite (1.65) and (1.66) as

L4 = −L13
〈
∂µΣ ∂µΣ†

〉2
− L2

〈
∂µΣ ∂νΣ†

〉 〈
∂µΣ ∂νΣ†

〉
+L45 M

2
0

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
− L68 M

4
0

〈
Σ + Σ†

〉2
(1.71)

L′4 = W45 ρ
〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
−W68 ρM

2
0

〈
Σ + Σ†

〉2

−W ′
68 ρ

2
〈
Σ + Σ†

〉2
(1.72)

The O(a) lattice artifacts at LO are on the same footing as the tree level
pion mass M2

0 respectively the quark mass m. In terms of the QCD energy
scale ΛQCD this scenario can be formulated as m ∼ aΛ2

QCD. Therefore, we
can organize the power counting in the following schematic way:

LO : p2, m, a

NLO : p4, p2m, m2, p2a, ma, a2
(1.73)

We refer to this scenario as the generic small quark masses (GSM) regime
[7].



Chapter 2

Effective theories with O(a2)
corrections at leading order

In this chapter, we first investigate some properties of the GSM regime where
the quark mass is of the same order of magnitude as the O(a) lattice artifacts.
Then, we extend the framework to a scenario where higher order lattice
artifacts become significant and, therefore, the O(a2) corrections have to be
considered at leading order. After some simple tree level computations we
construct a lagrangian which can be used for a full one-loop calculation in
this scenario.

2.1 Rewriting the O(a) LO lagrangian
In the construction of the potential term in L2 we found during the spurion
analysis two very similar terms:〈

χ̂Σ† + Σχ̂†
〉

and
〈
ρ̂Σ† + Σ ρ̂†

〉
.

Since at leading order only one spurion enters the traces, the above two terms
are at any time linear both in χ̂ and in ρ̂. Adding up the two terms to get
the potential term preserves linearity too and, hence, χ̂ and ρ̂ are linearly
related at leading order. This allows us to define a new variable χ̂′

χ̂′ = χ̂+ ρ̂ (2.1)

which merges χ̂ and ρ̂ to a new parameter. After setting the spurions to its
constant value, we can write the LO lagrgangian in terms of a shifted pion
mass M̃2

0

L2(M̃2
0 ) = f 2

4 〈∂µΣ ∂µΣ†〉 − f 2

4 M̃
2
0

〈
Σ + Σ†

〉
. (2.2)

23
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with
M̃2

0 = M2
0 + ρ = M2

0 + 2W0a , (2.3)
or, in terms of a shifted quark mass

M̃2
0 = 2B′

(
m0 + c

a

)
+ 2W0a =: 2Bm (2.4)

where we have absorbed the linear a dependence by a redefinition of the
quark mass. Expanding L2(M̃2

0 ) in terms of the pion fields leads to

L2 = 1
2 ∂µ~π · ∂µ~π + 1

2 M̃
2
0~π

2 (2.5)

+ 1
6f 2

(
(~π · ∂µ~π)(~π · ∂µ~π)− (∂µ~π · ∂µ~π)~π2

)
− 1

24f 2M̃
2
0~π

4.

This lagrangian differs from the one in the continuum (1.53) only by means
of M̃2

0 instead of M2
0 . (The minus sign in front of the mass term is not a

principal difference, it occurs because (2.5) is given in Euclidean space and
not in Minkowski space.) Therefore, we can conclude that all the leading
order computations involving L2(M̃2

0 ) both at tree level and to one loop
work in complete analogy to the ones in the continuum with L2(M2

0 ). One
simply has to replace M2

0 by M̃2
0 .

Since now both in the propagator and in the vertices M̃2
0 appears instead

of M2
0 , we can reason that the divergences can be cured by the same L4 as in

continuum chiral perturbation theory with the only difference that we have
to replace M2

0 with M̃2
0 . The general structure of LNLO = L4(M2

0 ) +L′4(M2
0 )

in (1.71) and (1.72), however, does not involve M̃2
0 . Therefore, we have to

substitute
M2

0 = M̃2
0 − ρ (2.6)

in L4(M2
0 ) as well as in L′4(M2

0 ) to get a structure which only depends on
M̃2

0 . This new lagrangian can now be written as

L̃NLO = L̃4(M̃2
0 ) + (terms ∼ ρM̃2

0 and ∼ ρ2)

with L̃4(M̃2
0 ) being the lagrangian (1.71) with M2

0 replaced by M̃2
0 . Perform-

ing this substitution we get

L̃4(M̃2
0 ) = −L13

〈
∂µΣ ∂µΣ†

〉2
− L2

〈
∂µΣ ∂νΣ†

〉 〈
∂µΣ ∂νΣ†

〉
+L45 M̃

2
0

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
− L68 M̃

4
0

〈
Σ + Σ†

〉2
(2.7)

L̃′4(M̃2
0 ) = W 45 ρ

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
−W 68 ρM̃

2
0

〈
Σ + Σ†

〉2

−W ′
68 ρ

2
〈
Σ + Σ†

〉2
(2.8)
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where we have introduced the new low energy constants

W 45 := W45 − L45 (2.9)
W 68 := W68 − 2L68 (2.10)
W
′
68 := W ′

68 −W68 − L68 (2.11)

as linear combinations of the old ones. Since, now, our NLO lagrangian
depends solely on M̃2

0 , we will call it shifted mass NLO lagrangian in the
proceeding work. As already mentioned, the divergences stemming from the
loop integrals are completely cured with L̃4(M̃2

0 ) in (2.7). Hence, the new low
energy constantsW 45,W 68 andW

′
68 are finite and do not get renormalized. If

one performs a one loop computation without the above quadratic completion
of the NLO lagrangian, one can determine the renormalization coefficients
for W45, W68 and W ′

68. Plugging W45, W68 and W ′
68 with their divergent part

into the above definitions of the new low energy constants, one sees indeed
that W 45, W 68 and W

′
68 are finite. The procedure is straightforward but

lengthy and, therefore, is not shown here.
This naive quadratic completion works, because LNLO in (1.71) and (1.72)

is really the most general lagrangian which includes all possible contributions
up to order E4. Therefore, throughout the substitution procedure no new
structures which were not already part of LNLO could appear. In the next
section when we promote the ρ2 term from NLO to LO, however, we will
see that this approach fails, because then the remaining lagrangian is not
the most general one any more. We will solve this problem by constructing
additional counterterms corresponding to contributions from the L6.

Note that rewriting the lagrangian in terms of the shifted mass M̃2
0 does

not mean the we leave the GSM regime defined in section 1.4 although the
lattice spacing does not explicitly appear in the power counting scheme at
leading order:

LO : p2, m

NLO : p4, p2m, m2, p2a, ma, a2
(2.12)

From now on, when we talk about the GSM regime, we always think of the
quark mass m as the corresponding linearly shifted quark mass in the lattice
spacing.

2.2 Promotion of the O(a2) term from NLO
to LO

We now discuss the scenario where higher order cutoff effects become signif-
icant. Physically, this means that the quark mass is not any more of O(a)
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like in the GSM regime, but at least of O(a2). In terms of the QCD energy
scale, we write this as m ∼ a2Λ3

QCD. This regime is called large cutoff effects
(LCE) contrary to the GSM regime from section 1.4. We accomodate this
fact by promoting the NLO O(a2) term to a LO term. The term in question
in (2.8) is

Lρ2 = −ρ2W
′
68

〈
Σ + Σ†

〉2
. (2.13)

Promoting this term to leading order, LLO reads

LLO = f 2

4 〈∂µΣ ∂µΣ†〉 − f 2

4 M̃
2
0

〈
Σ + Σ†

〉
− ρ2W

′
68

〈
Σ + Σ†

〉2
. (2.14)

In the following discussion we refer to the last two terms in (2.14) as the
potential term Lpot since it does not include any derivatives mediating a
kinetic part. Now, we immediately see the difference to our initial approach
where we only introduced the O(a) correction. There, the continuum part
and the lattice part had exactly the same operator structure, i.e. they had
the same basis in the LO lagrangian and, therefore, could be merged with a
new effective parameter M̃2

0 . Now, this approach fails, because
〈
Σ + Σ†

〉
and〈

Σ + Σ†
〉2

do not exhibit the same structure. After expanding the traces up
to the fourth power in the pion fields〈

Σ + Σ†
〉

= 4− 2
f 2 ~π

2 + 1
6f 4 ~π

4 (2.15)〈
Σ + Σ†

〉2
= 16− 16

f 2 ~π
2 + 16

3f 4 ~π
4 (2.16)

and dropping the constant terms, Lpot in eq. (2.14) can now be written in
terms of the pion fields:

Lpot = −f
2

4 M̃
2
0

〈
Σ + Σ†

〉
− ρ2W

′
68

〈
Σ + Σ†

〉2

= 1
2M̃

2
0~π

2 − 1
4!
M̃2

0
f 2 ~π

4 + 16ρ
2

f 2W
′
68~π

2 − 16
3
ρ2

f 4W
′
68~π

4. (2.17)

Remembering from our definition (1.63) that ρ = 2W0a we introduce the
following short hand notation for the various prefactors of the ρ2 terms:

16ρ
2

f 2W
′
68 = 64W ′

68
W 2

0
f 2 a

2 = −c2 a
2. (2.18)

This definition of c2 is chosen in order to match with the one given in [21]
and allows us to write

Lpot = 1
2(M̃2

0 − 2c2a
2)~π2 − 1

4!f 2 (M̃2
0 − 4 · 2c2a

2)~π4 (2.19)
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where c2 a
2 has the dimension of a squared mass. It is now self-evident to

define a new massM2 as the factor which multiplies the quadratic portion
of the potential:

M2 = M̃2
0 − 2c2a

2 = 2Bm− 2c2a
2 (2.20)

Equipped with this newM2 we can write

Lpot(M2) = 1
2M

2~π2 − 1
4!
M2

f 2 ~π
4 + 3

4!
2c2a

2

f 2 ~π4. (2.21)

We see in eqs. (2.15) and (2.16) that the pion fields of the same power are
weighted with different numerical factors. If we had solely considered the
quadratic mass term, we would not have run into troubles, because whatever
constant we find in front, it can be absorbed in the new mass. However,
when we also consider the ~π4 terms, the factors will “differ differently” from
the ones in the quadratic portion. Having already definedM2 we would not
succeed in contracting the interaction into one single term. In general there
remains an additional new interaction term. In our case it is proportional to
a2 and reads

La2 = 3
4!

2c2a
2

f 2 ~π4. (2.22)

It has of course its own vertices and produces loop corrections which will,
for example, give an additional mass shift in the pion mass M2

π . Compared
to the original lagrangian (2.5) the new leading order lagrangian differs with
respect to the mass and this additional interaction term. The fully expanded
leading order lagrangian therefore is given by

LLO = 1
2 ∂µ~π · ∂

µ~π + 1
2M

2~π2 + 1
6f 2 (~π · ∂µ~π)(~π · ∂µ~π)

− 1
6f 2 (∂µ~π · ∂µ~π)~π2 − 1

4!
M2

f 2 ~π
4 + 3

4!
2c2a

2

f 2 ~π4. (2.23)

Besides the first two terms which correspond to free theory, we have four
interaction terms which all give rise to a distinct interaction vertex. Setting
a = 0 and substitutingM2 withM2

0 reproduces the lagrangian in the contin-
uum. We therefore expect that computations with (2.23) will reproduce the
results from the continuum when we set a = 0 in the calculated observable.
Later, we will use this feature to check our results.

2.3 Significance of c2

The interesting concern about c2 is that its sign determines a phase diagram
where for certain values of the quark masses parity and flavour symmetry
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are spontaneously broken [7]. Let us repeat here the main arguments leading
to this conclusion. To determine the condensate 〈Σ0〉 of the theory (i.e. the
vacuum expectation value) we do not need to consider the kinetic term in
(2.14) and focus solely on the potential

Lpot = −2Bmf 2

4
〈
Σ + Σ†

〉
+ c2

f 2a2

16
〈
Σ + Σ†

〉2
(2.24)

that is to be minimized. So far, we assumed that after spontaneous breaking
of chiral symmetry no further symmetries are spontaneously broken. This
means that the (arbitrarily chosen) ground state is still SU(2) invariant. We
express this by writing Σ = 1 e

i
f
~π~σ where, by construction, the 1 corresponds

to a symmetric vacuum.1 More generally, if we allow for a further sponta-
neous symmetry breaking of SU(2), we are supposed to write

Σ = Σ0 e
i
f
~π~σ = A(x) + i ~B(x)~σ , (2.25)

where Σ0 = A0 + i ~B0~σ is a space-time independent SU(2) matrix correspond-
ing to a ground state which is not invariant under SU(2) rotations. In addi-
tion, we used the result from appendix A which allows us to parametrize any
SU(2) matrix in terms of four real parameters A and ~B satisfying A2+ ~B2 = 1,
the unit matrix and the Pauli matrices. Plugging (2.25) into the potential
leads to a quadratic function in A

Lpot = −2Bmf 2A+ c2f
2a2A2 . (2.26)

Due to the SU(2) constraint A2 + ~B2 = 1, A is forced to lie between −1 and
+1 inclusive. The crucial point now is that the action of an SU(2) vector
transformation on Σ leaves A invariant but rotates ~B by an orthogonal trans-
formation. Applying this statement on Σ0 we see that the vacuum is invariant
with respect to SU(2) vector transformations only if ~B0 vanishes. In case of
a non-zero ~B0, the vacuum is not invariant any more and the SU(2) flavor
symmetry breaks spontaneously down to a U(1) subgroup. To parametrize
symmetry breaking, we simply have to determine the phase where the min-
imum of the potential lies within the interval (−1,+1) exclusively. Only in
this case ~B0 can achieve a non-zero value.

The extremum of the potential is found to be at Aex = Bm
c2a2 . For positiv

values of c2 this is a minimum. If |Amin| > 1, then A0 is constraint to lie on
the edge of the interval [−1,+1] which corresponds to Σ0 = ±1. Then, the

1Very loosely speaking the vacuum corresponds to the origin in flavor space, i.e. to
~π = 0. In the exponential parametrization this is the unit matrix which is invariant under
SU(2) rotations of the form R1R† = 1.
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symmetry is not spontaneously broken. For |Amin| < 1, however, Amin = A0
and spontaneous symmetry breaking occurs. Thus, for positive values of c2
the variation of the quark massm smoothly interpolates the vacuum between
two flavor symmetric values. This is precisely a second order phase transition
and the phase of broken symmetry is called Aoki phase [22]. The pion masses
are straightforward determined by expanding Σ in (2.25) around the vacuum.
The result is that within the Aoki phase the charged pions become massless
and, hence, the Nambu Goldstone Bosons of broken symmetry. The critical
point for this transition is at 2Bm = 2c2a

2. Outside the Aoki phase the pion
mass readsM2 = 2Bm− 2c2a

2, as expected.
Let us now return to the case where c2 < 0. In this case the extremum of

the potential is a maximum and the necessary minimum for the condensate
is forced to lie on the edge of the interval [−1,+1]. For 2Bm > 0 we have
Σ0 = +1 respectively the other way round Σ0 = −1 for 2Bm < 0. Hence,
there is no ~B0 in the vacuum and the symmetry remains unbroken. Varying
the quark mass the vacuum “jumps” from Σ0 = +1 to Σ0 = −1 at the critical
point 2Bm = 0. Therefore, this scenario corresponds to a first order phase
transition. The expansion around the vacuum determines again the pion
masses. Due to the unbroken symmetry they acquire all the same mass with
a minimum for 2Bm = 0 that reads

M2
min = 2|c2|a2 . (2.27)

Sign and magnitude of c2 are not yet satisfactorily determined. The ETM
collaboration [23] gave a rugh estimate for c2 where within errors c2 would
be negative. However, the statistical uncertainties were rather large. In the
present work, we will, therefore, suggest an alternative method to determine
the sign of c2 using pion scattering. The detailed idea will be described in
section 2.6. First, however, we have to learn some general aspects about
scattering theory.

2.4 Scattering theory
Kinematics: The most general collision of two particles A and B with
mass mA and mB is of the form

A+B −→ C +D + F + ...

The intention of our analysis, however, is low energy ππ-scattering, hence we
are in the elastic region where the above reaction reads A+B → A+B. Far
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away from the scattering process the particles are considered as free particles
with on shell conditions

p2
A = m2

A , p
2
B = m2

B , p
′
A

2 = m2
A , p

′
B

2 = m2
B. (2.28)

pA and pB are the particles four-momenta before the collsion, p′A and p′B
correspondingly afterwards. Since the total four-momentum is conserved in
the collision, we get an additional constraint

pA + pB + p′A + p′B = 0. (2.29)

With pA, pB, p′A and p′B ten different Lorentz invariant scalar products can be
built. Four of them are already contained in the energy-momentum relations
in (2.28). Conservation of the total four-momentum in (2.29) imposes another
four constraints. Therefore, the number of independent variables is only two.
The common choice of variables are the Mandelstam variables,

s = (pA + pB)2 = (p′A + p′B)2,

t = (pA + p′A)2 = (pB + p′B)2, (2.30)
u = (pA + p′B)2 = (p′A + pB)2.

