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Introduction
In the standard model of particle physics, quantum chromodynamics (QCD) is the estab-
lished theory of strong interactions. Depending on the energy scale, its building blocks,
the quarks and gluons, show a quite distinct behavior, which is not fully understood yet:
On the one hand, they seem to be the relevant degrees of freedom at high energies
since the coupling between them is small, and the quarks are found to be nearly non-
interacting. This property of QCD is known as asymptotic freedom and allows for per-
turbation theory and precise quantitative statements, which are in good agreement with
the experiment.
On the other hand, the growing of the coupling at low energies, i. e., at large distances,
and the associated confinement of quarks into hadrons demand different strategies for
exploring the dynamics of QCD.
One way of handling the theory is lattice QCD, a non-perturbative approach making
possible investigations in both the high- and the low-energy regime of QCD. This is
achieved by discretizing the action using a Euclidean space-time lattice. The non-zero
lattice spacing and the finite volume of the system provide an ultraviolet and an infrared
regulator, which renders the previously ill-defined path integral finite and opens the door
for numerical evaluations using Monte-Carlo methods.
At first glance, lattice QCD simulations seem like a very promising approach as they al-
low for the determination of physical quantities from first principles. One does, however,
encounter a serious problem: The computational costs grow with decreasing lattice spac-
ing, increasing volume, and decreasing quark masses. Despite sophisticated algorithms
and continuously growing computer power, it is not yet possible to perform simulations
at the quark masses realized in nature. As a consequence, extrapolations to the physical
point must be performed. Furthermore, the continuum limit as well as the infinite vol-
ume limit have to be taken, since no physical observable may depend on the regulators.
A connection between lattice results and physical quantities is therefore only possible
if the systematic errors associated with the quark masses, the lattice spacing, and the
finite volume are under control.
This is the point where effective theories prove to be powerful tools, since they allow
to systematically study these effects. Chiral perturbation theory (ChPT) [1, 2] is such
an effective field theory. Compared to the lattice, it represents a completely different
approach to low-energy QCD: It treats the light pseudoscalar mesons – namely the
pions, the kaons, and the eta meson – as Nambu–Goldstone bosons of the spontaneously
broken chiral symmetry, and yields an expansion in powers of momenta and quark masses
about the chiral limit. ChPT also allows to account for non-zero lattice spacings and for
finite volume effects. The former is achieved by matching the Symanzik’s effective theory
[3, 4] for the used lattice action to an effective chiral Lagrangian [5, 6], whereas the finite
volume dependence is incorporated by restricting the theory to a confined system with
appropriate boundary conditions [7–9].

1



In view of lattice QCD, chiral perturbation theory can now fulfill the important purpose
of providing fitting formulae for the observables in question. These formulae can guide
extrapolations to the physical quark masses as well as to the continuum and the infinite
volume. Besides that, ChPT is valuable for another reason:
In lattice simulations, one is free to use different sea and valence quark masses, or,
even more drastically, different discretizations in the two sectors—both, though, on the
sacrifice of the theory’s unitarity [10–12]. The reasons for performing these partially
quenched and mixed-action simulations are related to the computational costs. Most of
the computational effort is spent in the sea sector where statistically independent gauge
configurations are generated [11]. A usually small overhead goes into the computation
of the propagators, a process which involves the valence quark masses.
Full unquenched simulations with Ginsparg–Wilson (GW) fermions [13–16]—that is,
with discretizations satisfying the Ginsparg–Wilson relation [17] and thus preserving
chiral symmetry on the lattice [18]—are not yet feasible for large volumes and quark
masses near the physical point [19]. It therefore seems like a good compromise to choose
GW fermions in the valence sector while using a relatively cheap discretization in the
sea sector, such as Wilson [20], twisted mass [21], or staggered [22] fermions.
The advantage of this mixed-action approach is the saving of computing time plus the
fact that at least the valence sector of the theory benefits from the properties of GW
fermions. One can expect corresponding observables to show a reduced lattice spacing
dependence [23]. Furthermore, the problem of operator mixing, which is a severe obstacle
for example in the computation of weak matrix elements, is suppressed [12, 24]. Due to
the exact chiral symmetry of GW fermions even at non-zero lattice spacing (in the
massless limit), it is also possible to simulate with much lighter quark masses compared
to, e. g., simulations with Wilson fermions.
The question is, how one can extract physical information from these unphysical par-
tially quenched (PQ) and mixed-action (MA) lattice simulations. Chiral perturbation
theory in its extension to PQChPT [25–27, 11, 12] and MAChPT [23, 28–31] provides
the framework to systematically quantify the associated unitarity-violating effects and
therefore allows to restore unitarity by taking the continuum limit and recovering the
physical point where sea and valence quark masses are equal. The unphysical effects
manifest themself in double poles and negative signs in the propagators of the chiral
effective theory. Moreover, for mixed actions, new operators coming with new unknown
low-energy constants arise due to the lack of symmetry between the sea and the valence
sector.
A quantity which is extremely sensitive to unitarity-violating effects and therefore per-
fectly fit to study the size of unitarity violating occurring in mixed-action simulations,
is the scalar two-point function. It was first investigated in the quenched approximation
and found to have unphysical negative values at large time separations [32, 33]. Later,
a ChPT expression for partially quenched two-flavor QCD was derived [34], which was
then generalized to the use of staggered quarks [35, 36]. A mixed-action formula for
degenerate Wilson and/or Ginsparg–Wilson quarks was given in Ref. [37]. Further ex-
tensive studies with staggered sea and Ginsparg–Wilson valence quarks were performed
in Refs. [35, 38].
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In this diploma thesis, the isospin-one scalar two-point function for Wilson sea and
Ginsparg–Wilsons valence quarks is studied, focusing on two- and three-flavor QCD with
(and without) isospin symmetry. The calculation is inspired by the partially quenched
and staggered-sea/GW-valence results in Refs. [34, 35]. The authors give finite volume
expressions for the correlator as well as an asymptotic formula for large time separations.
The exact formulae, however, involve lengthy expressions with multiple sums over lattice
momenta and are therefore rather inconvenient to use in a fitting process. Moreover, it
is not clear how the infinite volume limit is being approached.
For these reasons, the calculations in the present work are organized in a different way:
The correlator is at first computed in the infinite volume in partially quenched ChPT.
This already makes the unphysical effects associated with unequal sea and valence masses
visible. Afterwards, the results are extended to mixed actions, which modifies the shape
of the correlator and especially affects the double pole contribution. The main task is to
account for the finite volume and to deal with the occurring sums.
The final aim is to derive two fitting formulae, which are applicable for either small or
large lattice volumes. Provided that mixed-action ChPT describes all effects of unitar-
ity violation observed in lattice data [38, 39], a fit of the scalar correlator would then
allow to extract the size of the two unitarity-violating effects—partial quenching and its
generalization mixed actions. This will be useful knowledge for future computations of
physical observables like meson masses and decay constants obtained from mixed-action
simulations.
The present work is relevant for example for Bernardoni et. al. [40].

The outline of this thesis is as follows:
In Chapter 1, an introduction to chiral perturbation theory is given. The extension to
partially quenched and mixed-action ChPT is explained in Chapter 2. The third chapter
is devoted to the scalar two-point function in the infinite volume. Finally, in the last
chapter, the impact of a finite volume on the correlator is studied, which in the end
yields the desired fitting formulae.
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1. Chiral perturbation theory
In the first chapter, a short introduction to quantum chromodynamics and its sym-
metries is given [41–44, 24], focusing especially on chiral symmetry. This will be the
cornerstone for the development of chiral perturbation theory, which is presented af-
terwards. Throughout this chapter, the theory is considered in Minkowski space. Later,
when making the connection to lattice QCD, the notation is switched to Euclidean space.