The fact that there are only two independent variables is expressed by the
relation

s+ t+ u =
4∑
i=1

m2
i (2.31)

with the particles masses mi. It can be derived using (2.28) and (2.29). Our
calculations will be performed in the center of mass system. This is the
system with vanishing total three-momentum, i.e.

p c.m.
A = −p c.m.

B , p′ c.m.
A = −p′ c.m.

B . (2.32)

Since the total three-momentum is zero, only the zeroth component of pc.m.
A +

pc.m.
B is nonvanishing. Yet, this component is the energy. Hence, we can

conclude that the Lorentz invariant Mandelstam variable s is the total center
of mass energy squared. This means Ec.m. =

√
s.

With the assumption of isospin symmetry, all pions have equal masses
and we can set m2

A = m2
B = M2

π . This immediately dictates, that Ec.m. is
equally distributed on the two particles so that

Ec.m.
A = Ec.m.

B =
√
s

2 (2.33)
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The magnitude of the three momentum is found to be

|pc.m.
A | = |pc.m.

B | =
√
Ec.m.
A

2 −m2
A = 1

2
√
s− 4M2

π := q (2.34)

Here we have defined q as the magnitude of three momentum in the center
of mass frame. Due to elastic scattering q is the same for both the incoming
and outgoing particles. Therefore, such a process only rotates the direction
of the three momentum around a distinct angle θ. We can now express t in
terms of θ and q:

t = (pA − p′A)2 = 2M2
π − 2(EAE ′A − pA · p′A)

= 2M2
π − 2

(
s2

4 − q
2 cos θ

)
= −2q2(1− cos θ)

With u we can proceed analogously. For convenience, we summarize the
result for s, t, u in terms of the variables q and θ.

s = 4(q2 +M2
π) (2.35)

t = −2q2(1− cos θ) (2.36)
u = −2q2(1 + cos θ) (2.37)

We see that we can choose either s and t to describe the process (s and u
would do it as well, of course), or work with cos θ and q. An experimentalist
usually measures momenta of particles and their angular distribution. Al-
though θ and q are variables of the center of mass system, we will finally use
them as our “physical variables”. They can then easily be transformed into
the lab system. Due to the functional dependence between s and q in (2.35)
we will sometimes use Ec.m. and cos θ as a set of independent variables.

Two particle states: Our next task is to describe the dynamics of the
scattering process. In a scattering experiment, the experimentalist prepares
a state with a definite particle content in the far past, the |in〉-state, and
measures the particle content in the far future, described by the |out〉-state.
The quantum mechanical transtition amplitude for such a process, the S-
matrix, is the scalar product of these two states

Sif = 〈out|in〉 (2.38)

where i stands for “initial” and f for “final”. To evaluate matrix elements we
assume that both in the far past and far future the particles do not interact
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any more and can be considered as free. If we collect all the free particles in
the far past in |i〉 and correspondingly in the far future in |f〉, we can define
an operator S such that

Sif := 〈f |S|i〉. (2.39)
The properties of S like, for example, unitarity are well discussed in [24].

It is convenient to separate the unity operator from S which corresponds
to no interaction. The dynamics of the process, then, is found completely in
the matrix elements of the remaining T -Operator.

S = 1 + iT (2.40)

Since total four-momentum is conserved in the process we can further extract
a four-momentum delta function from the matrix elements

〈f |S|i〉 = 〈f |i〉+ i〈f |T |i〉
= 〈f |i〉+ iδ(pf − pi)T (i→ f). (2.41)

T (i→ f) is called the scattering amplitude, it is one main object of interest
of the present work. From it, one can extract measurable quantities like
the cross section for ππ-scattering. In [25] it is shown that the differential
cross section in the center of mass system for spinless particles with identical
masses (ππ-scattering) is (

dσ

dΩ

)
c.m.

= π2

4s |T |
2 . (2.42)

As will be explained in appendix C cross sections in low energy scattering
become constant for short range interactions. The characteristic measure
for such a situation is the scattering length which can be extracted from the
scattering amplitude T . How this procedure works is discussed in detail in
appendix C.

Scattering amplitude: From the LSZ formula [26] we know that the scat-
tering amplitude is essentially the amputated four-point Green’s function
times a wave function renormalization

√
Z for each external leg.

T i,j;k,l(p1, p2; p3, p4) = (p2
1 −M2

π)(p2
2 −M2

π)(p2
3 −M2

π)(p2
4 −M2

π)
×Gi,j;k,l

4 (p1, p2; p3, p4)

=
(√

Zπ

)4
Gi,j;k,l

4 amp(p1, p2; p3, p4) . (2.43)

In principle,
√
Z is different for each external field. In our computation,

however, we may set all factors equal to
√
Zπ due to the isospin symmetry.
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We will directly compute the amputated four point function in a perturbative
way using Feynman diagrams.

What can be said about T even before it is computed? Strong interaction
is parity conserving. The pions are pseudoscalar particles with the property

Pπ(x0, ~x) = −π(x0,−~x). (2.44)

In order to have a parity conserving theory, the pion fields must enter the
lagrangian with even powers and one can write L = f [πiπj] where f denotes
a not further specified functional dependence. If we further assume isospin
symmetry, we can even say L = f [~π2], because isospin symmetry means that
the theory is invariant with respect to rotations in flavor space. When we now
compute the four-point Green’s function in a diagrammatic way using Wick
pairing, the contraction of the fields to any order only gives contributions
different from zero if two of the external fields are equal at any time. The
most general way of writing such an amplitude is

T i,j;k,l = A(s, t, u)δijδkl +B(s, t, u)δikδjl + C(s, t, u)δilδkj . (2.45)

On the right hand side, we expressed the amplitudes in terms of the Man-
delstam variables (2.30).

In a next step, we apply the theorem of crossing symmetry which states
that the S-matrix element stays invariant if one replaces an incoming particle
with an outgoing antiparticle of opposite momentum [26]. Starting with a
reaction

πi(p1) + πj(p2)→ πk(p3) + πl(p4) (2.46)
this translates to another scattering channel

πi(p1) + π̄k(p3)→ π̄j(p2) + πl(p4). (2.47)

The bar over the pion fields denotes the corresponding antiparticle. (We need
not reverse the sign of the momenta, because we define all external lines in
our diagrams as incoming particles.) Let us briefly summarize the properties
of πi with respect to charge conjugation C. With the definition of πi in (1.24)
we can conclude:

C π1 = π1, C π2 = −π2, C π3 = π3. (2.48)

Hence, the πi change at most their sign. Yet, since the πi enter always paired
due to isospin symmetry, we can forget about this problem. If we perform
the exchange of the fields at the level of the corresponding momenta in the
Mandelstam variables (2.30), we see that this is equivalent to exchanging s
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and t. There is another way to get a third scattering channel, namely to
exchange s and u, and, in terms of flavor, going from configuration {i, j, k, l}
to {i, l, k, j}.

These considerations allow us to conclude that the scattering amplitude
is determined by one single function A(s, t, u), the functions B(s, t, u) and
C(s, t, u) in (2.45) are simply obtained by changing s and t respectively s and
u in A(s, t, u). The general structure of the scattering amplitude, therefore,
simplifies to

T i,j;k,l = A(s, t, u)δijδkl + A(t, s, u)δikδjl + A(u, t, s)δilδkj. (2.49)

This formula agrees with the one given in [12].

2.5 Feynman rules
The Feynman rules for Euclidean Green’s functions are now deduced from
the chiral Lagrangian in (2.23). First, the propagator in momentum space is
given by

∆E(p) = 1
p2 +M2 (2.50)

The four interaction terms involving four pion fields in (2.23) give rise to the
following four vertices:

V ijkl
1 [p1, p2, p3, p4] = 1

3f 2

[
δijδkl (p1p3 + p2p4 + p2p3 + p1p4)

+ δikδjl (p1p2 + p1p4 + p2p3 + p3p4)

+ δilδjk (p1p2 + p1p3 + p2p4 + p3p4)
]
(2.51)

V ijkl
2 [p1, p2, p3, p4] = − 2

3f 2

[
δijδkl (p1p2 + p3p4)

+ δikδjl (p1p3 + p2p4)

+ δilδjk (p1p4 + p2p3)
]

(2.52)

V ijkl
3 [p1, p2, p3, p4] = M2

3f 2

[
δijδkl + δikδjl + δilδjk

]
(2.53)

V ijkl
4 [p1, p2, p3, p4] = −2c2a

2

f 2

[
δijδkl + δikδjl + δilδjk

]
. (2.54)
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The latin indices denote pion indices and run from 1 to 3. Each vertex
exhibits the same structure in terms of the pion fields with δ{ij}δ{kl}. This
is precisely the structure which we anticipated in (2.45), now on the level of
the vertices.

2.6 The tree level calculation
We will now perform some simple tree level calculations to get a better phys-
ical understanding of the new O(a2) leading order lagrangian. The easiest
calculation is the pion mass at tree level. The calculation is trivial since the
tree level mass is just the mass in the lagrangian

M2
π =M2 = 2Bm− 2c2a

2. (2.55)

The leading order transition amplitude and the scattering lengths extracted
thereof are more interesting. The amputated Euclidean 4-point function is
just the sum of all interaction vertices. Hence, the amplitude A is given by

A(p1, p2; p3, p4) = G i,i;k,k
4, amp(p1, p2; p3, p4)

= 1
3f 2

[
+ (p1p3 + p2p4 + p2p3 + p1p4)− 2(p1p2 + p3p4)

+M2 − 3 · 2 c2

f 2a
2
]
. (2.56)

Here, we set Z2
π = 1. As we will see in the next chapter, the wave function

renormalization is of the form Z2
π = 1 + O(M2) and will, therefore, only

contribute when we perform the full one loop computation. Wick-rotating
back to Minkowski space, using energy conservation p1 + p2 + p3 + p4 = 0
and going on-shell we get

A(p1, p2; p3, p4) = 1
3f 2

[
− (p1p3 + p2p4 + p2p3 + p1p4)

+2p1p2 + 2p3p4 +M2 − 3 · 2c2a
2
]

= 1
3f 2

[
6 p1p2 + 2M2

π +M2 − 3 · 2c2a
2
]
. (2.57)

At tree level without further loop corrections we may set M2
π =M2 and the

amplitude can be written as

A(s, t, u) = 1
f 2 (s−M2 − 2c2a

2) . (2.58)
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Here, we expressed the scattering amplitude A in terms of the Mandelstam
variables s, t, u. Comparing our amplitude with the tree level scattering
amplitude first obtained by Weinberg [27] one immediately sees that it differs
from the continuum by an extra additive constant −2c2a

2/f 2. Its significance
will become clear at the end of this section when we will have computed the
appropriate scattering lengths.

In a next step we have to relate the amplitude A(s, t, u) to a scattering
amplitude T I(s, t, u) of definite isospin I. The corresponding relations are
derived in [28] using projection operators and read

T 0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s), (2.59)
T 1(s, t, u) = A(t, s, u)− A(u, t, s), (2.60)
T 2(s, t, u) = A(t, s, u) + A(u, t, s). (2.61)

With the above amplitude (2.58) they read

T 0(s, t, u) = 1
f 2

(
2s−M2 − 2 · 2c2a

2
)
, (2.62)

T 1(s, t, u) = 1
f 2

(
t− u

)
, (2.63)

T 2(s, t, u) = 1
f 2

(
s− 4M2 − 2 · 2c2a

2
)
. (2.64)

We are now ready to compute the tree level scattering length using the
method of partial wave decomposition given in appendix C.1. With the
normalization of [1] the expansion in terms of Legendre polynomials reads2

T I(s, θ) = 32π
∞∑
l=0

(2l + 1)T Il (s)Pl(cos θ). (2.65)

The partial wave amplitudes T Il are found by inverting (2.65) and are given
by the integral

T Il (s) = 1
64π

∫ 1

−1
d(cos θ)Pl(cos θ)T I(s, cos θ). (2.66)

Expanding the real part of T Il for low momenta we can extract the a0
0, a2

0

2The factor of 32π is due to the historical normalization used in the book of Martin
et al. [29] which has become standard for pion-pion scattering. It can be traced back
to a nonrelativistic normalization of the one particle states and a different convention in
defining the T matrix elements.
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Figure 2.1: Dependence of the scattering lenghtes on the pion mass. The dashed lines
indicate that one extrapolates to the massless point although it does not exist for c2 < 0.
The values for both scenarios only differ in the sign, i.e. for I = 2, the intersection is at
−2c2a

2/16πf2 for c2 < 0 and of opposite sign for c2 > 0.

and a1
1 scattering lengths from (C.26):

a0
0 = 7

32πf 2

(
M2 − 5

72c2a
2
)
, (2.67)

a1
1 = 1

24π
M2

f 2 , (2.68)

a2
0 = − 1

16πf 2

(
M2 + 2c2a

2
)
. (2.69)

Setting the lattice spacing equal to zero the continuum tree level result [27] is
recovered. However, for finite a, the scattering lengthes a0

0 and a2
0 significantly

differ by an additive contribution proportional to c2a
2. This is a remarkable

result. As a consequence, the scattering lengthes do not vanish in the chiral
limit, rather, they exhibit a functional dependence on the pion mass3 of the
form

aI0 = AI00 + AI10M
2
π (2.70)

where AI00 is a constant of O(a2). As described in detail in section 2.3, the
chiral limit is possible only in the scenario where c2 > 0. For c2 < 0, there is a
minimal pion mass and, consequently, also the scattering length will achieve
a minimal value. It is obtained by plugging the minimal pion mass (2.27)

3We expressed the scattering length in terms of the physical pion massM2
π as described

in section 1.4. Remember that M2
π =M2 at tree level.
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into a0
0 and a2

0:

a0
0,min = 12

32πf 2 2|c2|a2 , a2
0,min = 0 . (2.71)

The dependence of the scattering lengthes a0
0 and a2

0 on the pion mass is
shown in figure 2.1, for both scenarios with c2 positive and negative. This
suggests to relate the scattering lengths to c2 by the following idea: One
measures the scattering length at nonzero lattice spacing for different pion
masses and then extrapolates the data to the chiral limit. The intersection
of the straight line with the axis, i.e. with the massless point, allows one to
directly read off the value of c2. Hence, we ought to determine which scenario
of the phase diagram is actually realized. Note that this procedure works,
although the massless point does not exist for c2 < 0.

The a1
1 scattering length does not show any c2a

2 dependence and vanishes
in the chiral limit. This is because of the minus sign in T 1 which cancels the
momentum independent terms present in the scattering amplitude A(s, t, u).
Therefore, we expect the dependence on lattice artifacts of a1

1 beeing com-
paratively small.

2.7 The NLO lagrangian including O(a4)
With the vertices from section 2.5 we can now perform loop calculations.
As we discussed in section 1.3, the NLO lagrangian has to be included too.
Yet, by promoting the O(a2) term from NLO to LO we modify the NLO
lagrangian and we expect that we must include terms from next to next to
leading order (NNLO). In this section, we will now explicitly construct the
new counterterms.

Before we determine the counterterms in a systematic way, we will give
some hand waving arguments which kind of divergences we will expect and
which counterterms we definitely need in order to cancel the infinities. As
an example, we consider the pion mass to one loop. The diagram for the one
loop two point Green’s function is given in figure 2.2. In section 3.1, we will
perform the corresponding loop integrals in detail. Anticipating the result
we get a singularity proportional to M2 for every loop. This is multiplied
by p2,M2 or a2 which reflect at any time the content of the corresponding
vertices given in section 2.5. Going on shell we end up with two divergent
terms: one proportional to M4 and the other to M2a2. The structure of
theM4 term is analogous to the continuum where the M4

0 divergence could
be cancelled by the original renormalized NLO lagrangian from Gasser and
Leutwyler [1, 2]. Therefore, we expect that it is cancelled with (1.71) if
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∼ Vα

Figure 2.2: One loop two point function. Vα are the vertices from section 2.5.

we simply replace M2
0 by M2. The situation, however, is different for the

M2a2 term. Neither in the NLO lagrangian in (1.71) and in (1.72) nor in the
shifted mass NLO lagrangian in (2.7) and (2.8) a term of the form (mass2 ·ρ2)
appears. This is a first hint that we have to include new structures in our
lagrangian. Remembering the definitionM2 = M̃2

0 − 2c2a
2 these structures

will look like
M̃2

0 a
2 and a4 . (2.72)

Further, we have to reflect that in M̃2
0 a linear a dependence is hidden.

Therefore, we expect the general lagrangian also to depend on a term ∼ a3.
If we add to the shifted mass lagrangian in (2.7) and (2.8) some new

terms in order to get again the most general lagrangian after the promotion
of the O(a2) term, we can use the method of quadratic completion outlined
in section 2.1. There, we pointed out that it only worked, because the sub-
stitution procedure did not create structures which had not already been
present before. If we have indeed the most general lagrangian at hand, this
cannot happen. Therefore, we simply plug

M̃2
0 =M2 + 2c2a

2 (2.73)

into this general lagrangian and rewrite it in terms of M2 such that the
Gasser Leutwyler part (2.7) depends onM2 instead of M̃2

0 . This will cancel
the divergences in analogy to the continuum. The other parts, for example
terms proportional toM2a2, will be used to cure the new divergences.