1.1. Continuum QCD and chiral symmetry
Quantum chromodynamics, the theory of strong interactions, is the SU(3) Yang–Mills
theory of color-charged fermions – the quarks. The gauge bosons that mediate the strong
force between them are called gluons. In contrast to quantum electrodynamics where the
gauge bosons, the photons, are not electrically charged, the gluons do also carry color
charge, which results in self interactions and makes the theory difficult to solve. The
QCD Lagrangian is given by

LQCD = Lquark + Lgauge

=
Nf∑
i=1

q̄i(i /D −mi)qi −
8∑

a=1

1
4G

a
µνG

a,µν . (1.1)

The quark fields qi are color triplets and come in Nf = 6 different flavors (u, d, s, c, b, t)
with massesmi. For simplicity, spinor and color indices have been suppressed. The gauge
fields Aaµ that enter the theory through the gauge principle appear in the covariant
derivative (Einstein summation convention implied from now on),

/D = γµ
(
∂µ − igAaµT a

)
, (1.2)

and in the field-strength tensor Ga
µν ,

Ga
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (1.3)

in which the last term gives rise to gluonic three- and four-point self interaction vertices.
g is the strong coupling constant, and fabc are the SU(3) structure constants obeying[

T a, T b
]

= ifabcT c , (1.4)

where T a are the N2
f − 1 = 8 generators of SU(3), namely the Gell-Mann matrices.

For short-hand notation, the fermionic part of LQCD will be abbreviated by

Lquark = q̄(i /D −m)q , (1.5)
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where the Nf quark fields are collected in the vector

qT = (u, d, s, . . .)T (1.6)

and the quark masses are put into the diagonal mass matrix

m = diag(mu,md,ms, . . .) . (1.7)

By construction, LQCD is invariant under SU(3)c color transformations where the quark
fields transform according to the fundamental representation, and the gauge fields ac-
cording to the adjoint representation of SU(3)c.
Next to the SU(3)c color symmetry, the QCD Lagrangian possesses additional symme-
tries: It is invariant under separate parity (P ) and charge conjugation (C) transforma-
tions due to the absence of axial vector coupling constants and due to the real-valued
nature of the couplings mi and gs. In principle, one can construct another gauge in-
variant term out of the gauge fields itself – the so-called theta term – which would be
responsible for explicit P and CP violation. This term, however, is dropped since strong
CP violation is not observed in nature.
Furthermore, there are several (approximate) flavor symmetries: For degenerate quark
masses, LQCD is flavor-blind and invariant under global U(Nf ) transformations. In the
massless case, there is an even larger symmetry group, which comes in view when the
quark fields are separated into their chiral components qL and qR using the projectors

PL = 1− γ5

2 , PR = 1+ γ5

2 , (1.8)

that satisfy

PL + PR = 1 , P 2
L,R = PL,R , and PLPR = PRPL = 0 . (1.9)

The traceless, hermitian matrix γ5, acting in spinor space, fulfills γ2
5 = 1 and anticom-

mutes with all gamma matrices and hence also with the Dirac operator,

{γ5, γµ} = 0 , {γ5, /D} = 0 . (1.10)

With
qL,R = PL,R · q , q̄L,R = q̄ · PR,L , (1.11)

the fermionic part of LQCD takes the form

Lquark = q̄Li /DqL + q̄Ri /DqR − q̄LmqR − q̄RmqL . (1.12)

Now, it is obvious that the left- and right-handed field components decouple in the mass-
less limit (which is therefore often called the chiral limit), and LQCD becomes invariant
under independent global U(Nf ) transformations L and R,

qL → LqL
qR → RqR

}
⇒ q → LqL +RqR . (1.13)
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On the classical level, these symmetries lead to 2(Nf )2 conserved left- and right-handed
Noether currents

JL, aµ = q̄LγµT
aqL , JR, aµ = q̄RγµT

aqR , (1.14a)
J L
µ = q̄LγµqL , J R

µ = q̄RγµqR , (1.14b)

and correspondingly to 2(Nf )2 conserved Noether charges. Here, T a denote the N2
f − 1

generators of SU(Nf ).
This global chiral U(Nf )L⊗U(Nf )R symmetry of the massless QCD Lagrangian is often
equivalently expressed as the vector and axial vector symmetry U(Nf )V ⊗U(Nf )A. The
vector transformations, where the left- and right-handed fields transform with the same
phase, R = L = UV , lead to the conserved vector Noether currents

V a
µ = q̄γµT

aq = JR, aµ + JL, aµ , (1.15a)
Vµ = q̄γµq = J R

µ + J L
µ . (1.15b)

The associated conserved Noether charges correspond to isospin conservation generalized
to Nf flavors, and baryon number conservation, respectively.
The transformations of qR and qL with opposite phase, R = L† = UA, are called axial
vector transformations or chiral transformations. They mix the left- and right-handed
quark components and result in the conserved axial vector Noether currents

Aaµ = q̄γµγ5T
aq = JR, aµ − JL, aµ , (1.16a)

Aµ = q̄γµγ5q = J R
µ − J L

µ . (1.16b)

If the quark masses are turned on, the transformation of the mass matrix m in (1.12)
under U(Nf )V ⊗U(Nf )A yields the following modifications of the vector and axial vector
divergences:

∂µV a
µ = iq̄(mT a − T am)q (1.17a)

∂µAaµ = iq̄(mT a + T am)γ5q (1.17b)
∂µVµ = 0 (1.17c)
∂µAµ = 2iq̄mγ5q (1.17d)

Apparently, isospin symmetry extends also to degenerate quark masses, Eq. (1.17a),
which is the flavor-blindness of LQCD that was mentioned before. In this case, one would
expect hadrons to be classifiable as irreducible representations of SU(3)V , that is, they
fall into multiplets of degenerate states. Baryon number conservation (1.17c) of course
holds even for unequal masses. The axial symmetries, however, are explicitly broken by
the quark masses.
To conclude, the QCD Lagrangian exhibits an exact chiral symmetry,

SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V ⊗ U(1)A , (1.18)
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if all quarks are massless, and if the Dirac operator is diagonal in flavor space and
anticommutes with γ5. The SU(Nf )L ⊗ SU(Nf )R part is often referred to as the chiral
group.
How are these symmetries realized in nature? Compared to the QCD scale ΛQCD, the
up and down quarks are very light and nearly degenerate to find the isospin symmetry
SU(2)V being a good approximation. Examples are the proton-neutron doublet (p, n),
the pion triplet (π+, π0, π−), and the kaons doublets (K+, K0) and (K−, K̄0). Taking
into account the strange quark, the corresponding hadrons can be classified as multiplets
of SU(3)V . The mass splittings within these multiplets, however, are rather large which
reflects the size of the quark mass difference between the up/down and the strange quark.
Baryon number conservation is found to be true for the strong interaction. But what
about the axial vector symmetries? Exact chiral symmetry implied for each observed
hadron a partner particle of opposite parity and same mass. In the real hadron spectrum,
then, one would expect the masses of these partners to differ only slightly according to
the size of the symmetry breaking quark masses. The fact that this (approximate) axial
symmetry is not observed leads to the conclusion that chiral symmetry is spontaneously
broken down to its vector subgroup,

SU(3)L ⊗ SU(3)R → SU(3)V . (1.19)
This, in turn, requires eight massless spin-zero Nambu–Goldstone bosons – one for each
broken generator of SU(3)A. At energies below the mass of the rho meson,Mρ = 775 MeV,
the rich hadronic particle spectrum reduces to an octet of nearly massless pseudoscalar
mesons, namely the pions, kaons, and the eta meson,

Φ = 1√
2


1√
2π

0 + 1√
6η π+ K+

π− − 1√
2π

0 + 1√
6η K0

K− K̄0 −
√

2
3η

 . (1.20)

These are now identified as the pseudo-Goldstone bosons of the spontaneously broken
axial vector symmetry (The prefix “pseudo” refers to their small non-zero mass, which
is explained by the explicit chiral symmetry breaking due to the quark masses.). Chiral
perturbation theory is based on this observation. It incorporates the light mesons (1.20)
as the only dynamical degrees of freedom into an effective field theory and allows to
compute correlation functions, hadron masses, etc. in the low-energy regime of QCD
(E �Mρ) [1, 2].
Lastly, when quantizing the classical QCD Lagrangian, the U(1)A axial symmetry cannot
be preserved due to quantum corrections. In order to keep the theory gauge invariant,
one is forced to regularize and renormalize the divergence (1.17d) such that it receives an
additional non-vanishing contribution, even in the chiral limit. The symmetry of massless
QCD, thus, reduces to

SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V . (1.21)
This so-called axial or chiral anomaly explains the absence of a ninth Goldstone boson
associated with the spontaneous breakdown of U(3)L ⊗ U(3)R, and why instead the
flavor-singlet eta prime meson is found to be considerably heavier than the pions, kaons,
and the eta meson, Mη′ ∼ 1 GeV.
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1.2. Chiral perturbation theory in the continuum
In order to construct an effective field theory, one at first has to identify the rel-
evant degrees of freedom, which in the case of QCD are the pions, kaons, and the
eta meson. The masses of these pseudo-Goldstone bosons are characteristically smaller
than any typical hadron mass, for example the mass of the rho meson or the proton,
MGB � Λhad ∼ 1 GeV, Secondly, all symmetries of the underlying theory as well as the
pattern of symmetry breaking must be known. With these ingredients, it is then pos-
sible to construct the most general effective Lagrangian, valid below the energy scale
Λhad, that contains only the light mesons as dynamical degrees of freedom [45]. All heav-
ier states disappear from the theory and enter only in so-called low-energy constants
(LECs), which describe the lack of knowledge about the short-distance properties of the
underlying theory. The effective Lagrangian cannot be derived directly from the QCD
Lagrangian. Its construction is entirely based on symmetry arguments.
At first, one needs to parameterize the Nambu–Goldstone bosons that are associated
with the spontaneous breakdown of chiral symmetry,

SU(3)L ⊗ SU(3)R︸ ︷︷ ︸
≡G

−→ SU(3)V︸ ︷︷ ︸
≡H

. (1.22)

An order parameter for this breaking is the quark condensate

〈0|q̄iqj|0〉 = 〈0|
(
q̄iR q

j
L + q̄iL q

j
R

)
|0〉 = λδij , (1.23)

where i and j denote flavor indices, and the vacuum expectation value λ is proportional
to the QCD scale, λ ∝ Λ3

QCD. The condensate transforms like a mass term under the
chiral group G,

〈0|q̄iqj|0〉 G−→ λ(LR† +RL†)ij , (1.24)

and apparently, a non-zero condensate is equivalent to spontaneous breaking of chiral
symmetry, for then 〈q̄q〉 is invariant only under the vector subgroup H, that is, if L = R.
Of course, there exists a manifold of equivalent vacua that can be rotated into another,
but one can choose

Σij = (LR†)ij with L = R , (1.25)
such that the matrix Σij = δij corresponds to the vacuum in Eq. (1.23). The fluctua-
tions around that vacuum correspond to the light mesons that are associated with the
spontaneous symmetry breaking. The most common and very convenient way to collect
the Goldstone fields is the exponential parameterization [2],

Σ(x) = exp
(

2i
f

Φ(x)
)
, (1.26)

where Φ(x) denotes the meson octet of Eq. (1.20), and it is given by linear combinations
of the broken generators T a of SU(3),

Φ(x) =
8∑

a=1
πa(x)T a . (1.27)
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For dimensional reasons, the parameter f was introduced. Note that for chiral SU(2),
a runs from 1 to 3, and the corresponding meson triplet is that of the pions in the
upper-left 2× 2 block of Eq. (1.20) without the η.
With the parameterization of the meson fields at hand, one can now approach the con-
struction of an effective Lagrangian. It proves to be useful to keep track of the symmetry
breaking mass term by promoting the diagonal mass matrix m = diag(mu,md,ms) to
a complex spurion field that obeys the same transformation behavior under the chiral
group G as the meson matrix Σ,

Σ G−→ LΣR† , m
G−→ LmR† , (1.28)

Σ† G−→ RΣ†L† , m†
G−→ Rm†L† .

In the effective Lagrangian, then, one sets the masses to their physical values and thus
explicitly breaks chiral symmetry in the same manner as in QCD.
Following Weinberg [45], the properties of S-matrix elements of the underlying quantum
field theory (QCD), which are unitarity, causality, crossing symmetry, cluster decomposi-
tion, and Lorentz invariance, can be preserved in the effective theory if one constructs the
most general local, Lorentz invariant Lagrangian that satisfies the internal symmetries.
The building blocks are the meson matrix Σ, its derivative ∂µΣ, the spurion m, and the
hermitian conjugate counterparts Σ†, ∂µΣ†, and m†. One can now construct scalar terms
that are invariant under SU(3)L ⊗ SU(3)R, parity, and charge conjugation by taking
the trace or combinations of traces over products of these building blocks. Because
of Lorentz invariance, only even powers of derivatives can appear. Furthermore, terms
including solely the sigma fields collapse to a constant (ΣΣ† = 1) and thus do not
contribute to the equations of motion. This in turn means that, for massless quarks, all
interactions become weak and finally vanish at small momenta. It is therefore possible to
organize the effective field theory as an expansion in terms of derivatives (momenta p).
The non-zero quark masses are treated as small perturbation to the chirally invariant
Lagrangian,

Leff =
∑
ij

Lij , Lij = O(pimj) . (1.29)

The number d of derivative and spurion insertions, ∂µ andm, determines the order of the
term in question, where here, the power counting ∂2 ∼ m is assumed, that is, d = i+ 2j
as will be justified later. The effective Lagrangian, then, is of the form

Leff =
∑
d

Ld = L2 + L4 + L6 + . . . . (1.30)

At leading order (LO), the chiral Lagrangian consists only of the two simplest non-trivial
terms,

L2 = f 2

4 tr(∂µΣ ∂µΣ†) + f 2B0

2 tr(mΣ† + Σm†) , (1.31)

and is, due to the cyclicity of the traces, indeed invariant under chiral transformations
(1.28). The low-energy constant f equals the pion decay constant fπ in the chiral limit [1].
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It gives the Lagrangian the dimension four. While other normalizations including factors
of
√

2 are common, f is chosen such that fπ = 92.4 MeV. The mass term comes with
a new LEC B0, which is related to the quark condensate [1]. All other prefactors are
conventional.
With the quark masses set to their physical values, one can expand Σ in the meson fields
Eq. (1.20),

L2 = 1
2∂µπ

0 ∂µπ0 −B0(mu +md)π0π0 + ∂µπ
+ ∂µπ− − 2B0(mu +md)π+π−

+ kaons, eta, π0-η mixterm +O(Φ4) , (1.32)

and read off the tree-level meson masses. In the limit of isospin symmetry,mu = md ≡ m̂,
the π0 and the η do not mix, and one gets

M2
π = 2B0m̂ , M2

K = B0(m̂+ms) , M2
η = 2

3B0(m̂+ 2ms) . (1.33)

The finding that the squared meson masses are linear in the quark masses justifies, in
retrospect, the power counting ∂2 ∼ m.
Before proceeding, one should pause for a moment and remember that one wishes to
compute correlation functions in the effective theory as one does in QCD itself. These
might involve for instance the vector and axial vector currents Eqs. (1.15) and (1.16).
Of course, one could apply the Noether theorem and carry out the ChPT calculation.
Instead, a more elegant way was shown by Gasser and Leutwyler [1, 2]. They start
from the massless QCD action and couple the fields to additional external left- and
right-handed sources lµ and rµ, as well as to the scalar densities s and p:

LQCD = q̄L(i /D + γµl
µ)qL + q̄R(i /D + γµr

µ)qR − q̄L(s+ ip)qR − q̄R(s− ip)qL
−Ga

µνG
a,µν (1.34)

The space-time dependent sources are hermitian 3 × 3 matrices acting in flavor space,
and they are given by

lµ = l0µ + laµT
a , rµ = r0

µ + raµT
a , s = s0 + saT a , p = p0 + paT a . (1.35)

Setting
lµ = rµ = p = 0 and s = m, (1.36)

reproduces the standard QCD Lagrangian. The method of external sources gives com-
fortable access to the chiral Noether currents Eq. (1.14), and the vector and axial vector
currents Eqs. (1.15), (1.16). They are simply computed by differentiating LQCD with
respect to lµ and rµ. For example,

Aaµ(x) = JR, aµ (x)− JL, aµ (x) = ∂LQCD

∂rµa (x)
− ∂LQCD

∂lµa(x)
= q̄(x)γµγ5T

aq(x) . (1.37)

The generalized Lagrangian (1.34) allows for the definition of a generating functional,

ZQCD =
∫
DADq̄Dq ei

∫
d4xLQCD(lµ,rµ,s,p) , (1.38)
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from which correlation functions can be obtained by taking the appropriate functional
derivatives with respect to the sources. For instance, the isospin-one scalar two-point
function, the main object of interest in the present work, is computed by

〈0|d̄(x)u(x) ū(0)d(0)|0〉 = −1
ZQCD[0]

δ2ZQCD

δs0
ud(0) δs0

du(x)