The idea for our proceeding now is to construct all the necessary countert-
erms out of a spurion analysis in complete analogy to the method outlined
in sections 1.3 and 1.4. From the beginning on we will use the shifted quark
mass. Hence, the spurion field for the mass term is

χ̂′ = χ̂+ ρ̂ (2.74)

and not χ̂ alone. In order to construct terms ∼ a3 and ∼ a4 we employ again
ρ̂ as spurion.
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Now, we embark upon the construction of the counterterms. This will be
outlined in detail by means of the χ̂′ρ2 term. Then, the other ones can be
determined analogously. Spurion analysis dictates the following terms:〈

χ̂′†Σ + Σ†χ̂′
〉 〈
ρ̂†Σ + Σ†ρ̂

〉2
→ M̃2

0ρ
2
〈
Σ + Σ†

〉3

〈
χ̂′†Σρ̂†Σρ̂†Σ + Σ†χ̂′Σ†ρ̂Σ†ρ̂

〉
→ M̃2

0ρ
2
〈
ΣΣΣ + Σ†Σ†Σ†

〉
〈
χ̂′†Σ + Σ†χ̂′

〉 〈
ρ̂†Σρ̂†Σ + Σ†ρ̂Σ†ρ̂

〉
→ M̃2

0ρ
2
〈
Σ + Σ†

〉 〈
ΣΣ + Σ†Σ†

〉
〈
ρ̂†Σ + Σ†ρ̂

〉 〈
χ̂′†Σρ̂†Σ + Σ†χ̂′Σ†ρ̂

〉
→ M̃2

0ρ
2
〈
Σ + Σ†

〉 〈
ΣΣ + Σ†Σ†

〉
〈
ρ̂†ρ̂

〉 〈
χ̂′†Σ + Σ†χ̂′

〉
→ M̃2

0ρ
22
〈
Σ + Σ†

〉
〈
ρ̂†χ̂′ + χ̂′†ρ̂

〉 〈
ρ̂†Σ + Σ†ρ̂

〉
→ M̃2

0ρ
24
〈
Σ + Σ†

〉
〈
χ̂′†Σ− Σ†χ̂′

〉 〈
ρ̂†Σ− Σ†ρ̂

〉 〈
ρ̂†Σ + Σ†ρ̂

〉
→ M̃2

0ρ
2
〈
Σ + Σ†

〉 〈
Σ− Σ†

〉2

〈
χ̂′†Σ + Σ†χ̂′

〉 〈
ρ̂†Σ− Σ†ρ̂

〉2
→ M̃2

0ρ
2
〈
Σ + Σ†

〉 〈
Σ− Σ†

〉2

〈
χ̂′†Σ− Σ†χ̂′

〉 〈
ρ̂†Σρ̂†Σ− Σ†ρ̂Σ†ρ̂

〉
→ M̃2

0ρ
2
〈
Σ− Σ†

〉 〈
ΣΣ− Σ†Σ†

〉
〈
ρ̂†Σ− Σ†ρ̂

〉 〈
χ̂′†Σρ̂†Σ− Σ†χ̂′Σ†ρ̂

〉
→ M̃2

0ρ
2
〈
Σ− Σ†

〉 〈
ΣΣ− Σ†Σ†

〉
On the right hand side, we have set the spurions to their constant value,
i.e. χ̂′ → M̃2

0 and ρ̂ → ρ. The last four lines can be dropped, because〈
Σ− Σ†

〉
=
〈
ΣΣ− Σ†Σ†

〉
= 0 as shown in appendix A in (A.11) and (A.12).

In principle, every term is associated with its own LE constant. With eqs.
(A.9) and (A.22) we see, however, that they are not independent from each
other and will only occur as a linear combination with fixed coefficients. We
finally end up with two independent terms

A1
M̃2

0ρ
2

f 2

〈
Σ + Σ†

〉
and A2

M̃2
0ρ

2

f 2

〈
Σ + Σ†

〉3
. (2.75)

The factor of f 2 was introduced to keep the Ai dimensionless. When we
expand the traces in terms of pion fields, the fields will be weighted with dif-
ferent numerical factors, depending on whether they stem from the expansion
of A1

〈
Σ + Σ†

〉
or A2

〈
Σ + Σ†

〉3
. Yet, the structure of the fields itself is the

same: We will always get fields to second and fourth power. We already ex-
plicitly determined the factors involved with A1 in (2.15). Here, however, we
are not interested in detailed values. For both Ai we can write very generally

expansion = Ai
M̃2

0ρ
2

f 2

(
const+XAi

~π2

f 2 + YAi
~π4

f 4

)
. (2.76)
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XAi and YAi are the undetermined expansion coefficients. After dropping the
constant term this allows us to write down the counterterm

LM̃2
0 ρ

2 = M̃2
0ρ

2

f 2

 2∑
i=1

AiXAi

~π2

f 2 +
2∑
j=1

AjYAj
~π4

f 4


= M̃2

0ρ
2

f 2

(
Ãx
~π2

f 2 + Ãy
~π4

f 4

)
. (2.77)

All principally calculable and uninteresting factors have been absorbed into
a new LE constant, whose precise value is to be determined by lattice calcu-
lations. The renormalization of Ãx will now cancel divergent terms propor-
tional to M̃2

0a
2 stemming from the two point function while Ãy is responsible

for the divergences proportional to M̃2
0a

2 from the four point function. This
means that we simply add one divergent counterterm of order M̃2

0a
2 · π2 and

another one of order M̃2
0a

2 · π4 to our theory. What, if we, for instance,
needed an additional six-point vertex? Could we simply add an order π6

counterterm with coefficient Ãz? Yes, but it would not be independent any
more since its coefficient would be a linear combination of Ãx and Ãy. A
simple argument can clarify this feature. In our general considerations about
the structure of the M̃2

0ρ
2 counterterms we found that the basis consisted

of two elements:
〈
Σ + Σ†

〉
and

〈
Σ + Σ†

〉3
. Hence, we need exactly two LE

constants A1 and A2. Due to the unique linear relation in (2.76) they can
be determined from Ãx and Ãy and vice versa. Thus, we will always need
two independent quantities as input. All additional constants, then, can be
deduced therefrom.

The renormalization program which we apply here is directly fit to our
use: Any divergences from two- and four-point functions at one loop are
cancelled by appropriate counterterms. The main difference to the method
from Gasser and Leutwyler outlined in section 1.3 is that they renormalize
the whole generating functional to one loop without specification of a dis-
tinct observable. There, one can indeed perform any calculation, no matter
which kind of n-point function or observable it involves: Taking the NLO
tree level contribution into account one always ends up with a finite result.
In principle, one could also perform such a renormalization procedure with
(2.14) at leading order. Since we restrict our calculation to the scattering
length only, we can fortunately avoid such enormous efforts. The results in
the end are the same and much easier obtained.

The ρ4 case works in complete analogy. Here, we found after a spurion
analysis that any ρ4 term is represented by

B1
ρ4

f 4

〈
Σ + Σ†

〉2
and B2

ρ4

f 4

〈
Σ + Σ†

〉4
(2.78)
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which reads in terms of pion fields and redefined LE constants

Lρ4 = ρ4

f 4

(
B̃x
~π2

f 2 + B̃y
~π4

f 4

)
. (2.79)

Again, we encounter two low energy constants and the well known struc-
ture of pion fields. The same arguments as in the M̃2

0a
2 case announce the

independence of the two constants. In the spurion analysis of the ρ4 term
we omitted the chirally invariant term

〈
ρ†ρ

〉 〈
ρ†ρ

〉
just as we dropped pure

source terms of the form
〈
χ†χ

〉
or 〈LµνLµν〉 in section 1.3. As long as one

does not consider the sources dynamically, they are only constants and have
no further influence.

For completeness, we also write down the ρ3 term. The basis is the same
as for the χ′ρ2 term and the result is, as expected,

Lρ3 = ρ3

f 2

(
C̃x
~π2

f 2 + C̃y
~π4

f 4

)
. (2.80)

The terms ∼ p2a2 are, from the point of view of a spurion analysis, a
little bit more cumbersome. In the construction of chirally invariant traces
we now have to consider ∂µΣ and ∂µΣ† in addition to Σ, Σ†, ρ and ρ†. The
number of chirally invariant combinations is increasing rapidly. Using trace
relations again we find the following general structure:

D1
ρ2

f 2

〈
∂µΣ ∂µΣ†

〉
, D2

ρ2

f 2

〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉2
, D3

ρ2

f 2

〈
∂µΣ + ∂µΣ†

〉2
.

(2.81)
The general expansion of these operators in terms of pion fields and newly
defined low energy constants reads

Lp2ρ2 =
ρ2

f 2

(
D̃x

1
f 2 ∂µ~π∂µ~π + D̃y

1
f 4 (~π∂µ~π)(~π∂µ~π) + D̃z

1
f 4 ~π

2(∂µ~π∂µ~π)
)
. (2.82)

Now, we have all ingredients at hand to construct the (N)NLO lagrangian.
The N in parentheses denotes that elements both from NLO and NNLO are
included. Let us summarize once again the elements: L(N)NLO consists of the
old L̃4(M̃2

0 ) from (2.7) and of L̃′4(M̃2
0 ) from (2.8) without the ρ2 terms. From

now on, we refer to the latter as LM̃2
0 ρ

+ Lp2ρ. Further, we include all terms
which we determined in this section. Finally, we can write:

L(N)NLO = L̃4(M̃2
0 ) + Lp2ρ + LM̃2

0 ρ
+ Lp2ρ2 + LM̃2

0 ρ
2 + Lρ3 + Lρ4 . (2.83)
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There is still one remaining point to tackle: As anticipated, we want our
lagrangian to depend only onM2, the tree level pion mass which is used in
the LO lagrangian for the computation of the loop diagrams. Since our new
(N)NLO lagrangian in (2.83) includes all possible terms, the naive quadratic
completion mentioned in the beginning of this section should work. Thus,
substituting M̃2

0 = M2 + 2c2a
2 will not produce any new structure in the

power counting scheme. To check this and for later use we write down the
concrete result of this procedure although it is a rather lengthy expression.

L(N)NLO = L4(M2) + Lp2ρ + LM2ρ

+ L45 2c2a
2
〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
∼ p2a2

− L68 2M2 2c2a
2
〈
Σ + Σ†

〉2
∼ M2a2

− L68 4c2
2a

4
〈
Σ + Σ†

〉2
∼ a4

−W 68 ρ 2c2a
2
〈
Σ + Σ†

〉2
∼ a3

+ M
2ρ2

f 2

(
Ãx
~π2

f 2 + Ãy
~π4

f 4

)
∼ M2a2

+ 2c2a
2

f 2 ρ2
(
Ãx
~π2

f 2 + Ãy
~π4

f 4

)
∼ a4

+ Lρ3 + Lρ4 + Lp2ρ2 . (2.84)

The first term is the NLO Gasser-Leutwyler lagrangian from continuous chi-
ral perturbation theory, but now with mass M2. The second and third
term in the first line give corrections of order p2a andM2a corresponding to
Lp2ρ + LM̃2

0 ρ
in (2.83). Their LE constants do not contain any infinities as

discussed in detail in section 2.1. Then, all further terms which change un-
der the substitution procedure are listed. The column on the right hand side
indicates the power counting level at any time. We see that we indeed do not
gain any other structures which had not already been part of the lagrangian
before the substitution. The terms of the last line remain unchanged. The
expansion of the lagrangian in terms of pion fields finally allows one to com-
bine all the terms of the same power counting. We will have to do this when
we compute the pion mass.

Finally, we can organize what we have learned in this section in a power
counting scheme for the LCE regime:

LO : p2, m, a2

NLO : p2a, ma, a3

NNLO : p4, p2m, m2, p2a2, ma2, a4

. (2.85)
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At NLO, we have collected all the operators, whose LE constants will not get
renormalized. At NNLO, all operators which potentially serve to cancel any
divergencies are present. Note that NNLO only partially includes operators
from the L6 given in [15]. We still work to one loop and only adapted the
power counting to our special use.



Chapter 3

One-loop computation

In the first section of this chapter, the pion mass to one loop in the LCE
regime is computed and the differences to the continuum formulae are pointed
out. Then, in the second section, we compute the full scattering amplitude
to one loop.

3.1 The pion mass to one loop
We now embark upon the loop corrections of the pion mass in the LCE
regime. For this purpose, we have to calculate the truncated two point
Green’s function to one loop with the vertices given in section 2.5. The cor-
responding diagrams were already sketched in the previous section in figure
2.2. Hence, we write down all one loop diagrams leading to the expression

G ij
2,tr,1-loop(p,−p) =

1
2

∫ d4k

(2π)4
1

(k + p)2 +M2

∑
α;r,s

V irjs
α [p, p+ k,−p,−(p+ k)] (3.1)

for the truncated 2-point function. This expression factorizes into the loop
integral and the vertex sum. α runs from 1 to 4 and denotes the distinct
vertices from section 2.5. r and s are flavor indices of internal lines and have
to be summed over. Further we have set

p1 = p, p3 = −p,
p2 = p+ k, p4 = −(p+ k) (3.2)

45
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which expresses four-momentum conservation at each vertex. For the vertex-
sum we find the following result:∑

α;r,s
V irjs
α [p, p+ k,−p,−(p+ k)] =

δij
1

3f 2

(
4p2 + 4(p+ k)2 + 5M2 − 15 · 2c2a

2
)
. (3.3)

With this result we can write

G ij
2,tr, 1-loop(p,−p) =

δij
1

6f 2

[
(4 p2 + 5M2 − 15 · 2c2a

2)A0(M2) + 4A1(M2)
]
, (3.4)

where we defined the two scalar integrals via dimensional regularization

A0(M2) =
∫ dDk

(2π)D
1

(k + p)2 +M2 = −M
2

16π2 (∆ + 1− lnM2), (3.5)

A1(M2) =
∫ dDk

(2π)D
(k + p)2

(k + p)2 +M2 = −M2A0 . (3.6)

∆ = 2
ε
− γ + ln(4π) contains the divergence in ε = D − 4 for D = 4 and

γ = 0.577 is the Euler-Mascheroni constant. The detailed discussion of
integrals in dimensional regularization can be found in appendix B. The
truncated one-loop 2-point function in the end reads

G ij
2,tr, 1-loop(p,−p) = δij

1
6f 2 (4p2 +M2 − 15 · 2c2a

2)A0(M2) (3.7)

=− δij 1
6f 2 (4p2 +M2 − 15 · 2c2a

2)M
2

16π2 (∆ + 1− lnM2) .

We now calculate the tree level contribution of the truncated (N)NLO 2-
point function with the (N)NLO lagrangian (2.84) constructed in the previous
chapter. The expansion in terms of the pion fields and the determination of
the corresponding vertices is shown in appendix D. Thus, the appropriate
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truncated 2-point function reads

G ij
2,tr,(N)NLO(p,−p) =− 16L45

p2M2

f 2 − 32L68
M4

f 2

− 16W 45
p2ρ

f 2 − 32W 68
M2ρ

f 2

− 2M2 2c2a
2 1
f 2 (32L68 + 1

2Ax)

− 2c2a
2p2 1

f 2 (16L45 +Dx)

− 2c2a
2ρ

1
f 2 (32W 68 + Cx)

− (2c2a
2)2 1
f 2 (32L68 + Ax + 1

2Bx) . (3.8)

The complete truncated 2-point function finally defines the one loop self
energy Σ:

− Σ δij = G ij
2,tr = G ij

2,tr,(N)NLO +G ij
2,tr,1−loop . (3.9)

Since the truncated 2-point function consists of one-particle irreducible dia-
grams (1PI), we arrive at the full propagator by summing up all reducible
diagrams that one can construct out of the 1PI connected with the free prop-
agator [26]. This forms a geometric series:

G ij
2 (p ,−p) = 1

p2 +M2 + 1
p2 +M2 G

ij
2,tr

1
p2 +M2 + . . . = 1

p2 +M2 −G ij
2,tr

= δij
1

p2
E +M2 + ΣE(p2

E) . (3.10)

The subscript E in the last line reminds us that we are still in Euclidean
space. In order to get physical results, we have to Wick-rotate back to
Minkowski space. In our case, this is simply done by changing the sign of p2.
In terms of the self energy, this means

ΣM(p2
M) = ΣE(−p2

E). (3.11)

The pion mass is defined as the pole of the full propagator (3.10). This
dictates us immediately the renormalization condition for the pion mass:

p2
M −M2 − ΣM(p2

M) = 0 for p2
M = M2

π . (3.12)
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We can now compute the unrenormalized pion mass to one loop:

M2
π = M2 −

(
1

32π2
M4

f 2 + 5
32π2 ·

2c2a
2M2

f 2

)
(∆ + 1− lnM2)

− 8M4

f 2

[
2L4 + L5 − 4L6 − 2L8

]
− 16W0M2a

f 2

[
2W 4 +W 5 − 4W 6 − 2W 8

]
−M22c2a

2 1
f 2

[
8 (2L4 + L5 − 8L6 − 4L8) + (Dx − Ax)

]
+ 4W0c2a

3 1
f 2

[
32W 6 + 16W 8 + Cx

]
+ (2c2a

2)2 1
f 2

[
32L6 + 16L8 + Ax + 1

2Bx

]
. (3.13)

We used again the full notation in terms of Li and W i, because the linear
dependencies of the LE constants will be more obvious in this notation.
Further, we set again ρ = 2W0a, to make dependence on the lattice spacing
more obvious.