∣∣∣∣∣ s=m
lµ=rµ=p=0

, (1.39)

where the normalizing ZQCD[0] denotes the generating functional with sources set to
Eq. (1.36).
In order for the correlation functions to obey the Ward identities of QCD, these sources
have to transform like gauge fields [46],

lµ
G−→ L lµ L

† + i∂µLL
† , s+ ip

G−→ L(s+ ip)R† , (1.40)

rµ
G−→ RrµR

† + i∂µRR
† , s− ip G−→ R(s− ip)L† ,

under local chiral transformations (L(x), R(x)) ∈ G = SU(3)L ⊗ SU(3)R.
The aim now is to construct a generating functional for the effective theory,

ZChPT =
∫
DΣ ei

∫
d4xLeff(lµ,rµ,s,p) , (1.41)

which matches ZQCD order by order in the chiral expansion, that is,

ZChPT(lµ, rµ, s, p) = ZQCD(lµ, rµ, s, p) , (1.42)

up to truncation errors. Then, correlation functions will be calculable by using the same
functional derivatives with respect to the sources as in QCD. In order to do this matching
and to reproduce the Ward identities of QCD in the effective theory, one therefore
demands the chiral Lagrangian to be invariant under local chiral transformations. This
lets the sources enter in two ways – once through covariant derivatives,

∂µΣ→ DµΣ = ∂µΣ + ilµΣ− iΣrµ , (1.43)

which transform under G as
DµΣ G−→ LDµΣR† , (1.44)

and additionally through the two field-strength tensors

Lµν = ∂µ lν − ∂ν lµ + i[lµ, lν ] G−→ LLµν L
† ,

Rµν = ∂µrν − ∂νrµ + i[rµ, rν ] G−→ RRµν R
† .

(1.45)

Lastly, with the scalar densities s and p combined into the matrix χ,

χ ≡ 2B0(s+ ip) G−→ LχR† , χ† = 2B0(s− ip) G−→ RχL† , (1.46)

one has all the building blocks that are needed to construct the most general chiral
Lagrangian—namely Σ, Σ†, DµΣ, DµΣ†, χ, χ†, Lµν , and Rµν .
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The O(p2) chiral Lagrangian of Eq. (1.31) generalizes to

L2 = f 2

4 tr(DµΣDµΣ†) + f 2

4 tr(χΣ† + Σχ†) . (1.47)

With this leading order chiral Lagrangian at hand, it is possible to compute the scalar
two-point function Eq. (1.39) for non-zero space-time separations x to lowest order in
chiral perturbation theory. This is the topic of Chapter 3.
It is now time to write down the most general O(p4) chiral Lagrangian1,

L4 = + L1[tr(DµΣDµΣ†)]2 + L2 tr(DµΣDνΣ†) tr(DµΣDνΣ†)
+ L3 tr(DµΣDµΣ† DνΣDνΣ†)
+ L4 tr(DµΣDµΣ†)tr(χΣ† + Σχ†) + L5 tr(DµΣDµΣ†[χΣ† + Σχ†])
+ L6[tr(χΣ† + Σχ†)]2 + L7 [tr(χΣ† − Σχ†)]2

+ L8 tr(χΣ†χΣ† + Σχ†Σχ†)
+ iL9tr(LµνDµΣDνΣ† +RµνD

µΣ†DνΣ) + L10 tr(LµνΣRµνΣ†)
+H1 tr(LµνLµν +RµνR

µν) +H2 tr(χχ†) + LWZW . (1.48)

It consists of ten terms that are associated with new low-energy constants L1−L10. Like
all LECs, they encode the lack of knowledge about the short-distance properties of QCD
dynamics. Furthermore, two terms involving so-called high-energy constants (HECs) ap-
pear. They do not involve Σ and have thus no physical relevance. They do, however,
contribute as contact terms to correlation functions and are needed in the process of
renormalization. In contrast to the LECs, the HECs do depend on the regulator that is
used to handle the occurring divergencies; hence the name. The second term H2tr(χχ†)
has yet another meaning: It contributes to the mass dependence of the quark conden-
sate, which is a quantity that cannot be measured experimentally but is computable on
the lattice. All twelve coupling constants are, in principle, calculable functions of the
remaining parameters of QCD, which are the heavy-quark masses and the QCD scale
ΛQCD. De facto, they are determined by phenomenological input and by fitting lattice
data to extrapolation formulae obtained by ChPT calculations.
In order to perform an actual computation, the chiral Lagrangian Eq. (1.30) is expanded
in terms of the meson fields to read off Feynman rules and calculate Feynman diagrams.
Dimensional counting according to Weinberg [45] shows that a connected diagram with
Nd vertices of O(pd), d = 2, 4, . . ., and NL loops is of order

D = 2NL + 2 +
∑
d

Nd(d− 2) , (1.49)

that is, every loop contributes two additional powers of momenta to the diagram in
question. In a NLO computation (D = 4), for example, one therefore needs only the
1 The gauging process of U(3)L⊗U(3)R indeed reproduces the axial anomaly in ChPT and leads to the
Wess-Zumino-Witten term LWZW. It does not play a rôle in this thesis and is therefore left unspecified.
Note also that not all operators are linearly independent in the SU(2) case, and L4 could be simplified
using Cayley–Hamilton trace relations [11].
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tree-level diagrams of L2 and L4, and the one-loop diagrams of L2. The general pattern
for this extended power counting scheme is (Note that L6 contains over 90 terms and
calculations become extremely cumbersome.):

LO: Ltree
2

NLO: L1−loop
2 , Ltree

4 (1.50)
NNLO: L2−loop

2 , L1−loop
4 , Ltree

6
... ...

In the follwing chapter, the construction of ChPT is generalized to partially quenched
ChPT, the effective theory for QCD with unequal sea and valence quark masses. After-
wards, it is shown how the effects of the lattice spacing can be accounted for. Lastly,
ChPT is considered for different discretizations in the sea and the valence sector of the
theory.
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2. Chiral perturbation theory and the
lattice

Starting point for lattice QCD is the Euclidean path integral formulation,

Z =
∫
DADq̄Dq e−SG[A]−

∫
d4x q̄( /D+m)q , (2.1)

where SG[A] =
∫

d4xLgauge denotes the gauge part of the QCD action. One discretizes
the action using a Euclidean space-time lattice [20]. While the quark fields reside on
the lattice points, the gauge fields are represented by SU(3) matrices connecting two
neighboring points. The lattice naturally regularizes the ill-defined path integral with an
ultraviolet momentum cutoff inversely proportional to the lattice spacing a. Furthermore,
by restricting the lattice to a finite extent L (with fixed boundary conditions), the theory
becomes also infrared-regularized. Now, the path integral is finite, and it is possible to
perform numerical computations using Monte-Carlo methods.
Correlation functions, hadron masses, and other quantities that are obtained from such
simulations will in general depend on the regulators. Moreover, since the computational
costs of lattice QCD simulations turn out not only to scale with positive powers of the
volume and the inverse lattice spacing, but also to grow with decreasing quark masses,
these simulations must still be performed at quark masses larger than those realized
in nature. All in all, a connection to physical observables demands good control over
the systematic errors stemming from the discretization, the finite volume, and the used
quark masses.
A method to systematically study the lattice spacing effects is known as Symanzik’s
effective theory (SET), [3]. Symanzik showed that close to the continuum limit, lattice
QCD can be described by an effective continuum theory with effective operators multi-
plying appropriate powers of the lattice spacing. SET is a systematic expansion in powers
of the lattice spacing. Chiral perturbation theory on the other hand is an expansion in
small momenta and in the light quark masses, and it seems therefore perfectly suitable to
guide extrapolations to the physical point – given, one is in the mass regime of ChPT’s
validity. Using now the same spurion technique as for the construction of continuum
chiral perturbation theory, one can match SET to ChPT and thus make the dependence
on the lattice spacing explicit, order to order in the chiral expansion [5, 6, 10]. The finite
lattice extent can also be taken into account by regarding ChPT in a finite volume [7–9].
In an actual lattice simulation, as will be shown below, one has the freedom of choosing
different sea and valence quark masses. Valence quarks mean those quarks that compose
hadrons, whereas sea quarks are the dynamical quarks appearing in quantum loop fluctu-
ations. One might even go one step further and use a completely different discretization
for the Dirac operator in the sea and in the valence sector.
The standard example to motivate these two approaches, is the pion two-point corre-
lation function. A pion, being a pseudoscalar, can be represented by the interpolating
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field
π+(x) ≡ d̄(x)γ5u(x) . (2.2)