Wave function renormalization: For later use, we now compute the
wave function renormalization Zπ of the pion fields. It is defined as the
residuum of the full propagator (3.10). Using the residuum theorem from
complex analysis, one gets for Zπ

Z−1
π = 1− dΣ

d(p2) . (3.14)

Note that we take the derivative with respect to p2 after weWick-rotated back
to Minkowski space. The concrete determination of Zπ is straight forward
and reads

Zπ = 1− 1
24π2f 2M

2(∆ + 1− lnM2)− 16L45
M2

f 2

− 16W 45
ρ

f 2 − (16L45 +Dx)
2c2a

2

f 2 . (3.15)

Squaring Zπ, neglecting all powers higher thanM2 which would correspond
to higher order loop corrections and using (3.5), we can write

Z2
π = 1 + 4

3
1
f 2A0(M2)− 32L45

M2

f 2

− 32W 45
ρ

f 2 − (32L45 + 2Dx)
2c2a

2

f 2 . (3.16)
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As anticipated in section 2.6 we can write Z2
π = 1 +O (M2).

Renormalization: In analogy to the Gasser-Leutwyler constants intro-
duced in section 1.3, we now make the ansatz

Ki = Kr
i − µ−ε

γi
32π2 (∆ + 1) (3.17)

where Ki stands for both Li and the new LE constants Ax, Bx, Cx and
Dx. µ denotes the renormalization scale. The renormalization constants γi
belonging to the Li are well known and listed in table 1.1. γAx, γBx, γCx
and γDx must now be chosen such that we end up with a finite result for the
one-loop pion mass.

The M4 divergence in the first line of (3.13) is canceled by the terms
of the second line, exactly like in the continuum. The second divergence,
the M2a2 term, is canceled by the fourth line by properly adjusting the
renormalization constants. This gives us a first constraint on (Dx−Ax). On
the level of the renormalzation constants it reads

8 (2γ4 + γ5 − 8γ6 − 4γ8) + γDx − γAx
!= 5 . (3.18)

Since there are no more divergent terms stemming from the leading order
loop integrals, we can conclude that all other terms in (3.13) must be finite.
TheM2a term in the third line is finite by construction, c.f. section 2.1. All
the LE constants of the a3 term in the fifth line must also be finite since they
only involve the finite W i and the additional constant Cx which nowhere
else pops up and, therefore, we have to choose finite. This is equivalent to
γCx = 0. In order to keep the a4 term finite we get a second constraint on
the renormalization constants from (32L6 + 16L8 + Ax + 1

2Bx):

32γ6 + 16γ8 + γAx −
1
2γBx

!= 0 . (3.19)

Thus, we are left with two constraints for three unknown parameters. This
means that we still can choose one parameter. This is actually not a problem,
it is even expected. One encounters the same feature in the continuous case.
Going on shell means that one replaces p2 with M2

π . At NLO, p2M2 always
reduces to M4 since higher powers than M4 would correspond to higher
order loop corrections. In the continuous theory, this fact is manifest in the
linear combination [(2L4 + L5)− 2 (2L6 + L8)]. The constants within paren-
theses are linear combinations due to the Cayley-Hamilton relations, while
the linear combination between parentheses expresses the on shell condition.
This explains why we encounter an analogous linear combination (Dx−Ax).
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In our computation, only this specific combination enters and we can think
of it as one constant.1 The most important point for us, however, is that
every NLO term in (3.13) consists of linearly independent combinations of
LE constants. Although we will not be able to determine all the LE constant
separately, we can at least determine certain linear combinations and think
of them at any time as one constant. The bottom line is that these constants
then are independent from each other.

Having this information in mind, we now arbitrarily choose γBx = 0, then
γAx and γDx are determined and we get

γAx = −3, γBx = 0, γCx = 0, γDx = 4 . (3.20)

Finally, we get for the renormalized pion mass:

M2
π = M2 + 1

32π2
M4

f 2 ln
(
M2

µ2

)
+ 5

32π2 ·
2c2a

2M2

f 2 ln
(
M2

µ2

)

− 8M4

f 2

[
2Lr4 + Lr5 − 4Lr6 − 2Lr8

]
− 16W0M2a

1
f 2

[
2W 4 +W 5 − 4W 6 − 2W 8

]
−M22c2a

2 1
f 2

[
8 (2Lr4 + Lr5 − 8Lr6 − 4Lr8) + (Dr

x − Arx)
]

+ 4W0c2a
3 1
f 2

[
32W 6 + 16W 8 + Cr

x

]
+ (2c2a

2)2 1
f 2

[
32Lr6 + 16Lr8 + Arx + 1

2B
r
x

]
. (3.21)

As we have just discussed, we are free to collect the LE constants in square
bracket into new constants. Furthermore, we want the renormalization scale
µ to be absorbed into scale independent LE constants. For this purpose we
define

Λ2
3 =µ2 exp

(
8 · 32π2 (2Lr4 + Lr5 − 4Lr6 − 2Lr8)

)
Ξ2

3 =µ2 exp
(32π2

5
(
8 (2Lr4 + Lr5 − 8Lr6 − 4Lr8) + (Dr

x − Arx)
))

k1 = 16 (2W 4 +W 5 − 4W 6 − 2W 8)

k3 = 2 (32W 6 + 16W 8 + Cr
x)

k4 = (32Lr6 + 16Lr8 + Arx + 1
2B

r
x)

1If we had, in addition, computed the pion decay constant fπ to one loop, another
linear combination involving Dx would have enterd the calculation and one would have to
check carefully the linear independencies.
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and the pion mass reads

M2
π =M2

{
1 + 1

32π2
M2

f 2 ln
(
M2

Λ2
3

)
+ 5

32π2
2c2a

2

f 2 ln
(
M2

Ξ2
3

)
+ k1

W0a

f 2

}

+ k3
2c2W0a

3

f 2 + k4
(2c2a

2)2

f 2 . (3.22)

In the pioneering work of Gasser and Leutwyler on ChPT [1], they pa-
rameterized the pion fields in the SU(2) square root representation, another
non-linear realization of SU(2)×SU(2). Consequently, their low energy con-
stants li as well as the renormalization constants γ′i (c.f. eq. (9.6) in [1])
differ from the Li and γi which we have used so far. Their scale independent
LE constants l̄i are defined as

lri (µ) = γ′i
32π2

(
l̄i + lnM

2

µ2

)
, (3.23)

i.e., at the scale µ =M wMπ the value of l̄i is the same as the renormalized
low energy constant lri up to the number γ′i/32π2. In case of the pion mass,
their LE constants are related to our SU(2) matrix representation by lr3 =
−4(2Lr4 +Lr5−4Lr6−2Lr8) and correspondingly γ′3 = −4(2γ4 +γ5−4γ6−2γ8).
If we apply these relations to the above definition of Λ2

3 we get precisely

l̄3 = − ln
(
M2

Λ2
3

)
. (3.24)

Later on, we will therefore often use the notation in terms of l̄i due to the
simplicity of notation.

Discussion: Setting a = 0 we arrive at the continuum result first obtained
in [1]. Yet, for finite lattice spacing the continuum result gets modified by
an additional chiral logarithm proportional to M2a2, as anticipated, and
analytic corrections of order a3, a4 and M2a2. In order to estimate the
strength of the new logarithm, we rewrite the terms in square brackets such
that the dependence onM2 lies completely in ln(M2/Λ2

3):[
1 + 1

32π2{M
2 + 10c2a

2} ln
(
M2

Λ2
3

)
+ 10

32π2f 2 c2a
2 ln

(
Λ2

3
Ξ2

3

)
+ k1

W0a

f 2

]

One immediately sees that the factor in front of the chiral logarithm for c2a
2

is one order of magnitude larger then forM2. The consequence is that even
small contributions of O(a2) strongly affect the curvature which one would
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expect due to the continuum chiral logarithm. For negative c2 which so far
seems to be the most likely scenario (c.f. discussion in section 2.3), the value
ofM2 + 10c2a

2 can become small such that the expected curvature won’t be
seen.

The other interesting feature is that in the chiral limit the pion mass
does not vanish due to the lattice artifacts of the terms k3 and k4. These
contributions are of O(a3, a4). At this point, it is worth performing the
additive mass renormalization outlined in section 1.4, though this time, it is
not only restricted to the 1/a term. Hence, we determine the critical quark
mass m̃ such that the pion mass M2

π again vanishes in the chiral limit:

M̃2 = 2Bm̃ ≡ 2Bm−2c2a
2+k3

2c2W0a
3

f 2 +
(
k4

(2c2a
2)2

f 2 − k1
W0

f 2 k3
2c2W0a

3

f 2

)
.

The quark masses m̃ and m now differ by order a2 and higher, i.e. the
additional contributions of O(a3, a4) will be cleverly absorbed. With this
new definition, the one loop pion mass can be written in terms of m̃ and
finally reads

M2
π = M̃2

[
1 + 1

32π2
M̃2

f 2 ln
(
M̃2

Λ2
3

)
+ 5

32π2
2c2a

2

f 2 ln
(
M̃2

Ξ2
3

)
+ k1

W0a

f 2

]
.

As discussed in section 1.4, our final aim will be to express scattering
lengths in terms of the physical pion masses, resp. in terms of the pion mass
which one measures on the lattice. Therefore, we essentially do not need the
pion mass in terms of the critical quark mass. The above determination has
got a more pedagagical intention, namely, to illustrate the principal differ-
ences of the lattice observables to those in the continuum. For later use, we
now invert the pion mass M2

π with respect to the tree level pion mass M2.
The result is

M2 =M2
π

{
1− 1

32π2
M2

π

f 2 ln
(
M2

π

Λ2
3

)
− 5

32π2
2c2a

2

f 2 ln
(
M2

π

Ξ2
3

)
− k1

W0a

f 2

}

− k3
2c2W0a

3

f 2 − k4
(2c2a

2)2

f 2 (3.25)

where we neglected all corrections higher than our power counting scheme.
The LE constants will now also depend on M2

π instead ofM2, i.e. l̄3(M2)→
l̄3(M2

π).

3.2 The scattering amplitude to one loop
Next, we compute the scattering amplitude A(s, t, u). The one loop compu-
tation consists of the four diagrams shown in figure 3.1. The first three of



53

πk(p3)πi(p1)

πj(p2) πl(p4)

~l~k

~l

~k
πi(p1)

πj(p2) πl(p4)

πk(p3)

~k ~l

πi(p1) πk(p3)

πj(p2) πl(p4)

πi(p1)

πj(p2)

~k

πl(p4)

πk(p3)

Figure 3.1: One loop diagrams contributing to the scattering amplitude. The first one
is called s-channel diagram, the second respectively the third one t-channel respectively
u-channel diagram. The fourth diagram is referred to as tadpole diagram and involves a
six point vertex.

them are related by crossing symmetry which we have discussed in section
2.4. (Therefore, the diagrams are called s-channel, t-channel and u-channel.)
We will now use this fact to compute all of the necessary diagrams in a
systematic way. The tadpole contribution will be discussed afterwards.

According to (2.49), the amplitude A(s, t, u) corresponds to the flavor
combination δijδkl. This means that we only need to select all vertex combi-
nations of the s-, t- and u-channel leading to the distinct flavor combination
δijδkl. In order not to forget any diagrams we precisely investigate how cross-
ing symmetry relates these diagrams to each other: The t-channel diagram
with configuration δijδkl in figure 3.1 is obtained from the s-channel with
configuration δikδjl simply by exchanging p2 ↔ p3. Analogously, it works
with the u-channel with configuration δijδkl which is obtained from the s-
channel with configuration δilδkj by interchanging p2 ↔ p4. The idea now
is to write down an expression leading to the truncated four-point Green’s
function of the s-channel diagramm Gijkl

4,s-chn[p1, p2, p3, p4] which includes all
possible flavor combinations, i.e. δijδkl, δikδjl and δilδkj. From this general
s-channel, one can immediately derive the δijδkl contributions of the t- and
u-channel and, hence, derive the contributions to the amplitude A(s, t, u).

General s-channel: The momentum flow is defined by means of the arrows
in figure 3.1. All external momenta are defined as incoming resulting in the
total four momentum conservation

p1 + p2 + p3 + p4 = 0. (3.26)

The momentum conservation at each vertex gives

p1 + p2 + l + k = 0 ,
−l − k + p3 + p4 = 0 .

(3.27)
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With the vertices given in (2.51) - (2.54) the most general one loop s-channel
reads

Gijkl
4,s-chn[p1, p2, p3, p4] = 1

2

∫ d4k

(2π)4
1

(k2 +M2)((k + P12)2 +M2)
×
∑
α,β

V ijrs
α [p1, p2, l, k]V rskl

β [−l,−k, p3, p4] (3.28)

where we introduced the short-hand notation

Pab = (pa + pb), a, b = 1, 2, 3, 4. (3.29)

The sum over α and β runs from 1 to 4 according to the four different vertices.
Further, we sum over the repeated indices r, s = 1, 2, 3 of internal pion lines.
In order to extract the three different configurations {i, j, k, l} we rewrite the
complicated sum in (3.28) such that we can control the Kronecker deltas and
the factors which multiply the Kronecker deltas at each vertex separately.
For this purpose, we introduce the following short hand notation for the pion
configuration:

δ[i,j]M = δ{ij}δ{rs} and δ[k,l]N = δ{rs}δ{kl}.

M,N = 1, 2, 3 denotes the appropriate configuration of pion indices, i.e.

δ[i,j]1 = δijδrs, δ[i,j]2 = δirδjs, δ[i,j]3 = δisδrj,

δ[k,l]1 = δrsδkl, δ[k,l]2 = δrkδsl, δ[k,l]3 = δrlδks.

This allows us to write

Vα =
3∑

M=1
ṼαM δ[i,j]M and Vβ =

3∑
N=1

ṼβN δ[k,l]N .

ṼαM is the factor which multiplies the Kronecker deltas. For V1 and V2, its
content is momentum dependent and, therefore, depends on the specific pion
configuration. We indicate this fact with an additional subscript M resp. N
on α resp. β. Further we collect the momentum configuration in

[p1, p2, l, k] =: [in], [−l,−k, p3, p4] =: [out] .
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Now, the sum in (3.28) reads:∑
α,β

V ijrs
α [p1, p2, l, k]V rskl

β [−l,−k, p3, p4]

=
∑
α,β

V ijrs
α [in]V rskl

β [out]

=
4∑

α,β=1

3∑
M=1

Ṽ [in]
αM
δ[i,j]M

3∑
N=1

Ṽ
[out]
βN

δ[k,l]N

=
∑
M

∑
α

Ṽ [in]
αM
δ[i,j]M

∑
N

∑
β

Ṽ
[out]
βN

δ[k,l]N

=
∑
M

(Ṽ [in]
1M + Ṽ

[in]
2M + Ṽ

[in]
3M + Ṽ

[in]
4M )δ[i,j]M

×
∑
N

(Ṽ [out]
1N + Ṽ

[out]
2N + Ṽ

[out]
3N + Ṽ

[out]
4N )δ[k,l]N . (3.30)

Performing the sum over M and N in the last line produces nine different
summands. The whole expression is indeed very long. In order to control it
systematically we define

[M in ] := (Ṽ [in]
1M + Ṽ

[in]
2M + Ṽ

[in]
3M + Ṽ

[in]
4M ) (3.31)

[N out] := (Ṽ [out]
1N + Ṽ

[out]
2N + Ṽ

[out]
3N + Ṽ

[out]
4N ) (3.32)

and write the above sum in the following scheme:

δijδrs [1 in] [1 out] δrsδkl

δirδjs [2 in] [2 out] δrkδsl (3.33)
δisδrj [3 in] [3 out] δrlδks

Now, the recipe works as follows: Take at any time one factor of [M in], pair
it with one factor of [N out] and contract the Kronecker deltas with respect
to r and s. For example

δijδrs [1 in] [2 out] δrkδsl

= δijδkl
1

3f 2

[
(p1l + p2k + p2l + p1k)

−2(p1p2 + lk) +M2 − 3 · 2c2a
2
]

× 1
3f 2

[
(p1p2 − p1k − p2l + lk)

+2(p1l + p2k) +M2 − 3 · 2c2a
2
]
.
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3.2.1 s-channel
To compute the s-channel contribution to the amplitude A(s, t, u), i.e. the
s-channel with configuration δijδkl, we have to pick up the following contrac-
tions from the above scheme:

δij δrs δrs δkl −→ 3 δij δkl ,
δij δrs δrk δsl −→ δij δkl ,

δij δrs δrl δsk −→ δij δkl ,

δir δjs δrs δkl −→ δij δkl ,

δis δrj δrs δkl −→ δij δkl .

For the following discussion we define the function

Hij = −4pipj − p2
i − p2

j +M2. (3.34)

After many pages of algebra the vertex sum can finally be written as

[ s-vertex sum ] = δij δkl
1

9f 4

{
4 k4 + 8 k2(k · P12) + 4 (k · P12)2

+ 2 k2
[
H12 +H34 + 6M2 − 24 · 2c2a

2
]

+ 2 (k · P12)
[
H12 +H34 + 6M2 − 24 · 2c2a

2
]

+
[
H12 ·H34 + (H12 +H34)(3M2 − 12 · 2c2a

2)

− 18 · 2c2a
2M2 + 63(2c2a

2)2
]}
. (3.35)

We are now ready to perform the loop integration with respect to the in-
dependent loop momentum k. The necessary integrals in dimensional regu-
larization are given in appendix B. In order to obtain a physical result we
have to Wick-rotate back to Minkowski space setting the scalar products
pi · pj → −pi · pj. Going on shell, we further set p2

i = M2 (at one loop
one can use M2

π =M2 since the difference corresponds to higher order loop
corrections) and eventually obtain for the s-channel

As = 1
18f 4

{(
20 p1 · p2 +M2 − 48 · 2c2a

2
)
A0(M2)(

36 (p1 · p2)2 + 72 p1 · p2M2 − 144 p1 · p2 · 2c2a
2

+ 27M4 − 90 · 2c2a
2M2 + 63(2c2a

2)2)
B0(−P 2

12,M2)
}
. (3.36)
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3.2.2 t-channel
To compute the t-channel contribution we have to select in our scheme (3.33)
the δik δjl terms

δir δjs δrkδsl −→ δik δjl

δis δrj δrlδks −→ δik δjl
(3.37)

and then exchange the indices k ←→ j as well as the momenta p2 ←→ p3
in the vertex sum. The momentum conservation at each vertex therefore
translates to

p1 + p3 + l + k = 0,
−l − k + p2 + p4 = 0

(3.38)

and the loop integral therewith is written as

At δ
ij δkl = 1

2

∫ d4k

(2π)4
[ t-vertex sum ]

(k2 +M2) ((k + P13)2 +M2) . (3.39)

Defining the two functions

Fij = pi − 2pj, (3.40)
Gij = 2pipj + 2p2

i − p2
j +M2 (3.41)

the vertex sum reads

[ t-vertex sum ] = δij δkl
1

9f 4

{
2k4 + 4k2(k · P13)

− 4
[
(k · F13)(k · F24) + (k · F31)(k · F42)

]
− k2

[
G24 +G42 +G13 +G31 − 12 · 2c2a

2
]

+ 2k ·
[
F13G24 + F31G42 − F24G13 − F42G31 + 6P132c2a

2
]

+
[
G13G24 +G31G42 + 18 ·

(
2c2a

2
)2

− 3 · 2c2a
2(G24 +G42 +G13 +G31)

]}
. (3.42)

Performing the loop integrals, Wick-rotating back to Minkowski space and
going on shell, after a very long calculation we get the t-channel amplitude.

At = 1
18f 4

{(
24 (p1 · p3)(p1 · p3) + 12 (p1 · p2)(p1 · p3)− 12 p1 · p2M2

+ 36 · 2c2a
2 p1 · p3 − 6M4 + 18 (2c2a

2)2
)
B0(−P 2

13,M2)

+
(

16 p1 · p3 + 12 p1 · p2 + 4M2 + 12 · 2c2a
2
)
A0(M2)

}
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+ 1
72π2f 4

{
(p1 · p3)(p1 · p3) + 2(p1 · p2)(p1 · p3)− p1 · p3M2

− 4 p1 · p2M2 − 2M4
}
. (3.43)

Note that the last two lines are not divergent. They stem from the finite
part of integral (B.27).

3.2.3 u-channel
To compute the u-channel contribution we have to select in our scheme (3.33)
the δil δkj terms and proceed in complete analogy to the t-channel. The two
contributions read

δir δjs δrlδks −→ δil δkj ,

δis δrj δrkδsl −→ δil δkj .

Comparing the above contractions with the ones from the t-channel (3.37),
one immediately sees that they are simply related by exchanging the indices
l ↔ k. This, however, corresponds to interchanging p3 ↔ p4. Hence, we get
the u-channel amplitude from the t-channel amplitude directly by exchanging
p3 ↔ p4. Note that the s- and t-channel resp. the s- and u-channel cannot be
related in such a way due to the different way of contracting the pion indices.
Hence the u-channel amplitude reads

Au = 1
18f 4

{(
24 (p1 · p4)(p1 · p4) + 12 (p1 · p2)(p1 · p4)− 12 p1 · p2M2

+ 36 · 2c2a
2 p1 · p4 − 6M4 + 18 (2c2a

2)2
)
B0(−P 2

14,M2)

+
(

16 p1 · p4 + 12 p1 · p2 + 4M2 + 12 · 2c2a
2
)
A0(M2)

}
+ 1

72π2f 4

{
(p1 · p4)(p1 · p4) + 2(p1 · p2)(p1 · p4)− p1 · p3M2

− 4 p1 · p2M2 − 2M4
}
. (3.44)

3.2.4 Tadpole contribution
The last loop diagram is the tadpole diagram in figure ??. In order to
compute it we have to expand the LO lagrangian in terms of the pion fields
up to O(π6). The corresponding six point vertices are given in appendix D.2
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and give rise to the following one loop contribution

G ijkl
4,TP[p1, p2, p3, p4] = 1

2

∫ d4k

(2π)4
1

k2 +M2

×
∑
α

V ijrklr
α [p1, p2, k, p3, p4,−k]. (3.45)

The contraction is such that we select all terms leading to

δ{ij}δ{rk}δ{lr} −→ δij δkl .

Doing the integration, Wick-rotating back to Minkowski space and going on
shell leads us to the following one loop tadpole amplitude

ATP = − 1
18f 4

(
40 p1p2 + 9M2 − 63 · 2c2a

2
)
A0(M2) . (3.46)

3.2.5 (N)NLO tree level contribution
We now embark upon the (N)NLO computation of the four point function.
The expansion of the appropriate lagrangian (2.84) in terms of pion fields up
to fourth order and the corresponding four point vertices W ijkl

n are given in
appendix D.1. Since we consider the (N)NLO contribution at tree level only,
we simply have to sum up all four point vertices

G ijkl
(N)NLO[p1, p2, p3, p4] =

7∑
n=3

W ijkl
n [p1, p2, p3, p4]. (3.47)

Selecting again the δijδkl portion we arrive at the contribution for the scat-
tering amplitude

A(N)NLO = 32L13
1
f 4 (p1 · p2) (p1 · p2)

+ 16L2
1
f 4

(
(p1 · p3) (p1 · p3) + (p1 · p4) (p1 · p4)

)
+ 2X5

(
p1 · p3 + p1 · p4

)
+ 4X6(p1 · p2 + p3 · p4)− 8X7 . (3.48)

The Xi are linear combinations of low energy constants and are defined
in appendix D.1. Using momentum conservation, Wick-rotating back to
Minkowski space and going on shell the amplitude can be written as

A(N)NLO = 32L13
1
f 4 (p1 · p2)2 + 16L2

1
f 4

(
(p1 · p3)2 + (p1 · p4)2

)
+ 4X5

(
M2 + p1 · p2

)
− 8X6 p1 · p2 − 8X7 . (3.49)
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3.2.6 Wave function renormalization contribution
As anticipated in section 2.6, we have to include the effects of the wave
function renormalization on the LO tree level amplitude (2.57) when we
perform the full one loop computation. Basically, this means that the tree
level scattering amplitude (2.57) will be multiplied by the factor Z2

π that was
given in section 3.1. The O(M2) contributions of the scattering amplitude
multiplied by the O(M2) corrections from Z2

π in (3.16) will contribute with
additional terms of O(M2) which we collect in AFR. From now on, it is very
important to indicate which on shell condition in the tree level scattering
amplitude was used. On the one hand, we write ALO(M2

π) if we use p2 = M2
π

like in (2.57), i.e. if it is important that loop corrections to the pion mass
are considered. On the other hand, we write ALO(M2) like in (2.58) if we
apply p2 =M2

Z2
πALO(M2

π) =ALO(M2
π) + (Z2

π − 1)ALO(M2
π)

=ALO(M2
π) + (Z2

π − 1)ALO(M2)
=ALO(M2

π) + AFR . (3.50)
The first line is still exact. In the second line we use the fact that we can
write Z2

π = 1 + O(M2) and that we can neglect terms of higher powers than
M4. This allows us to replace ALO(M2

π) by ALO(M2). AFR is a lengthy
expression and reads

AFR =− 32L45
M2

3f 4

(
6 p1p2 + 3M2 − 3 · 2c2a

2
)

− 32W 45
ρ

3f 4

(
6 p1p2 + 3M2 − 3 · 2c2a

2
)

− 32L45
2c2a

2

3f 4

(
6 p1p2 + 3M2 − 3 · 2c2a

2
)

− 2Dx
2c2a

2

3f 4

(
6 p1p2 + 3M2 − 3 · 2c2a

2
)

+ 1
18f 4

(
48p1p2 + 24M2 − 24 · 2c2a

2
)
A0(M2) . (3.51)

Note that the last line contains en explicitly divergent term in A0(M2) de-
fined in (3.5).

3.2.7 Renormalization and cancellation of the diver-
gencies

We are now in the position to write down the full scattering amplitude A to
one loop. It is simply the sum of all the contributions that we have computed
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so far

A = ALO(M2
π) + As + At + Au + ATP + AFR + A(N)NLO .

After the discussion of the individual terms we know that this expression is
enormously large. In order not to lose the orientation, we first focus on the
renormalization of the divergencies.

Putting all ingredients together we can extract the divergent part of the
amplitude. The divergencies arise from the s-, t- and u-channel as well as
from the tadpole contribution. Further, we found a divergence in AFR.
A last divergent structure enters the amplitude when in the leading or-
der amplitude ALO(M2

π) the unrenormalized one-loop pion mass M2
π from

(3.13) is substituted.2 Due to the specific structure of M2
π , we can write

ALO(M2
π) = ALO(M2) + O(M4) where O(M4) includes both the divergen-

cies from the one-loop computation and the (unrenormalized) (N)NLO low
energy constants. For the renormalization process, only the O(M4) contri-
bution is important. ALO(M2) will be considerd in the very end. With this
ingredients, the divergent part reads

Adiv = 1
96π2f 4

{
8
(
(p1 · p2)2 + (p1 · p3)2 + (p1 · p4)2

)
− 27 · 2c2a

2M2

− 60 · 2c2a
2 (p1 · p2) + 33 · (2c2a

2)2
}(

∆ + 1− lnM2
)
. (3.52)

These infinities are cancelled by the appropriate counterterms from the
(N)NLO lagrangian. They enter our calculation through A(N)NLO and AFR.
Further, we encounter an additonal contribution after the substitution of the
unrenormalized pion mass (3.13) in the leading order amplitude (see above).
Collecting all counterterms we end up with the following structure:

ACT = 1
f 4

{
(p1 · p2)2 32L13 +

(
(p1 · p2)2 + (p1 · p2)2

)
16L2

+ 2c2a
2ρ
[
32W 45 −

4
3Cx − 4Cy

]
+M2 2c2a

2
[
32L45 − 4Ay + 2Dy − 2Dx + 4

3(Dx − Ax)
]

+ (p1 · p2) 2c2a
2
[
2Dy − 4Dz − 4Dx

]
+ (2c2a

2)2[32L45 − 2 (2Ay +By) + 2Dx −
4
3(Ax + 1

2Bx)
]}
. (3.53)

2One could use the renormalized pion mass as well, where all divergencies are already
cancelled. The structure of the whole computation, however, is more obvious in the here
described framework since some of the unrenormalized terms cancel each other and need
not be carried through the whole process.
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Note that neither in Adiv nor in ACT any terms proportional toM2 or aM2

are present. They dropped out during the computation. We now employ the
same renormalization procedure that we already used for the pion mass with
the ansatz

Ki = Kr
i − µ−ε

γi
32π2 (∆ + 1) . (3.54)

The renormalization constants for the Li were determined in continuous
ChPT (see table 1.1). Hence, L13 and L2 cancel the divergences which solely
depend on momentum, i.e. the terms proportional to (p1 · p2)2, (p1 · p3)2 and
(p1 · p4)2. The constants Ax, Bx, Cx, Dx were fixed in the calculation of the
pion mass. There, we also saw that the W i did not get renormalized. The
new free parameters of the four point function involving the lattice spacing,
therefore, are Ay, By, Cy, Dy and Dz. Their renormalization constants are
now fixed such that we get a finite scattering amplitude. Since there is no
divergence proportional to a3 this gives a first constraint on Cy and we must
choose γCy = 0. There are three remaining divergencies: one proportional
to a2M2, one to a2p1p2 and another one to a4. However, we have four con-
stants and, hence, can conclude that one of them is not independent. This
can be understood as follows: in the construction of the (N)NLO lagrangian
we found three independent operators for the term proportional to p2M2,
c.f. (2.82). In the expansion in terms of pion fields, we got a constant Dx

for the 2-point function and another two constants Dy and Dz for the four-
point function. This means that in such a four-point function, in principle,
one could distinguish a part proportional to p1p2 and, for instance, a part
p1p3 (c.f. the discussion of the Mandelstam variables). However, due to the
specific form of the vertices one encounters only a part proportional to p1p2.
This can be seen in the transition from (3.48) to (3.49) in the discussion of
the (N)NLO amplitude: Energy conservation and going on shell reduces one
degree of freedom and, hence, Dy will depend on Dz or vice versa. We choose
arbitrarily γDy = 0. The other renormalization coefficients are then easily
determined and read

γAy = 1
12 , γBy = 46

3 , γCy = 0, γDy = 0, γDz = −9.

The most important point for us is that the terms in square brackets in
(3.53) are again linearly independent combinations of low energy constants
and, therefore, can be collected in terms of new constants. Substituting
p1p2 = 1

2s −M
2 in (3.53) modifies the coefficients of the renormalized LE

constants, the linear combinations, however, are still linearly independent.
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In analogy to the procedure outlined at the pion mass we define:

Λ2
1 =µ2 exp

(
16 · 48π2Lr13

)
, Λ2

2 = µ2 exp
(
8 · 48π2Lr2

)
,

Ξ2
4 =µ2 exp

(
16π2

5

[
Dr
y − 2Dr

z − 2Dr
x

])
,

Ξ2
5 =µ2 exp

(
32π2

11

[
32Lr45 − 4Ary + 4Dr

z −
10
3 Dr

x −
4
3A

r
x)
])

,

Ξ2
6 =µ2 exp

(
32π2

11

[
32Lr45 − 2 (2Ary +Br

y) + 2Dr
x −

4
3(Arx + 1

2B
r
x)
])

,

k5 = 2
[
32W 45 −

4
3Cx − 4Cy

]
,

Using Mandelstam variables the renormalized part of the amplitude reads

Adiv + ACT = 1
96π2f 4

{
−2
(
s− 2M2

)2
ln
(
M2

Λ2
1

)

− 2
((
t− 2M2

)2
+
(
u− 2M2

)2
)

ln
(
M2

Λ2
2

)

+ 30 · 2c2a
2 s ln

(
M2

Ξ2
4

)
− 33 · 2c2a

2M2 ln
(
M2

Ξ2
5

)

− 33 · (2c2a
2)2 ln

(
M2

Ξ2
4

)}
+ k5

W02c2a
3

f 4 . (3.55)

In analogy to the discussion on the pion mass, we introduce the short hand
notation for the scale independent low energy constants

l̄i(M2) =− ln
(
M2

Λ2
i

)
i = 1, 2, 3 , (3.56)

ξ̄i(M2) =− ln
(
M2

Ξ2
i

)
i = 3, ..., 6 . (3.57)

3.2.8 The full one loop amplitude
The last step to do is to collect all analytic terms which we have not consid-
ered so far. These are

• the tree level leading order amplitude ALO(M2)

• the finite parts from the t- and u-channel which do neither involve
B0(M2, P 2) nor A0(M2)
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• the finite parts from the B0(M2, P 2) integrals which is given in ap-
pendix B

Putting all together and doing some algebra, we arrive at the following for-
mula for the one loop amplitude

A(s, t, u) = s−M2 − 2c2a
2

f 2 +B(s, t, u) + C(s, t, u) (3.58)

B(s, t, u) = 1
96π2f 4

{
3(s2 −M4)F (s)

+ {t (t− u)− 2M2 (t− 2u)− 2M2}F (t)

+ {u (u− t)− 2M2 (u− 2t)− 2M2)}F (u)

+ 2c2a
2
[
(42c2a

2 + 18M2 − 24s)F (s)

+ (12c2a
2 − 12M2 + 6t)F (t)

+ (12c2a
2 − 12M2 + 6u)F (u)

]}
(3.59)

C(s, t, u) = 1
96π2f 4

{
2
(
l̄1 + 2

3
)
(s− 2M2)2 +

(
l̄2 + 7

6
)(
s2 + (t− u)2

)
+M4

+ 2c2a
2
[
30 s (ξ̄4 − 1)− 3M2(11 ξ̄5 − 6)

− 33 · 2c2a
2
(
ξ̄6 − 1

)]}
+ k5

W02c2a
3

f 4 (3.60)

in which we use the function F (x) defined in appendix B

F (p2) =

 σ ln 1−σ
1+σ − iπσ , p2 = s

σ ln σ−1
σ+1 , p2 = t, u

 with σ =
√

1− 4M2

p2 . (3.61)

The terms in square brackets in (3.59) and (3.60) and the a3 term in (3.60) are
new with respect to the continuum amplitude [1] which is recovered setting
a = 0.