The correlator, then, is given by

〈0|π−(x) π+(0)|0〉 = 〈0|ū(x)γ5d(x) d̄(0)γ5u(0)|0〉

= 1
Z

∫
DADq̄Dq

[
ū(x)γ5d(x)

] [
d̄(0)γ5u(0)

]
e−SG[A]−

∫
q̄( /D+m)q

= − 1
Z

∫
DA tr

[
γ5Gd(x, 0)γ5Gu(0, x)

]
e−SG[A]∏

q

det( /Dsea +msea,q)

= −
〈
tr
[
γ5Gd(x, 0)γ5Gu(0, x)

]〉
gauge

. (2.3)

From the second to the third line, the integration over the Grassmann-valued quark
fields q̄ and q yields the quark determinant. The quark propagators

Gq(x, y) =
(

1
/Dval +mval,q

)
xy

(2.4)

and the trace over spinor and color indices result from Wick-contracting the quarks
within the interpolating fields. The last term indicates an averaging over the gauge
configurations weighted with the quark determinant. As indicated with the subscripts
sea and val, the quark masses and the Dirac operator enter in two different ways: once
through the quark determinant and once through the quark propagators.
Generating statistically independent gauge configurations, which involves the sea masses,
is the most time-consuming step in a lattice simulation. It is, however, independent of
computing correlation functions, the step in which the valence masses enter. There is
thus no reason on the lattice for not choosing msea 6= mval, or even more drastically,
/Dsea 6= /Dval.
The first scenario with msea 6= mval is referred to as partial quenching2 [25–27, 11,
12]. Clearly, it violates the unitarity of the theory, but having in mind the mentioned
computational costs, it makes sense to perform simulations at different valence quark
masses while keeping the sea masses fixed, in contrast to varying both quark masses at
the same time. Partially quenched simulations open the door to a wider range of feasible
quark masses; the benefit, however, is that the corresponding effective theory, partially
quenched chiral perturbation theory (PQChPT), involves the same low-energy constants
as standard ChPT and yields also the same results in the unitarity-restoring limit of
equal valence and sea quark masses. It is therefore possible to gain more information
about the ChPT couplings, which again is necessary to perform a reliable extrapolation
to the physical point.
An introduction to partially quenched QCD and its effective theory PQChPT will be
given in the next Section 2.1. The aim is to parameterize the unphysical effects stemming
from partial quenching. Since one recovers QCD by settingmsea = mval, one expects these
effects to come with the difference of sea and valence quark masses.
2 The term has its origin in the quenched approximation of QCD where the quark determinant cancels
by giving the sea quarks an infinitely heavy mass.
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The second scenario, in which computations are performed with different Dirac op-
erators, /Dsea 6= /Dval, is called mixed-action (MA) or hybrid-action simulations. The
motivation for doing so is, similarly to the partially quenched case, related to the com-
putational effort. When discretizing the action, one inevitably has to give up some of
the symmetries of continuum QCD. The most obvious one is rotational O(4) invariance,
which on the lattice reduces to a discrete subgroup. But also chiral symmetry can often
not be preserved. The computationally cheap Wilson action [20], for instance, explicitly
breaks this important symmetry through an additional term, the Wilson-term, which is
introduced to prevent the so-called fermion doubling problem. On the other hand, Dirac
operators of Ginsparg–Wilson type [13–16], for example, preserve chiral symmetry but
are computationally very expensive [19]. An important aspect which favors the use of
symmetry-preserving discretizations is the fact that the more symmetry one loses in the
process of discretization, the stronger the operator mixing becomes on the lattice [12].
This, especially, is a crucial disadvantage for the computation of weak matrix elements
[24]. Note that the operator mixing mainly depends on the symmetries of operators
constructed from valence quarks. Further, the symmetry properties of correlation func-
tions like Eq. (2.3) are entirely determined by the symmetry properties of the valence
Dirac operator. In view of computing time, it therefore seems like a good compromise
to choose a cheap discretization, like the Wilson action [20], in the sea sector, and more
symmetry-preserving discretization in the valence sector [40, 47–49].
In mixed-action simulations, unitarity can – due to different lattice artifacts in the two
sectors – not be restored by setting msea = mval [10, 31]. This stands in contrast to
partially quenched simulations where the bare quark masses can always be tuned to
yield the same renormalized quark mass. Near the continuum limit, however, it should
be possible to construct an effective theory à la Symanzik and match it to an effective
mixed-action chiral Lagrangian [23, 28, 29]. In this way, the unitarity-violating effects
will become explicit in form of the lattice spacing attached to operators that depend
either solely on the sea or the valence sector, or on those which mix both. The method
of matching SET to ChPT, and how mixed-action ChPT is constructed are the topics
of Section 2.2. Finally, in Chapter 3, the impact of the two unphysical effects, partial
quenching and mixed actions, on physical observables will be studied using the example
of the isospin-one scalar correlator. The calculation is extended in Chapter 4 to account
for the finite volume, which will show to enhance the unphysical effects.

2.1. Partially quenched chiral perturbation theory
2.1.1. Constructing the effective theory
The construction of chiral perturbation theory was based on the symmetries of the
underlying QCD Lagrangian. As a first step, it is thus imperative to formulate partially
quenched QCD (PQQCD) – that is, to explicitly distinguish between sea and valence
quarks – and to understand its symmetries. An elegant way was proposed by Morel [50].
Next to NS sea and NV valence quarks, he introduces NV bosonic spin-1

2 ghost quarks
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Figure 2.1.: A typical PQQCD diagram with sea, valence, and ghost quark loop contributions (illus-
trated with thick, thin, and dashed lines, respectively). Valence and ghost loops cancel
leaving only sea quark loops.

(labeled in the following with q̃), which have the same mass as their valence counterparts.
The fermionic part of the PQQCD Lagrangian then reads [11, 12]

Lquark
PQQCD =

NS∑
i=1

q̄seai( /Dsea +mseai)qseai +
NV∑
j=1

[
q̄valj( /Dval +mvalj)qvalj + q̃†j( /Dval +mvalj)q̃j

]
≡ q̄( /D +m)q , (2.5)

where the quarks and their masses are collected as usual,
qT = (qsea, qval, q̃) , q̄ = (q̄sea, q̄val, q̃

†) , m = diag (msea,mval,mval) . (2.6)
The two Dirac operators /Dsea and /Dval indicate the different discretizations one uses in
mixed-action QCD. For PQQCD, however, they are the same.
Due to the bosonic nature of the ghost fields,∫

Dq̃†Dq̃ e−
∫
q̃†val( /Dval+mval)q̃val = 1

det( /Dval +mval)
, (2.7)

the valence and ghost quark determinants cancel exactly,

ZPQQCD =
∫
DADq̄Dq e−SG[A]−

∫
d4x q̄( /D+m)q =

∫
DA e−SG[A] det( /Dsea +msea) . (2.8)

In the language of diagrams, valence and ghost loops cancel, since they come with a
relative minus sign, leaving only the sea quark loops. This is illustrated in Fig. 2.1.
The partially quenched theory is sick. It is not possible to rotate back to Minkowski space
without violating the spin-statistics theorem [11, 12]. Nevertheless, since lattice QCD
works in Euclidean space, one can use the corresponding effective theory, PQChPT, as
a tool for obtaining fitting formulae for these simulations. In this way – as in standard
ChPT – one can fix the low-energy constants and then extrapolate to the point of equal
sea and valence masses.
Having the Lagrangian at hand, one can now analyze its symmetries. Besides a U(1)V and
an anomalous U(1)A symmetry, the massless PQQCD Lagrangian exhibits the graded
symmetry3 [27, 12]

G ≡ SU(NS +NV |NV )L ⊗ SU(NS +NV |NV )R , (2.9)
3 The exact symmetry is actually not that of Eq. (2.9). This is due to the fact that the ghost fields q̃
and q̃† are not independent, that is, their chiral components do not transform independently as it is
the case with fermionic quarks. This is necessary for the convergence of the ghost functional integral.
However, the results of PQChPT based on this apparent symmetry are identical to those received by
using the true symmetry group [27].
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which will be the starting point for the construction of partially quenched chiral per-
turbation theory. Since in QCD, chiral symmetry is spontaneously broken, and QCD is
contained in PQQCD, one assumes the symmetry G to be spontaneously broken down
to the graded vector symmetry subgroup,