Chapter 4

Scattering lengths

In the first section the a0
0, a2

0 and a1
1 scattering lengths to one loop are explic-

itly computed. This section focuses mainly on the technical aspects of the
calculation. In the subsequent section, the application of the formulae to fit
lattice data is discussed.

4.1 One-loop computation of a0
0, a2

0 and a1
1

The scattering lengths are computed with the same formalism that we already
applied on the tree level amplitude. Let us recapture the most important
steps: First, we have to relate the one-loop amplitude A(s, t, u) from the
previous section to amplitudes T I of definite isospin I = 0, 1, 2 with the
isospin decomposition formulae (2.59), (2.60) and (2.61) given in section 2.6.
Then, the partial wave amplitude T Il is projected out by means of the partial
wave decomposition (2.66). Finally the scattering lengths are extracted with
the low energy expansion (C.26) described in appendix C.

The isospin amplitude T I is decomposed in analogy to the scattering
amplitude A(s, t, u) into

T I = T IA + T IB + T IC (4.1)
The T IA are the tree level isospin amplitudes which we have already computed
in section 2.6. T IB and T IC are obtained by plugging B(s, t, u) resp. C(s, t, u)
from the previous section into the isospin decomposition formulae of section
2.6. One then extracts the “partial scattering lengths” belonging to T IA, T IB
and T IC and finally adds them up to get the total scattering length

aIl = aIl,A + aIl,B + aIl,C . (4.2)
The scattering lengthes a2

0,A and a1
1,A are the same like in the tree level

calculation given by the formulae (2.69) and (2.68). With a0
0,A one has to be

65
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careful, because there, the on-shell condition p2 = M2
π enters the computation

resulting in an additional contribution

a0
0,A = 7

32πf 2

(
M2 − 5

72c2a
2
)

+ 3
8πf 2

(
M2

π −M2
)
. (4.3)

To determine aIl,B we replace in the isospin amplitude T I0,B the Mandelstam
variables by

s = 4 (q2 +M2), t = −2q2 (1− x), u = −2q2 (1 + x) (4.4)

where x = cos θ as discussed in detail in section 2.4. This leads to a structure
of the form

T I0,B = 1
96π2f 4

(
S(q, x) · F (s) + T (q, x) · F (t) + U(q, x) · F (u)

)
(4.5)

S, T and U are lengthy expressions with q and x as kinetic variables. Note
that q can appear only with even powers.

Let us now focus on a0
0,B. In the low energy expansion of the a0

0 scattering
length we consider the limit q → 0. This means that we can neglect all
terms which depend on q2 or higher powers. Performing the partial wave
decomposition (2.66) by means of an integral over x (remember that P (x) = 1
for l = 0) we end up with the following expression

a0
0,B = 1

64π
1

96π2f 4

{∫ +1

−1
dx
(
147M4 + 75 · (2c2a

2)2 − 210M2 2c2a
2
)
F (s)

+
∫ +1

−1
dx
(
5M4 + 45 · (2c2a

2)2 − 30M2 2c2a
2
) [
F (t) + F (u)

]}
q2→0

.

The expansion of the function F (s) in powers of q2/M2 using (4.4) gives

F (s) = −2 q2

M2 − iπ
(
q2

M2

) 1
2

+ . . . , (4.6)

hence, in the low energy limit, it does not contribute. The remaining now is
to compute the integral

It =
∫ +1

−1
dxF (t) =

∫ +1

−1
dx σ ln σ − 1

σ + 1 (4.7)

and the corresponding integral with respect to F (u). The function

σ(x) =

√√√√1− 4M2

t(x) =
√

1 + B

1− x with B = 2M2

q2 (4.8)
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is monotonic on the interval (−1, 1) and, therefore, can be inverted to

x = 1− B

σ2 − 1 . (4.9)

This allows us to perform the integral over σ with boundaries

σ(−1) =
√

1 + B

2 =: σi , σ(+1) =∞ (4.10)

and with the transformed measure

dx = dx

dσ
dσ = 2Bσ

(σ2 − 1)2 dσ . (4.11)

The final integral reads

It = 2B
∫ ∞
σi

dσ
σ2

(σ2 − 1)2 ln σ − 1
σ + 1 . (4.12)

The integral over F (u) leads precisely to the same result. This integral can
be solved analytically. To do this, we employ the computer algebra system
MAPLE and finally expand the result in powers of q2

M2 since we are interested
in the low energy behaviour only. The expansion gives

It = −4− 2
3
q2

M2 +O
(
q4

M4

)
(4.13)

With this result we compute

a0
0,B = 5

128
2c2a

2M2

π3f 4 − 5
768

M4

π3f 4 −
15
256

(2c2a
2)2

π3f 4 . (4.14)

The computation of a0
0,C is straightforward and not very illuminating.

Since the terms become very lengthy we let again MAPLE do the work.
Adding up a0

0,A, a0
0,B and a0

0,C , we end up with

a0
0 = 7

32π
M2

f 2

(
1 + 5

84π2
M2

f 2

{
l̄1 + 2l̄2 + 21

8

}

− 5
84π2

2c2a
2

f 2

{
9ξ̄4 −

33
8 ξ̄5 + 15

4

})

− 5
32π

2c2a
2

f 2

(
1− W0a

f 2 k5 −
2c2a

2

32π2f 2

{
11ξ̄6 − 1

})

+ 3
8πf 2 (M2

π −M2) . (4.15)
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The determination of a2
0 works analogously to the a0

0 case. The result is

a2
0 =− M2

16πf 2

(
1− M2

12π2f 2

{
l̄1 + 2l̄2 + 3

8

}
− 2c2a

2

32π2f 2

{
11ξ̄5 + 2

})

− 2c2a
2

16πf 2

(
1− W0a

f 2 k5 −
2c2a

2

32π2f 2

{
11ξ̄6 − 7

})
. (4.16)

Setting a = 0 we arrive at the well known continuum result for a0
0 and a2

0
to one loop [1]. As anticipated, we get for non-vanishing lattice spacing
additional chiral logarithms of order a2M2 lnM2 and a4 lnM2, as well as
analytic corrections of order a3 and a4. The remarkable point at this result
is that, contrary to the continuum, the scattering lengths do not vanish in
the chiral limit. We encountered this feature already at tree level due to a
non-vanishing analytic correction of order a2. New at one-loop level is that
the scattering lengths now even diverge in the chiral limit because of the
non-analytic contribution of order a4 lnM2.

The calculation of a1
1 is different with respect to two important points.

1. We must consider the Legendre polynomial P1(x) = x in the integrals.
2. The low energy expansion in (C.26) for l = 1 extracts a factor of q2/M2.
Hence the a1

1 scattering length is essentially what is multiplied by q2 in the
final expansion and we can drop all powers higher than q2.

Writing again T 1
B,1 in the notation of (4.5), we get for the coefficients

S(q, x) = 16 q4x

T (q, x) =
(
30 · 2c2a

2M2 + 15(2c2a
2)2 − 17M4

)
+
(
60 · 2c2a

2 − 28M2
)
q2

+
(
12M2 − 60 · 2c2a

2
)
q2x+O(q4)

= A+ B q2 + C q2x+O(q4)
U(q, x) =−A− B q2 + C q2x+O(q4) .

Dropping all contributions of O(q4) the integral for a1
1,B reads

a1
1,B = 1

64π
1

96π2f 4

{
M2

q2

[∫ +1

−1
dx
(
Ax+ B q2x+ C q2x2

)
F (t)

+
∫ +1

−1
dx
(
−Ax− B q2x+ C q2x2

)
F (u)

]}
q2→0

. (4.17)

Following the same arguments that were outlined for a0
0,B we derive the fol-
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lowing formulae for the integrals to perform∫ +1

−1
dx xF (t) =

∫ ∞
σi

dσ
2Bσ

(σ2 − 1)2

(
1− B

σ2 − 1

)
σ ln σ − 1

σ + 1

=−
∫ +1

−1
dx xF (u) = 2

9
q2

M2 +O(q4) ,∫ +1

−1
dx x2 F (t) =

∫ ∞
σi

dσ
2Bσ

(σ2 − 1)2

(
1− B

σ2 − 1

)2
σ ln σ − 1

σ + 1

=
∫ +1

−1
dx x2 F (u) = −4

3 −
2
9
q2

M2 +O(q4) . (4.18)

Plugging these results into (4.17) and taking the q → 0 limit we get

a0
0,B = 65

2304
2c2a

2M2

π3f 4 − 89
13824

M4

π3f 4 −
5

4608
(2c2a

2)2

π3f 4 . (4.19)

Evaluating a1
1,C with MAPLE and adding up all partial scattering lengths we

finally arrive at the a1
1 scattering length

a1
1 = M2

24πf 2

(
1− M2

12π2f 2

{
l̄1 − l̄2 + 65

48

}
− 2c2a

2

16π2f 2

{
5ξ̄4(M2)− 35

6

})

+ 2c2a
2

24πf 2

(
2c2a

2

16π2f 2

{ 5
12

})
. (4.20)

Setting a = 0, the continuum result [1] is recovered again. The result for a1
1

looks different compared with a0
0 and a2

0: There are no analytic corrections
of order a2 and a3, and also the term a4 lnM2 is missing. This is because
such contributions cancel when we compute the T 1 amplitude by taking the
difference A(t, s, u) − A(u, t, s). Like for a0

0 and a2
0, the scattering length a1

1
does not vanish in the chiral limit, though, the dependence on the lattice
spacing is smaller due to the missing terms mentioned above.

4.2 Fitting formulae
As explained in section 1.4 we have to express the scattering lengths in terms
of the physical pion mass M2

π only. For this purpose we simply plug the
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inverted pion mass (3.25) into the above scattering length and finally obtain:

a0
0 = 7

32π
M2

π

f 2

(
1 + 5

84π2
M2

π

f 2

{
l̄1(M2

π) + 2l̄2(M2
π)− 3

8 l̄3(M2
π) + 21

8

}
(4.21)

+5
7k1

W0a

f 2 −
5

84π2
2c2a

2

f 2

{201
40 ξ̄3(M2

π)− 33
8 ξ̄4(M2

π) + 15
4

})

− 5
32π

2c2a
2

f 2

(
1− {k3 + k5}

W0a

f 2 − k4
2c2a

2

f 2 − 2c2a
2

32π2f 2

{
11ξ̄5(M2

π) + 1
})

,

a2
0 = − M2

π

16πf 2

(
1− M2

π

12π2f 2

{
l̄1(M2

π) + 2l̄2(M2
π)− 3

8 l̄3(M2
π) + 3

8

}
(4.22)

− k1
W0a

f 2 −
2c2a

2

32π2f 2

{
11ξ̄4(M2

π)− 5ξ̄3(M2
π) + 2

})

− 2c2a
2

16πf 2

(
1− {k3 + k5}

W0a

f 2 − k4
2c2a

2

f 2 − 2c2a
2

32π2f 2

{
11ξ̄5(M2

π)− 7
})

.

Note that we have explicitely written l̄i(M2
π) and ξ̄i(M2

π) because the chiral
logarithms in the low energy constants also change replacing M2 by M2

π .
In principle, one should also replace the pion decay constant f of the chiral
limit with the physical decay constant fπ to one loop. In the continuum,
this would generate an explicit dependence on l̄4. Though, fπ has not been
computed yet with lattice corrections in the LCE regime. It could be done
by constructing the appropriate axial vector current and imposing a corre-
sponding renormalization condition. Such a method is outlined in [30]. Here,
however, we treat f simply as a free parameter.

For a1
1 we get analogously

a1
1 = M2

π

24πf 2

(
1− M2

π

12π2f 2

{
l̄1(M2

π)− l̄2(M2
π)− 3

8 l̄3(M2
π) + 65

48

}

−k1
W0a

f 2 −
2c2a

2

16π2f 2

{
−5

2 ξ̄3(M2
π) + 5ξ̄4(M2

π)− 35
6

})

− 2c2a
2

24πf 2

(
k3
W0a

f 2 + k4
2c2a

2

f 2 − 2c2a
2

16π2f 2

{ 5
12

})
. (4.23)

With this replacement, a1
1 now also depends on terms of O(a3).

The above formulae can now be applied to fit scattering lengths obtained
from simulations with unphysical pion masses to the physical point of Mπ '
135 MeV or to the chiral limit. As a coproduct, one obtains numerical values
for distinct linear combinations of low energy constants. Of special interest
are, of course, the GL constants from the continuum, since they are the
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LE constants of the “true” low energy expansion of QCD. Before the era
of lattice QCD, these low energy constants could only be determined by
phenomenological arguments and are indeed constants corresponding to the
uniquely fixed pion mass of Mπ ' 135 MeV. This is the reason why one uses
in continuum ChPT the scale independent GL constants l̄i. On the lattice
where the quark mass and, hence, the pion mass is a variable, it is, therefore,
useful to work with the scale dependent GL constants in the manner we
have discussed them in (3.23). Expressing the scattering lengths with scale
dependent LE constants the chiral logarithm with the renormalization scale
µ will explicitly appear in our formulae.

To give some practical formulae, we primarily assume to perform mea-
surements at one fixed lattice spacing and we will later give the generalization
to different lattice spacings. Focussing first on a0

0 and a2
0 the formulae read

a0
0 = 7M2

π

32πf 2

(
κ01 + M2

π

32π2f 2

{
5 ln M

2
π

µ2 + 10
21 l

I=0
ππ

}
+ 2c2a

2

32π2f 2

{
32
21 ln M

2
π

µ2

})

− 5 · 2c2a
2

32πf 2

(
κ02 + 2c2a

2

32π2f 2

{
11 ln M

2
π

µ2

})
, (4.24)

a2
0 =− M2

π

16πf 2

(
κ21 + M2

π

16π2f 2

{
7
2 ln M

2
π

µ2 −
4
3 l
I=2
ππ

}
+ 2c2a

2

16π2f 2

{
3 ln M

2
π

µ2

})

− 2c2a
2

16πf 2

(
κ22 + 2c2a

2

16π2f 2

{
11
2 ln M

2
π

µ2

})
. (4.25)

In lIππ, we collected the linear combination of GL constants for definite isospin
channels:

lI=0
ππ = l1 + 2l2 −

3
8 l3 + 21

8 , lI=2
ππ = l1 + 2l2 −

3
8 l3 + 3

8 . (4.26)

In κIj, we further collected analytic terms of O(a) and O(a2). At fixed lattice
spacing the κIj are constants except for the renormalization scale dependence
µ which enters through the ξi(µ).

Let us summarize qualitatively what we gained with this rewriting of the
scattering length for one distinct isospin channel I: So far, we still have the
parameters from continuous ChPT, i.e. f and lIππ, further, there are the
lattice parameters c2, κI1 and κI2. Hence, there are five independent fitting
parameters. This allows us to write down the most general fitting formula in
the LCE regime:

aI0 =A00 + A10M
2
π + A20M

4
π + A30M

4
π lnM2

π + A40M
2
π lnM2

π + Ã40 lnM2
π .

(4.27)
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Ã40 is not an independent fitting parameter any more since, like A40, it
depends only on c2 and on f (and on the renormalization scale).

If one simultaneously analyzes data at different lattice spacings one must
consider that the κIj consist of two independent terms at any time, one of
O(a) and the other one of O(a2). Thus, we have to write

κIj = 1 + κ
(1)
Ij a+ κ

(2)
Ij a

2 . (4.28)

In other words, the number of independent fitting parameters is increased
from five to seven. In the case that one analyzes scattering lengths for the
I = 0 and for the I = 2 channel simultaneously, one sees by comparing (4.21)
and (4.22) that the O(a) terms κ(1)

Ij are correlated by

5κ(1)
01 = −7κ(1)

02 , κ
(1)
02 = κ

(1)
22 . (4.29)

One remaining point to tackle is the comparison of the scattering lengths
between the GSM regime and the LCE regime. The formulae for the GSM
regime are simply obtained by dropping all contributions of O(a3, a4,M2

πa
2)

in (4.21) and (4.22) since these are not present in the GSM regime.

a0
0 = 7M2

π

32πf 2

(
1 + κ

(1)
01 + M2

π

32π2f 2

{
5 ln M

2
π

µ2 + 10
21 l

I=0
ππ

})
− 5 · 2c2a

2

32πf 2 , (4.30)

a2
0 =− M2

π

16πf 2

(
1 + κ

(1)
21 + M2

π

16π2f 2

{
7
2 ln M

2
π

µ2 −
4
3 l
I=2
ππ

})
− 2c2a

2

16πf 2 . (4.31)

Now the κIj are only of O(a). Together with f , lI=0
ππ and c2, there are

four independent parameters and the fitting formulae exhibit the following
functional form

aI0 = A00 + A10M
2
π + A20M

4
π + A30M

4
π lnM2

π . (4.32)

For completeness, we outline the discussion for the a1
1 case: Using the

same arguments as above one arrives at

a1
1 = M2

π

24πf 2

(
κ11 −

M2
π

24π2f 2

{
3
4 ln M

2
π

µ2 + 2lI=1
ππ

}
+ 2c2a

2

24π2f 2

{
15
4 ln M

2
π

µ2

})

− 2c2a
2

24πf 2 κ12 , (4.33)

where lI=1
ππ = l1 − l2 − 3

8 l3 + 65
48 is defined in analogy to the a0

0 and a2
0 case.