G −→ H = SU(NS +NV |NV )V . (2.10)

Before parameterizing the associated (NS + 2NV )2 − 1 Goldstone fields and building
invariant scalars using the trace technique introduced in Chapter 1, it is useful to get
familiar with some properties of graded groups [51, 11]. Consider for example the matrix
U ∈ SU(NS +NV |NV ),

U =
(
A B
C D

)
, (2.11)

with the following matrix dimensions:

A : (NS +NV )× (NS +NV ) , B : (NS +NV )×NV

C : NV × (NS +NV ) , D : NV ×NV

The term graded refers to the fact that A andD contain commuting, andB and C contain
anticommuting variables. U is a unitary matrix if complex conjugation is defined as
(UabUcd)∗ = U∗cdU

∗
ab; and thus (U1U2)† = U †2U

†
1 . For graded matrices, the trace generalizes

to a “supertrace”,
strU = trA− trD , (2.12)

to maintain cyclicity, e. g., str (U1U2U3) = str (U2U3U1). One conveniently introduces a
grading factor εa to write

strU =
NS+2NV∑
a=1

εaUaa , (2.13)

that is, εa = +1 for a ∈ {1, . . . , NS +NV }, and εa = −1 for a ∈ {NS +NV + 1, . . . , NS +
2NV }. Similar to the trace, the determinant is generalized to a “superdeterminant”,

sdetU = exp (str lnU) = det(A−BD−1C)
detD , (2.14)

which satisfies sdet (U1U2) = sdetU1 · sdetU2.
Now back to the construction of PQChPT. The original argument of Weinberg for con-
structing a local effective field theory (EFT) is based on the unitarity of the underlying
theory [45]. Since PQQCD is not unitary, one has to assume that there exists a local
EFT which satisfies the symmetries of PQQCD and contains the corresponding Gold-
stone fields as the relevant degrees of freedom [11]. One therefore parameterizes these
Goldstone fields as in Chapter 1 by a unitary matrix

Σ(x) = exp
(

2i
f

Φ(x)
)
, (2.15)
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with
Φ(x) =

∑
a

Φa(x)T a =
(
ϕ(x) η(x)
η̄(x) ϕ̃(x)

)
. (2.16)

The matrix Σ transforms under the graded symmetry group G as

Σ G−→ LΣR† , Σ† G−→ RΣ†L† , (L,R) ∈ G . (2.17)
Note that the constraint sdet Σ = 1 implies str Φ = trϕ − tr ϕ̃ = 0. The Nambu–
Goldstone “bosons” Φ(x) are either bosonic or fermionic, depending on the quark con-
tent. Nevertheless, they will be referred to as mesons. The quark-antiquark Nambu–
Goldstone bosons (NGBs) are contained in ϕ, while ϕ̃ consists of ghost-antighost NGBs.
η and η̃ contain the quark-antighost and ghost-antiquark fermionic NGBs, respectively.
The T a are the NS + 2NV supertraceless generators of H. In practice, working in this
basis is rather inconvenient. Instead, one usually proceeds as follows. First, the constraint
sdet Σ = 1 is removed, and hence Σ ∈ U(NS+NV |NV ). This is the equivalent to keeping
the heavy η′ meson in unquenched ChPT. Further, one parameterizes the diagonal of Φ
in terms of the single-flavor fields instead of the physical fields4:

(Φab) = 1√
2

(πab) = 1√
2



U π+ K+ Qux Quy Tux̃ Tuỹ
π− D K0 Qdx Qdy Tdx̃ Tdỹ
K− K̄0 S Qsx Qsy Tsx̃ Tsỹ

Q†ux Q†dx Q†sx X P+ Rxx̃ Rxỹ

Q†uy Q†dy Q†sy P− Y Ryx̃ Ryỹ

T †ux̃ T †dx̃ T †sx̃ R†xx̃ R†yx̃ X̃ P̃+

T †uỹ T †dỹ T †sỹ R†xỹ R†yỹ P̃− Ỹ


(2.18)

Here, the indices u, d, and s refer to up, down, and strange sea quarks. x and y denote
valence quarks, and x̃ and ỹ label the corresponding ghost quarks. The diagonal elements
of Φ(x), namely U , D, S, X, Y , X̃, and Ỹ , are the single-flavor states uū, dd̄ and so
forth. X, P+, P−, and Y stand for the valence-valence bound states xx̄, xȳ, yx̄, and yȳ.
Similarly, X̃, P̃+, P̃−, and Ỹ are the ghost-ghost states x̃x̃†, x̃ỹ†, ỹx̃†, and ỹỹ†. Q,R,
and T denote the sea-valence, valence-ghost, and sea-ghost bound states, respectively.
Another notation for πab that will be employed later in Chapter 3 is the use of corre-
sponding quark labels instead of the numbering from 1 to 7. For example, K+ = πus,
X = πxx, P− = πyx, Y = πyy, and so forth.
The super-singlet field Φ0 can now be defined as the supertrace of Φ,

Φ0 = 1√
NS

str Φ . (2.19)

Due to the axial anomaly, the super-singlet is a heavy meson. This is accounted for in
the effective Lagrangian by giving it a large mass m0 ∼ Λhad,

LPQChPT → LPQChPT + m2
0

NS

(str Φ)2 . (2.20)

4 The number of valence quarks is not fixed, since they do not contribute to the dynamics. Φ(x),
however, is given for NV = 2, which is sufficient for the present calculations.
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At the end of a calculation, one projects out the singlet by sending m0 →∞, [27].
The chiral symmetry of the PQQCD Lagrangian was found to be G = SU(NS +
NV |NV )L ⊗ SU(NS + NV |NV )R. The task is now to construct the most general local,
Euclidean-invariant, and G-invariant Lagrangian. In order to do that, the mass matrix
m of Eq. (2.6) is promoted to a spurion χ = 2B0(s + ip), which transforms under G as
χ −→ LχR†. In the end, χ will be set to its constant value, χ = 2B0m. As before, the
building blocks are Σ, DµΣ, χ, their hermitian conjugate counterparts, and Lµν and Rµν .
The covariant derivative Dµ and the field-strength tensors Lµν and Rµν involving the
sources lµ and rµ are just graded generalizations of the corresponding terms in ChPT.
It turns out that the PQ chiral Lagrangian, LPQChPT ≡ L2 +L4 + . . ., is almost identical
to the standard ChPT version, with slight modifications [11]:

L2 = f 2

4 str(DµΣDµΣ†)−
f 2

4 str(χΣ† + Σχ†) +m2
0Φ2

0 (2.21)

L4 =− L1[str(DµΣDµΣ†)]2 − L2 str(DµΣDνΣ†) str(DµΣDνΣ†)
+ L3 str(DµΣDµΣ† DνΣDνΣ†)
+ L4 str(DµΣDµΣ†) str(χΣ† + Σχ†) + L5 str(DµΣDµΣ†[χΣ† + Σχ†])
− L6[str(χΣ† + Σχ†)]2 − L7 [str(χΣ† − Σχ†)]2

− L8 str(χΣ†χΣ† + Σχ†Σχ†)
+ iL9str(LµνDµΣDνΣ† +RµνDµΣ†DνΣ) + L10 str(LµνΣRµνΣ†)
+H1 str(LµνLµν +RµνRµν)−H2 str(χχ†) + LWZW,PQ

+ LPQOPQ (2.22)

Obviously, traces are replaced by supertraces. At O(p4), one finds a new term LPQOPQ
containing four derivatives. In unquenched ChPT forNS ≤ 3, that term was not indepen-
dent from the other terms in the Lagrangian, which could be seen using Cayley–Hamilton
trace relations [11]. These, however, do not hold for graded matrices. Additionally to the
mass term m2

0Φ2
0 of the super-singlet, one should also write down a kinetic term. In fact,

since besides parity, Φ0 is not constrained by symmetry, one should multiply every term
in Eq. (2.21) by an arbitrary even function of Φ0 coming with new free parameters [26].
This, however, is unnecessary because the dependence on these parameters vanishes if
the super-singlet is decoupled by sending m0 →∞, [27].
Lastly, it is very important mentioning that the low- and high-energy constants Li andHi

are the same as in unquenched ChPT. The reason is simply because QCD is contained in
PQQCD, and any correlation function with valence masses set equal to the sea masses
is identical to the corresponding QCD correlation function. PQChPT will thus prove
to be a powerful, though unphysical tool, to determine the free parameters of ChPT
by varying either the sea or the valence masses. Later, this will become clearer in the
example of the valence-valence pion mass given to NLO.
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2.1.2. Tree-level meson masses and propagators
In the following computations, the sources lµ, rµ, and the scalar density p are not needed.
The covariant derivatives Dµ in LPQChPT are therefore substituted for the normal partial
derivatives ∂µ, and the notation is changed to χ ≡ 2B0m, with the diagonal mass matrix
m of Eq. (2.6). When reading off the meson masses, the notation χ ≡M2 is used.
The tree-level meson masses and propagators are obtained from L2 by expanding it up
to quadratic order in the meson fields Φ(x) = 1√

2π(x),

LLO
2 = 1

2str(∂µπ ∂µπ) + 1
2str(χπ2) + m2

0
2NS

(strπ)2 . (2.23)

For the flavor-off-diagonal states, the charged mesons, one finds the tree-level squared
meson masses5

M2
ab ≡

M2
a +M2

b

2 = B0(ma +mb) , a 6= b , (2.24)

and the propagators

Gcon
ab (p2) ≡

∫
d4x e−ipx 〈πab(x)πba(0)〉con = εb

p2 +M2
ab

, a 6= b , (2.25)

where εb takes into account that the ghosts come with an extra minus sign from the
supertrace Eq. (2.13),

εb =

+1, if b is a sea or a valence index ,
−1, if b is a ghost index .

(2.26)

This is the first sign of sickness of the partially quenched theory. While the bosonic
propagators involving only sea and valence quarks have the normal “physical” sign and
thus the usual Klein–Gordon form, the ghost-ghost propagators have an unphysical sign.
In particular, the fermionic propagators can have either sign:

1
p2 +M2

ab

=


Gcon
ab = Gcon

ba , ab = SS, SV, V V

−Gcon
ab = −Gcon

ba , ab = GG

−Gcon
ab = Gcon

ba , ab = SG, V G

(2.27)

However, it is these unphysical minus signs that will lead to cancelations between closed
valence and closed ghost loop contributions. The propagators Eq. (2.27) are referred to
as connected propagators in terms of quark-flow:

Gcon
ab (p2) =

b

a

(2.28)

5 In what follows, the sea masses M1, M2, and M3 are denoted by Mu, Md, Ms). Similarly, the va-
lence/ghost ones M4 = M6 and M5 = M7 read Mx and, respectively, My.
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The propagators of the flavor-diagonal states, the neutral mesons, are not that easily
calculable due to the super-singlet that mixes the neutral single-flavor states U , D, and
S. The corresponding part of the Lagrangian reads

LN,LO
2 =

∑
a

εa
2
(
∂µπaa ∂µπaa + χaπ

2
aa

)
+ m2

0
2NS

(∑
a

εaπaa

)2
, (2.29)

where a runs from 1 to NS + 2NV . The full neutral propagator is deduced from

G−1
N = G−1

0 +H , (2.30)

where G−1
0 is the free propagator,

(G−1
0 )ab = (p2 +M2

a )εaδab , (2.31)

which stems from the first sum in Eq. (2.29). It equals the propagator Eq. (2.25) for
charged mesons. The second sum leads to a non-diagonal contribution

Hab = m2
0

NS

εaεb . (2.32)

This term can be treated as a two-point vertex, which leads to a geometric sum. The
result for the inverse of G−1

N is [26, 52]

GN = G0 −
G0HG0

1 + tr (G0H) . (2.33)

In the denominator, valence and ghost contributions to the trace cancel due to the
opposite sign of εa in Eq. (2.31). The full neutral propagator thus becomes

GN
ab(p2) ≡

∫
d4x e−ipx 〈πaa(x)πbb(0)〉 (2.34)

= εaδab
p2 +M2

a

− m2
0

NS

1
(p2 +M2

a ) (p2 +M2
b )

1

1 + m2
0

NS

NS∑
i=1

1
p2+M2

i

.

Diagrammatically, it can be represented by the free propagator (connected contribu-
tion) plus a sum of so-called hairpin diagrams containing m2

0 insertions (disconnected
contributions) with sea quarks running in the loops:

GN
ab = δabG

con
ab +Gdisc

ab

= δab
b

a

+
a

a

b

b

+
Sa

a

b

b

+
SSa

a

b

b

+ . . .

(2.35)
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The diagonal elements GN
aa seem to contain double poles, which is unphysical when

restricting to the sea quark sector a = sea. Thus, there must be hidden cancelations
coming from the denominator of the last fraction [11]. This denominator, involving the
sum over the sea sector, is a third-order polynomial in p2. It has poles at the physical
masses for the π0, η, and η′ mesons. One can rewrite Eq. (2.34) and finally find a nice
form for the neutral propagator [52],

GN
ab(p2) ≡

∫
d4x e−ipx 〈πaa(x)πbb(0)〉 = δabG

con
ab (p2) +Gdisc

ab (p2)

= εaδab
p2 +M2

a

− m2
0

NS

1
(p2 +M2

a ) (p2 +M2
b )

(p2 +M2
u) (p2 +M2

d ) (p2 +M2
s )

(p2 +M2
π0) (p2 +M2

η ) (p2 +M2
η′)

.

(2.36)

For clarity, the number of sea flavors, NS, is not written out explicitly. Note that the
propagator for NS = 2 sea flavors can be obtained simply by dropping the factors
(p2 + χs) and the (p2 + χη).
For NS = 3, the physical sea meson tree-level masses read (up to corrections of order
M4/m2

0)

M2
π0 = M2

u +M2
d +M2

s

3 − 1
3

√
M4

u +M4
d +M4

s −M2
uM

2
d −M2

uM
2
s −M2

dM
2
s ,

M2
η = M2

u +M2
d +M2

s

3 + 1
3

√
M4

u +M4
d +M4

s −M2
uM

2
d −M2

uM
2
s −M2

dM
2
s , (2.37)

M2
η′ = m2

0 + 1
3
(
M2

u +M2
d +M2

s

)
.

Now, it is convenient to integrate out the super-singlet. In the limitm0 →∞, the neutral
propagator reduces to [52]

GN
ab(p2) = εaδab

p2 +M2
a

− 1
NS

(p2 +M2
u) (p2 +M2

d ) (p2 +M2
s )

(p2 +M2
a ) (p2 +M2

b ) · (p2 +M2
π0) (p2 +M2

η )
, (2.38)

and the mentioned cancelations become obvious. When a and b denote sea flavors
(u, d, or s), they cancel the corresponding terms in the numerator, and the propagator
can be written as a sum of single pole propagators using partial fraction decomposition.
This cancelation makes sense, since the sea sector should not know anything about the
valence and the ghost sector of the theory. On the contrary, if a = b denote a valence
or a ghost quark, there is a double pole. This is a clear manifestation that partially
quenched QCD is sick. Problems that arise with this unphysical pole will be discussed
in a moment, but first the commonly used limit of isospin symmetry in the sea sector
(Mu = Md) will be shown. The tree-level pion and the eta mass simplify to

Mπ0 = Mu , M2
η = M2

u + 2M2
s

3 , (2.39)

and hence, the neutral propagator reduces to

GN
ab(p2) = εaδab

p2 +M2
a

− 1
NS

(p2 +M2
u) (p2 +M2

s )
(p2 +M2

a ) (p2 +M2
b ) · (p2 +M2

η )
. (2.40)
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A further simplification would be the total degeneracy Mu = Md = Ms, for which the
pion and the eta meson are degenerate with all single-flavor states U , D, and S, and
thus the factors (p2 +M2

s ) and (p2 +M2
η ) cancel each other.