The structure of the coefficient κ11 = 1 + κ
(1)
11 a+ κ

(2)
11 a

2 is the same as in the
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I = 0, 2 case, κ12 = κ
(1)
12 a + κ

(2)
12 a

2 is slightly different due to the absence
of the O(a2) terms in a1

1. For a fixed lattice spacing, there are again five
independent parameters: f , lI=1

ππ , c2, κ11 and κ12. The corresponding fitting
formula reads

a1
1 =A01 + A11M

2
π + A21M

4
π + A31M

4
π lnM2

π + A41M
2
π lnM2

π . (4.34)

Note that a term Ã41 lnM2
π like in (4.27) does not appear. Further, A01 is at

least of O(a3) why we expect a1
1 to become very small in the chiral limit.

If one has data for all three isospin channels one can make use of the fact
that the κ(1)

I1 are all together related by

7κ(1)
01 = −5κ(1)

21 = −5κ(1)
11 . (4.35)

A corresponding relation for κ(1)
12 cannot be derived because the relevant low

energy constants of the O(a3) contribution are different in the a1
1 case: while

for a0
0 and a2

0 their form is always {k3 + k5}, k5 is completely missing in a1
1

and a matching is not possible.
It remains to discuss the GSM regime for a1

1. We get the appropriate
formulae again by dropping the contributions of O(a3, a4,M2

πa
2):

a1
1 = M2

π

24πf 2

(
1 + κ

(1)
11 −

M2
π

24π2f 2

{
3
4 ln M

2
π

µ2 + 2lI=1
ππ

})
(4.36)

Except for a correction of O(aM2
π) this is just the a1

1 scattering length from
continuum ChPT.



Conclusion and outlook

In this diploma thesis, we computed the one-loop scattering lengths a0
0, a2

0 and
a1

1 in WChPT in order to have analytic expressions at hand to extrapolate
numerical data obtained from pion scattering to the physical point.

The remarkable result of our computation in the LCE regime is that
the one-loop scattering lengths do not vanish in the chiral limit at non-zero
lattice spacing. While this effect is small for a1

1 due to analytic corrections
of O(a3, a4), it is substantial for a0

0 and a2
0. There, the remaining analytic

terms are of O(a2), and in addition, there is also a singular chiral logarithm
proportional to a4 lnM2

π .
For all isospin channels, there is besides the traditional chiral logarithm

from continuum ChPT another chiral logarithm proportional to a2M2
π lnM2

π .
Hence, using the formulae from continuum ChPT to extrapolate lattice data
from larger pion masses to the pysical point can easily lead to erroneous
results. The careful analysis of the quark mass regime and the appropriate
application of the formulae that were developed in this work should lead to
a better extrapolation. A future project which employs our formulae to fit
the available data from the CP-PACS collaboration [5] would be of great
interest.

If one uses pion scattering to numerically determine the GL coefficients,
one often misses the expected characteristic logarithmic curvature of contin-
uum ChPT. Our formulae give an explanation how the functional form can
facily be deluted. Using our result takes the lattice artifacts directly into
account and should give better estimates for the desired constants.

The scattering lengths exhibit a direct dependence on the parameter c2
which determines the phase diagram of the theory. Therefore, we propose
to use pion scattering to get a quantitative picture of this parameter. At
least the sign of c2 is supposed to be determined from an extrapolation to
the chiral limit.

It would be interesting to repeat the whole computation for the twisted
mass case. Since the presence of a twisted mass term explicitly breaks isospin
symmetry, the isospin decomposition of the amplitude has to be modified.
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The computation for 2+1 flavors, however, should be the most tempting chal-
lenge. In this case, the trace relations that we used to simplify the lagrangian
are not valid any more and much more operators must be considered. This
means that the number of independent LE constants increases. Further, due
to the lack of quark mass degenracy, the on-shell condition strongly depends
on the particle content and is not the same for all “participants” as it was in
this work. We hope that these computations will soon be performed.



Appendix A

Trace relations

The motivation for the analysis is to find relations between different oper-
ators in SU(2), for example between

〈
Σ + Σ†

〉2
and

〈
ΣΣ + Σ†Σ†

〉
. Σ =

exp(i~σ~π(x)/f) is the exponential realization described in chapter 1.3, as
usual. As an SU(2) matrix, it has the unitarity properties Σ†Σ = ΣΣ† = 1
and det Σ = 1. This can also be written as

Σ = A (x) 1 + i ~B (x) · ~σ (A.1)

with the additional constraint

A2 + ~B2 = 1 (A.2)

where A(x) and ~B(x) are real space-time dependent parameters. One easily
checks that this parametrization indeed fullfills the unitarity conditions:

Σ†Σ = ΣΣ† = A2 − i2( ~B~σ)( ~B~σ) = A2 + ~B2 = 1 (A.3)

where we have used ( ~B~σ)( ~B~σ) = ~B2 and (A.2). Further, we can write:

det Σ =
∣∣∣∣∣ A+ iB3 iB1 +B2
iB1 −B2 A− iB3

∣∣∣∣∣ = A2 +B2
3 − (−B2

1 −B2
2) = 1. (A.4)

First we derive in a direct brute force computation a relation between〈
Σ + Σ†

〉2
and

〈
ΣΣ + Σ†Σ†

〉
:

ΣΣ = (A+ i ~B~σ)2 = A2 + 2Ai ~B~σ − ~B2 (A.5)
Σ†Σ† = (A− i ~B~σ)2 = A2 − 2Ai ~B~σ − ~B2 (A.6)〈

ΣΣ + Σ†Σ†
〉

=
〈
2A2 − 2B2

〉
= 8A2 − 4 (A.7)〈

Σ + Σ†
〉2

= 〈2A〉2 = 16A2 (A.8)
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and we can conclude:〈
ΣΣ + Σ†Σ†

〉
= 1

2
〈
Σ + Σ†

〉2
− 4. (A.9)

This is the desired relation. If we are interested in relations of the lagrangian
which involves

〈
ΣΣ + Σ†Σ†

〉
and

〈
Σ + Σ†

〉2
only separately, i.e. two terms

with its own low energy constant, we can drop the additive constant in eq.
(A.9) since a constant on lagrangian level does not affect the equations of
motion. This is, for example, the case in L4 and L′4 in eqs. (1.65) and (1.66)
and we can write 〈

ΣΣ + Σ†Σ†
〉

= 1
2
〈
Σ + Σ†

〉2
. (A.10)

Yet, if we consider terms like, for example,
〈
ΣΣ + Σ†Σ†

〉
·
〈
Σ + Σ†

〉
we must

include the constant because otherwise we would loose dynamical informa-
tion.

At this point, we can convince ourselves that the parity breaking oper-
ators

〈
Σ− Σ†

〉
and

〈
ΣΣ− Σ†Σ†

〉
vanish. This can be seen by the direct

application of (A.1), (A.5) and (A.6) in〈
Σ− Σ†

〉
= 2i ~B 〈~σ〉 = 0 , (A.11)〈

ΣΣ− Σ†Σ†
〉

= 4iA ~B 〈~σ〉 = 0 (A.12)

where we used the fact that the Pauli matrices are traceless.
To get more intricate trace relations we make use of the Cayley–Hamilton

theorem [31]. Let A be a real or complex valued square n× n matrix and

P (λ) = det
(
λ1− A

)
(A.13)

its characteristic polynomial. The Cayley–Hamilton theorem states that sub-
stituting the matrix A in the characteristic polynomial results in the zero
matrix:

P (A) = 0 . (A.14)

A neat proof of an algorithm to determine the coefficients of the characteristic
polynomial is given in [32]. The special feature there is that the coefficients
only appear as functions of the traces of its successive powers. One starts
with n = 1 and obtains recursively P (A) for any given n. Our case of interest
is, of course, n = 2. One obtains:

0 = P (A) = A2 − 〈A〉A+ 1
2
(
〈A〉2 −

〈
A2
〉)

1. (A.15)
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This equation fits perfectly to determine trace relations of matrices. For this
purpose, we multiply (A.15) with A and take the trace of the whole equation
to get 〈

A3
〉
− 3

2
〈
A2
〉
〈A〉+ 1

2 〈A〉
3 = 0 (A.16)

Now we make the Ansatz A = λ1A1 + λ2A2 + λ3A3. After some algebra we
end up with the fowllowing expression:∑

2 perm
〈A1A2A3〉 −

∑
3 perm

〈A1A2〉 〈A3〉+ 〈A1〉 〈A2〉 〈A3〉 = 0. (A.17)

With this equation, we can find explicit relations by substituting A1, A2, and
A3 in (A.17) with matrices of our interest. Before doing so, we introduce two
useful formulae:

(∂µΣ†)Σ =− Σ†(∂µΣ) , (A.18)〈
Σ ∂µΣ†

〉
= 0 . (A.19)

The first one follows from differentiating the unity operator ∂µ1 = ∂µ(Σ†Σ) =
0. The second one can be seen in the following short derivation:

0 = ∂µ det Σ = ∂µ(elog det Σ)
= elog det Σ∂µ(log det Σ) = ∂µ(tr log Σ)
= tr (Σ†∂µΣ) =

〈
Σ†∂µΣ

〉
=
〈
Σ ∂µΣ†

〉
.

In order to get from the second line to the third line, we used the fact that
unitary matrices can be diagonalized and that Σ−1 = Σ†.

In a first example, we now set A1 = A2 = Σ ∂µΣ† and A3 = ∂µΣ ∂µΣ†.
Using (A.18) and (A.19) and the cyclic property of traces we arrive at the
following trace relation:

〈
∂µΣ ∂µΣ†∂νΣ ∂νΣ†

〉
= 1

2
〈
∂µΣ ∂µΣ†

〉2
. (A.20)

In a second example, we set A1 = A2 = Σ ∂µΣ† and A3 = Σ + Σ†. Using
again (A.18) and (A.19) and the cyclic property of traces we arrive at

〈
∂µΣ ∂µΣ† (Σ + Σ†)

〉
= 1

2
〈
∂µΣ ∂µΣ†

〉 〈
Σ + Σ†

〉
. (A.21)

Further, we want to evaluate trace relations involving three operators
like

〈
ΣΣΣ + Σ†Σ†Σ†

〉
. Successively substituting {A1, A2, A3} in (A.17) by
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{Σ,Σ,Σ}, {Σ,Σ,Σ†}, {Σ,Σ†,Σ†}, and {Σ†,Σ†,Σ†} we get four independent
equations. These resulting four equations can be cleverly combined to〈

Σ + Σ†
〉3

= 2
〈
ΣΣΣ + Σ†Σ†Σ†

〉
− 3

〈
Σ + Σ†

〉
·
〈
ΣΣ + Σ†Σ†

〉
which by use of eq. (A.9) reads as

〈
ΣΣΣ + Σ†Σ†Σ†

〉
= 5

4
〈
Σ + Σ†

〉3
− 6

〈
Σ + Σ†

〉
. (A.22)



Appendix B

Loop integrals in dimensional
regularization

The divergent loop integrals which we encountered in chapter 3 are regular-
ized in dimensional regularization. This is done by performing the calculation
in a dimension D = 4− ε different from four by means of a regulator ε. With
this procedure, one can isolate the singularities as simple poles of analytic
functions for ε = 0, and they can be absorbed into the renormalized LE
constants.

The divergent loop integrals exhibit the following general structure:

A =
∫ dDk

(2π)D
a

k2 +M2 (B.1)

B =
∫ dDk

(2π)D
b

(k2 +M2)((k + p)2 +M2) (B.2)

where a and b can obtain the values

a = 1, k2 ,

b = 1, kµ, k · p, k2, (k · p)2, k2(k · p), k4, kµ kν .

The direct calculation shows that all of them can basically be expressed by
the two scalar integrals

A0(M2) =
∫ dDk

(2π)D
1

k2 +M2 , (B.3)

B0(p2,M2) =
∫ dDk

(2π)D
1

(k2 +M2)((k + p)2 +M2) . (B.4)
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Usually, one includes in the definition of the regularized loop integrals the
factor µε with µ the renormalization scale such that the dimension of the
integrals is always an integer wich in our case is four. In our case, this factor
is already included in the definition of the renormalized Gasser-Leutwyler
constants in (1.50) and need not to be considered here. For the computation
of the two scalar integrals (B.3) and (B.4) we employ the following general
formula (eq. 7.86 in [26])∫ dDk

(2π)D
1

(k2 + L)n = 1
(4π)D/2

Γ(n−D/2)
Γ(n) L−n+D

2 . (B.5)

In order to compute (B.3) we set n = 1 and L =M2, and simply expand
(B.5) around D = 4 respectively around ε = 0. One immediately sees that in
this case, the gamma function Γ(−1+ ε

2) gets singular. With Γ(z+1) = zΓ(z),
we can expand the singularity around ε = 0:

Γ
(

1− D

2

)
=

Γ
(
1− D

2 + 1
)

(
1− D

2

) =
Γ
(
2− D

2 + 1
)

(
1− D

2

) (
2− D

2

) =
Γ
(
1 + ε

2

)
(
−1 + ε

2

)
ε
2

= − 2
ε

(
Γ(1) + ε

2 Γ′(1) +O(ε2)
)

= −2
ε
− γ +O(ε) (B.6)

where γ := Γ′(1) = 0.577... is the Euler-Mascheroni constant. Having this
result at hand, the expansion of (B.3) around ε = 0 reads

A0(M2) =− M
2

16π2

(2
ε
− γ + ln 4π + 1− lnM2

)
=− M

2

16π2

(
∆ + 1− lnM2

)
(B.7)

where we defined the shorthand notation

∆ = 2
ε
− γ + ln 4π . (B.8)

For the evaluation of the B0 integral (B.4), we use Feynman-parameters
to write it in a suitable form in order to apply formula (B.5). With

1
ab

=
∫ 1

0
dx

1
[ax+ b(1− x)]2 , (B.9)

the integral can be written as

B0(p2,M2) =
∫ 1

0
dx
∫ dDk

(2π)D
1

[(k − p(1− x))2 + p2x(1− x) +M2]2
.

(B.10)
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Identifying p2x(1−x)+M2 = L(x) and performing a shift of the integration
variables q2 = (k − p(1 − x))2 which leaves the measure invariant we arrive
at the canonical form

B0(p2,M2) =
∫ 1

0
dx
∫ dDq

(2π)D
1

(q2 + L(x))2

=
∫ 1

0
dx

1
(4π)D/2

Γ(2−D/2)
Γ(n) L(x)−2+D

2 . (B.11)

An analogous expansion around ε = 0 which we already discussed for the
A0(M2) integral leads to the following analytic expression:

B0(p2,M2) = 1
16π2

(
∆− lnM2 − I(p2,M2)

)
. (B.12)

with
I(p2,M2) =

∫ 1

0
dx ln

[ p2

M2x(1− x) + 1
]
. (B.13)

The remaining integral I(p2) is discussed in detail in [33]. Some subtleties
have to be considered when rotating back to Minkowski space concerning the
phase definition of the complex logarithm. In the result, then, three different
cases need to be distinguished depending on the magnitude of p2:

I(−p2,M2) =


−2− σ ln σ−1

σ+1 , p2 < 0

−2 + 2
√

4M2

p2 − 1 arccot
(√

4M2

p2 − 1
)
, 0 ≤ p2 < 4M2

−2− σ ln 1−σ
1+σ − iπσ, 4M2 ≤ p2

(B.14)
where we defined

σ =
√

1− 4M2

p2 , p2 /∈
[

0 , 4M2
]
. (B.15)

Important for the present work is the situation in which p2 is one of the
Mandelstam variables. Due to the relation (2.35) one immediately sees that
s ≥ 4M2

π = 4M2 (the latter equality holds at one loop level) and, hence, the
last case in (B.14) has to be applied. Contrarily, we learn from (2.36) and
(2.37) that both t and u are less then zero, i.e. for them, the first case holds.
Defining the function

F (p2) =

 σ ln 1−σ
1+σ − iπσ , for p2 = s

σ ln σ−1
σ+1 , for p2 = t, u

(B.16)



83

we can write down the expression for B0 in Minkowski space

B0(−p2,M2) = 1
16π2

(
∆− lnM2 + 2 + F (p2)

)
(B.17)

All other loop integrals for the distinct choices of a and b in (B.1) and
(B.2) can now be expressed by means of A0(M2) and B0(M2, p2). For ex-
ample, the case a = k2 is recovered by writing k2 = (k2 +M2)−M2 which
leads to two integrals of the form (B.5), one for n = 0 and the other one for
n = 1. The idea is always to write the numerators in such a way that one
can, after some algebra or, for example, a partial fraction expansion, apply
the already well known formulae. For completeness, we list all the integrals
which we will use in our computations. A more detailed description can be
found in [33]. For simplicity, we write A0 = A0(M2) and B0 = B0(p2,M2).

1-point integrals:
∫ dDk

(2π)D
1

k2 +M2 =A0(M2) (B.18)
∫ dDk

(2π)D
k2

k2 +M2 =−M2A0 (B.19)

2-point integrals:

∫ dDk

(2π)D
1

(k2 +M2)((k + p)2 +M2) = B0 (B.20)
∫ dDk

(2π)D
kµ

(k2 +M2)((k + p)2 +M2) = − pµ
2 B0 (B.21)

∫ dDk

(2π)D
kp

(k2 +M2)((k + p)2 +M2) = − p2

2 B0 (B.22)
∫ dDk

(2π)D
k2

(k2 +M2)((k + p)2 +M2) = A0 −M2B0 (B.23)
∫ dDk

(2π)D
(kp)2

(k2 +M2)((k + p)2 +M2) = p2

2 A0 + p4

4 B0 (B.24)
∫ dDk

(2π)D
k2(kp)

(k2 +M2)((k + p)2 +M2) = − p2

2
(
2A0 −M2B0

)
(B.25)

∫ dDk

(2π)D
k4

(k2 +M2)((k + p)2 +M2) = (p2 − 2M2)A0 +m4B0 (B.26)
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∫ dDk

(2π)D
kµkν

(k2 +M2)((k + p)2 +M2) = 1
6δµν

(
A0 −

1
2(p2 + 4M2)B0

)

+1
3
pµpν
p2

(
A0 + (p2 +M2)B0

)
+ 1

96π2 (p2 + 6M2)pµpν − p
2δµν

3p2

(B.27)



Appendix C

Scattering length formalism

C.1 Partial wave expansion
In this section, we will give a more detailed description how the scattering
length and the transition amplitude are related. The derivation is presented
according to [25]. First, we want to specialize the asymptotic states |i〉 and
|f〉 from section 2.4. As already mentioned the particles are considered as
free long before and long after the collision. Then both |i〉 and |f〉 are
described by a direct product of single particle states |pA, pB〉 = |pA〉 ⊗ |pB〉
with Lorentz invariant normalization

〈pA, pB|p′A, p′B〉 = 2pA0 δ(pA − p′A) 2pB0 δ(pB − p′B). (C.1)

The states do not exhibit any spin dependence since we are dealing with pions
whose spin is zero. In a next step we separate in our two particle state the
center of mass motion p = pA+pB from the relative motion q = 1

2(pA−pB).
This allows us to write

|pA, pB〉 = |p,q〉 = |p,Ωq〉 = |p〉 ⊗ |Ωq〉 (C.2)

This notation indicates that the two-particle state is described by six in-
dependent parameters. Instead of using p and q we will use the total four-
momentum and the angular variables Ωq since the angular variables fit better
for partial wave analysis. Further, we can write:

δ(pA − p′A)δ(pB − p′B) = δ(p− p′)δ(q − q′) (C.3)
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Now, we formulate the delta function containing q in terms of angular vari-
ables and the total energy p0

δ(q − q′) = 1
|q|2

δ(|q| − |q′|)δ(Ωq − Ωq′)

= 1
|q|2
J −1δ(p0 − p′0)δ(Ωq − Ωq′). (C.4)

Here, δ(Ωq − Ωq′) = δ(cosϑ − cosϑ′) δ(ϕ − ϕ′) are the angular variables of
k and k′, respectively. J = ∂|q|/∂p0 is the Jacobian for the transformation
of the delta function from |q(p0)| to p0. It is evaluated in the center of mass
system where p0 = (m2

A + q2)1/2 + (m2
B + q2)1/2 and reads

J = ∂|q|
∂p0

= pA0pB0

p0|q|
. (C.5)

Plugging the last three equations into (C.1) and using pc.m.
0 =

√
s we finally

obtain

〈pA, pB|p′A, p′B〉 = 〈p,Ωq|p′,Ωq′〉 = 4
√
s

q
δ(4)(p− p′)δ(Ωq − Ωq′). (C.6)

This is the normalization where we have separated the total momentum
conservation from the relative motion. (From now on, we write again q
instead of |q| due to simplicity of notation.) In [25] it is shown that one now
can define a completeness relation which explicitly takes into account this
feature.

1 = 1c.m. ⊗ 1rel.

1c.m. =
∫
d4p |p 〉〈p | (C.7)

1rel. = q

4
√
s

∑
l,m

|l,m〉〈l,m|. (C.8)

We will use this equation below. With (C.6), we can write eq. (2.41) as
follows:

〈pA, pB|S|p′A, p′B〉 = 〈pA, pB|p′A, p′B〉+ i δ(p− p′)T (i→ f) (C.9)

= δ(4)(p− p′)
{

4
√
s

q
δ(Ωq − Ωq′) + i T (i→ f)

}
.

As pointed out in section 2.4 the scattering process itself depends on two
independent variables only. Working with the center of mass energy

√
s and
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the center of mass scattering angle cos θ, the scattering amplitude can be
written

T (i→ f) = T (s, cos θ). (C.10)
T (s, cos θ) is now expanded in Legendre Polynomials

T (s, cos θ) =
∞∑
l=0

(2l + 1)Pl(cos θ)Tl(s). (C.11)

The Tl(s) are called partial wave amplitudes. They depend solely on s while
the angular dependence is completely absorbed in the Legendre polynomials.
In a next step we rewrite in (C.9) the part which corresponds to no interaction
in terms of legendre polynomials. With the completeness relation and the
addition theorem for the spherical harmonics [34]

∞∑
l=0

+l∑
m=−l

Y ∗lm(ϑ, ϕ)Ylm(ϑ′, ϕ′) = δ(cosϑ− cosϑ′) δ(ϕ− ϕ′) (C.12)

+l∑
m=−l

Y ∗lm(ϑ, ϕ)Ylm(ϑ′, ϕ′) = 2l + 1
4π Pl(cos θ) (C.13)

where θ = ^ (ϑϕ, ϑ′ϕ′) is the scattering angle between q and q′ we can write
(C.9) as

〈pA, pB|S|p′A, p′B〉 = δ(4)(p− p′)
∞∑
l=0

(2l+ 1)Pl(cos θ)
{
s1/2

qπ
+ i Tl(s)

}
. (C.14)

To compare both sides with each other we write

〈pA, pB|S|p′A, p′B〉 = 〈p | ⊗ 〈Ωq |S|Ωq 〉 ⊗ |p 〉 = δ(4)(p− p′)〈Ωq |S|Ωq 〉

= δ(4)(p− p′)
∑
l,m

∑
l,m

Y ∗lm(Ωq)Yl′m′(Ωq′)〈l,m|S|l′,m′〉

= δ(4)(p− p′)
∞∑
l=0

(2l + 1)Pl(cos θ) 1
4πSl . (C.15)

In the first line we have used (C.2) and translation invariance of S. In the
second line we have expanded |Ωq 〉 in terms of |l,m〉 and in the third line,
we made use of 〈l,m|S|l′,m′〉 = Sl δll′δmm′ . This last relation is valid due to
the Wigner-Eckhart theorem and the rotational invariance of S. Details can
be found in [35]. Comparing (C.14) and (C.15) we arrive at the following
relation:

Sl = 4s1/2

q
+ 4πi Tl(s). (C.16)
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This looks nice but it is actually not suitable for getting information about
the quantity of interest, the scattering amplitude. There is still one property
of S which we have not used yet: Unitarity, i.e. S†S = 1. From (C.6) we
can deduce (4s1/2/q)δll′δmm′ = 〈lm|l′m′〉. Inserting the unitarity relation and
using the completeness relation (C.8) we finally get

4s1/2

q
δll′δmm′ = 〈l,m|l′,m′〉 = 〈l,m|S†S|l′,m′〉

=
∑
l′′,m′′
〈l,m|S† q

4s1/2 |l
′′,m′′〉〈l′′,m′′|S|l′,m′〉

= q

4s1/2

∑
l′′,m′′
〈l′′,m′′|S|l′,m′〉∗〈l′′,m′′|S|l,m〉

= q

4s1/2 S
∗
l Sl δll′δmm′ . (C.17)

This equation is fullfilled if S∗l Sl = (4s1/2/q)2. Therefore, we can write

Sl = 4s1/2

q
e2iδl(s). (C.18)

The factor of 2 in the exponent is convention. The δl(s) are the phase shifts.
They depend only on the energy and are specific real numbers for each l.
Plugging (C.18) into (C.16) and performing some simple algebra we obtain
the desired expression for the scattering amplitude

Tl(s) = 2
π

s1/2

q
sin δleiδl . (C.19)

With this result we can write the partial wave expansion in (C.11) as

T (s, cos θ) = 2s1/2

πq

∞∑
l=0

(2l + 1)Pl(cos θ) sin δl(s)eiδ(s). (C.20)

C.2 Effective range formalisme
In a last step we relate the partial wave amplitudes Tl to the scattering
length. For this purpose we define a function Φl

Tl(s) = 4
π
q2l
{

Φl −
2i
s1/2 q

2l+1
}−1

. (C.21)

If we express Φl(q2) in terms of the phase shift

Φl = 2q2l+1

s1/2 cot δl , (C.22)
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equation (C.21) coincides indeed with (C.19). In [36] it is shown very gener-
ally that for interactions with finite range, Φl = Φl(q2) is an analytic function
in q2 and that for real q2, Φl(q2) is real, too. The proof of analyticity is very
technical and is based on dispersion theory of the S-Matrix. It will not be
described here, but simply the result will be used. Since Φl is analytic we
may expand it in a power series and get

Φl(q2) ' 2
s1/2 (a−1

l + 1
2r0lq

2 + r1lq
4 + . . . ). (C.23)

al is called l-wave scattering length while rnl are called effective range param-
eters. Of special interest are r0l which give information of the range of the
interaction. If r0l is infinite, then the expansion of Φ fails. This fact reflects
the constraint of interactions with finite range. (Plugging the last equation
into (C.22) one can derive the effective range formula q2l+1 cot δl = a−1

l + 1
2rlq

2

which is perhaps more familiar to the reader.) If we plug (C.23) into (C.21),
we can study the low energy limit for q → 0. Then, only the lowest powers
in q will essentially contribute to the amplitude. This can be seen neatly in
the l = 0 case where

lim
q→0

T0(s) = 4s1/2

π2 a0 . (C.24)

Using our formula for the scattering cross section (2.42) we get
(
dσ

dΩ

)
l=0

= π2

4s

(
2s1/2

π
a0

)2

= (a0)2 . (C.25)

We see that the differential cross section for the s-wave becomes a constant
in the low energy limit. This is precisely the meaning of the scattering
length. Since a cross section is an effective area, the name scattering length
is justified. a0 has indeed the dimension of a length. From dimensional
anaysis in (C.21), however, one sees that already a1 does not any more have
the dimension of a length. The lowest power of T1 is ∝ q2a1, hence, the cross
section will now be momentum dependent. Since Φl(q2) is real, the general
procedure to get al is simply to expand the real part of Tl. We therefore
define

ReT Il (s) =
(
q2

M2
π

)l (
aIl + bIl

q2

M2
π

+ . . .

)
. (C.26)

The superscript I denotes a possible isospin channel. The factor ofM2
π in the

denominators in (C.26) is introduced in order to get dimensionless quantities
for aIl .



Appendix D

Feynmanrules for NLO
computations and six point
vertices

D.1 Feynmanrules for the NLO lagrangian
The expansion of the (N)NLO lagrangian (2.84) up to O(π4) leads to a la-
grangian of the form

L(N)NLO = X1 ∂µ~π · ∂µ~π +X2 ~π
2 +X3 (∂µ~π · ∂µ~π)(∂µ~π · ∂µ~π)

+X4 (∂µπ · ∂νπ)(∂µπ · ∂νπ) +X5 (~π · ∂µ~π)(~π · ∂µ~π)
+X6 (∂µ~π · ∂µ~π)~π2 +X7 ~π

4 (D.1)

where we introduced the shorthand notation

X1 := 1
f 2

(
8L45M2 + 8W 45 ρ+ 8L45 2c2a

2 + 1
2Dx 2c2a

2
)

X2 := 1
f 2

(
16L68M2 + 16W 68M2ρ+ 2M2 2c2a

2(16L68 + 1
4Ax)

+ 2c2a
2 ρ (16W 68 + 1

2Cx) + (2c2a
2)2(16L68 + 1

2Ax + 1
4Bx)

)

X3 :=− 4
f 4L13 X4 := − 4

f 4L2

X5 := 1
f 4

(8
3L45M2 + 8

3W 45 ρ+ 8
3L45 2c2a

2 + c2a
2Dy

)
X6 := 1

f 4

(
−20

3 L45M2 − 20
3 W 45 ρ−

20
3 L45 2c22a2 + c2a

2Dz

)
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X7 := 1
f 4

(
−16

3 L68M4 − 16
3 W 68M2ρ− 16

3 L68(4M2 c2a
2 + 4c2

2a
4)

− 16
3 W 68 ρ 2c2a

2 +M2 c2a
2Ay + 2c2

2a
4Ay + c2

2a
4By + ρ c2a

2Cy

)
.

Note that we rescaled the low energy constants of the counterterms from
section 2.7 using ρ = 2W0a:

Ai := 4W 2
0

c2f 2 Ãi , Bi := 16W 4
0

c2
2f

4 B̃i , Ci := 4W 2
0

c2f 2 C̃i , Di := 4W 2
0

c2f 2 D̃i .

The corresponding vertices read

W ij
1 [p1, p2] = 2X1 δ

ijp1 · p2 , (D.2)

W ij
2 [p1, p2] =− 2X2 δ

ij, (D.3)

W ijkl
3 [p1, p2, p3, p4] =− 8 ·X3

[
δijδkl (p1p2 p3p4)

+ δikδjl (p1p3 p2p4)

+ δilδjk (p1p4 p2p3)
]
, (D.4)

W ijkl
4 [p1, p2, p3, p4] =− 4 ·X4

[
δijδkl (p1p3 p2p4 + p1p4 p2p3)

+ δikδjl (p1p4 p2p3 + p1p2 p3p4)

+ δilδjk (p1p2 p3p4 + p1p3 p2p4)
]
, (D.5)

W ijkl
5 [p1, p2, p3, p4] = 2 ·X5

[
δijδkl (p1p3 + p2p4 + p2p3 + p1p4)

+ δikδjl (p1p2 + p1p4 + p2p3 + p3p4)

+ δilδjk (p1p2 + p1p3 + p2p4 + p3p4)
]
, (D.6)

W ijkl
6 [p1, p2, p3, p4] = 4 ·X6

[
δijδkl (p1p2 + p3p4)

+ δikδjl (p1p3 + p2p4)

+ δilδjk (p1p4 + p2p3)
]
, (D.7)

W ijkl
7 [p1, p2, p3, p4] =− 8 ·X7

[
δijδkl + δikδjl + δilδjk

]
. (D.8)
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D.2 Six point vertex
For the tadpole diagram contributing to the scattering amplitude, the six
point vertex must be determined. The expansion of the LO lagrangian (2.14)
leads to the following four terms:

LLO,6-pt = 1
45f 4

(
(∂µ~π · ∂µ~π)~π4 − (~π · ∂µ~π)(~π · ∂µ~π)~π2

+ 1
16M

2 ~π6 − 15
16 · 2c2a

2 ~π6
)
. (D.9)

The corresponding six point vertices read

V ijklrs
1,6-pt [p1, . . . , p6] = 16

45f 4

[
δijδklδrs(p1p2 + p3p4 + p5p6)

+ all combinations {ij}{kl}{rs}
]
, (D.10)

V ijklrs
2,6-pt [p1, . . . , p6] = 4

45f 4

[
δijδklδrs

[
(p1 + p2)(p3 + p4)

+ (p1 + p2)(p5 + p6) + (p3 + p4)(p5 + p6)
]

+ all combinations {ij}{kl}{rs}
]
, (D.11)

V ijklrs
3,6-pt [p1, . . . , p6] =− M

2

15f 4

[
δijδklδrs + all combinations {ij}{kl}{rs}

]
,

(D.12)

V ijklrs
4,6-pt [p1, . . . , p6] =− 2c2a

2

f 4

[
δijδklδrs + all combinations {ij}{kl}{rs}

]
.

(D.13)

“all combinations {ij}{kl}{rs}” means all the remaining configurations which
one successively obtains by interchanging the flavor indices and the corre-
sponding momenta.
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