It is useful in an actual computation to rewrite the disconnected part of the propagator
with the help of partial fraction decomposition. The residues one finds are denoted as [53]

Rv( u, d, s
a, b, π0, η) ≡

∏
i=u,d,s

(M2
i −M2

v )∏
j=a, b, π0, η

j 6=v

(M2
j −M2

v )
and Dw

v ( u, d, s
a, b, π0, η) ≡ −

∂

∂M2
w

Rv( u, d, s
a, b, π0, η) . (2.41)

The upper and lower neutral meson states in the parenthesis of Rv correspond to the
product indices i and j, respectively, where the factor with j = v is excluded from the
product in the denominator.
For flavors a 6= b, Eq. (2.38) contains only single poles and can be expressed as

Gdisc
ab (p2) = − 1

NS

∑
v=a,b,π0,η

Rv( u, d, s
a, b, π0, η)

p2 +M2
v

. (2.42)

On the other hand, if a = b, the double pole leads to a different decomposition,

Gdisc
aa (p2) = − 1

NS

Ra(u, d, sπ0, η )
(p2 +M2

a )2 −
1
NS

∑
v=a,π0,η

Da
v( u, d, sa, π0, η)
p2 +M2

v

. (2.43)

Clearly, the first term vanishes when a denotes a sea meson. For a 6= sea, however, the
unphysical double pole comes with factors of M2

sea−M2
val = 2B0(msea−mval) ≡ ∆2

PQ, as
anticipated, and thus vanishes only in the limit of equal valence and sea quark masses.
∆PQ can therefore be regarded as a characteristic parameter for the effects of partial
quenching. Intuitively, it seems plausible to keep this difference small to avoid large un-
physical effects, and indeed, one quickly realizes that the double pole affects many ob-
servables. As an example, the valence-valence pion mass to one-loop order for degenerate
sea (Mu = Md = . . . ≡Msea) and degenerate valence quark masses (Mx = My ≡Mval) is
given [54]:

M2,NLO
x

M2, tree
x

= 1 + 1
16π2f 2NS

[
(2M2

val −M2
sea) ln

(
M2

val
µ2

)
+ (M2

val −M2
sea)

]
+ 8NS

f 2 [2Lr6 − Lr4]M2
sea + 8

f 2 [2Lr8 − Lr5]M2
val

(2.44)

Here, the effect of the double pole is an infrared divergence of the so-called chiral log-
arithm when sending the valence mass to zero at fixed sea mass. The chiral limit can
therefore only be approached if the ratio of valence and sea mass is held constant.
There are many observables which are strongly affected by the double pole, for instance
the nucleon-nucleon potential [55] and the isospin-one scalar two-point function [34, 35,
38]. The present work focuses on this scalar correlator. The impact of partial quenching
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as well as the use of mixed actions (the topic of the next section) is studied in Chapters 3
and 4.
Two last remarks are due. First, by setting the valence mass equal to the sea mass
in Eq. (2.44), one obtains the known expression from standard ChPT containing no
infrared-divergent logarithm [2].
The second remark concerns the determination of the low-energy constants Li. When
using fitting formulae for lattice simulations that are obtained from partially quenched
ChPT, one has more different masses at hand and thus more knobs to turn compared
to standard unquenched ChPT. In the example given above, one can vary either the sea
or the valence mass to determine 2Lr6 − Lr4 or 2Lr8 − Lr5, whereas with Msea = Mval, one
has only access to the combination NS [2Lr6 − Lr4] + [2Lr8 − Lr5].

2.2. Mixed-action chiral perturbation theory
The aim of this section is to incorporate the lattice spacing into standard and partially
quenched ChPT, and to generalize the considerations to the scenario of Wilson quarks
in the sea and Ginsparg-Wilson quarks in the valence sector. The resulting mixed-action
chiral perturbation theory then allows to make the unitarity-violating effects of partial
quenching and the use of different discretizations explicit. An analysis of the scalar
correlator, a quantity that is strongly afflicted by these effects, follows in Chapters 3
and 4.

2.2.1. Matching Symanzik’s effective theory
The idea of how to take the lattice spacing into account in chiral perturbation theory
is very similar to the construction of ChPT itself [5, 6]. There, the quark masses were
treated as a perturbation to the chirally invariant Lagrangian. Promoting the quark mass
matrix to a spurion had then allowed for the construction of an effective Lagrangian made
of chirally invariant terms and to reproduce the correct pattern of symmetry breaking of
the QCD Lagrangian when setting the masses to their physical values. Now, concerning
the lattice spacing, one faces a two-step matching process. At first, one writes down the
Symanzik’s effective theory (SET), which is a systematic expansion in the lattice spacing
for the used lattice action. Then, one applies a spurion analysis, as it is done for the
quark masses, to every term in the Symanzik expansion in order to map the symmetries
and the pattern of symmetry breaking from the SET to an effective chiral Lagrangian.
Finally, the spurions are assigned to their constant values, and thus the lattice spacing
dependence is made explicit. Note that symmetry breaking in this context does not only
refer to chiral symmetry but also to rotational O(4) invariance and to other symmetries
like flavor symmetry which may not be respected by the lattice action.
It is now time to describe the outlined procedure in more detail. Symanzik showed
that at momenta much smaller than the lattice cutoff, p� π

a
, the lattice theory can be

described by an effective continuum theory [3]. The resulting effective action,

SSym = S0 + aS1 + a2S2 + . . . , (2.45)
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consists, by construction, of the continuum dimension-zero QCD action S0 and of higher
dimensional effective operators contained in S1, S2, . . . which multiply appropriate pow-
ers of the lattice spacing a. The leading term in the expansion is S0, which is why, for
sufficiently small a (and quark masses m), the lattice theory exhibits the same spon-
taneous symmetry breaking pattern as the continuum theory [5, 6], and the low-energy
dynamics are therefore still dominated by the usual pseudo-Goldstone bosons (the light
mesons) stemming from the continuum term S0. They now receive their small masses
from the explicit chiral symmetry breaking quark masses and from discretization effects.
The Symanzik action consists of all possible operators compatible with the symmetries
of the underlying lattice theory, that is, the SET will inevitably contain those operators
which respect the symmetries of the corresponding continuum action and those which
break them. In order to match the SET to an effective chiral Lagrangian [5, 6], one makes
use of the familiar spurion analysis. Promoting the constant prefactors in symmetry
breaking terms to spurion fields with appropriate behavior under chiral transformations
renders these terms chirally invariant. The chiral Lagrangian can then be constructed
from the Goldstone fields and these spurions.
Take for example the Wilson action for unquenched QCD and consider the leading
correction to the continuum term appearing in S1 [4],

ac1

∫
d4x q̄(x)iσµνGµν(x)q(x) , (2.46)

which is nothing but a Pauli term containing the field-strength tensor Gµν and an un-
known coefficient c1. This term can be made invariant under chiral transformations by
promoting ac1 to a complex spurion field A,

ac1 q̄iσµνGµνq → q̄LiσµνGµνAqR + q̄RiσµνGµνA
†qL , (2.47)

and letting it transform as

A
G−→ LAR† , A†

G−→ RA†L† . (2.48)

This is exactly the same transformation behavior that was imposed on the mass matrix
m in order to make the continuum Lagrangian chirally invariant. Consequently, (2.48)
results in analogous terms in the chiral Lagrangian, for instance at leading order in
ChPT,

− f 2W0

2 tr(AΣ† + ΣA†) , (2.49)

where W0 denotes a new low-energy constant similar to B0. The spurion A is now set to
its constant value, A→ ac11NS×NS , and c1 is absorbed intoW0. Comparing the resulting
term to the mass term,

−âf
2

4 tr(Σ† + Σ) , â ≡ 2W0a , (2.50)

−f
2

4 tr(χΣ† + Σχ) , χ ≡ 2B0m, (2.51)
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shows, that this order-a effect can be absorbed into the quark mass matrix according to

m→ m′ = m+ W0

B0
a1NS×NS . (2.52)

Note that the Wilson action contains the so-called Wilson term, which explicitly breaks
chiral symmetry. In the SET, this corresponds to a dimension-three operator c q̄q mul-
tiplying the inverse lattice spacing, where c is an unknown constant. The bare lattice
quark masses m0 which occur in the action therefore receive an additive mass renormal-
ization c/a. Commonly, one uses a vanishing pion mass for the definiton of the lattice
renormalized quark masses

M2
π = 2B0m

′ ⇔ m′ = Zm

(
m0 −

c

a

)
= 0 . (2.53)

In this way, the critical mass mc = c
a
automatically accounts for the order-a shifts in

Eq. (2.52).
The mentioned remaining O(a) terms in the effective Lagrangian can be simply written
down by copying every mass term in Eq. (1.48), replacing one power of χ with the
lattice spacing â, and renaming the associated low-energy constant Li to Wi. The result
is Wilson chiral perturbation theory (WChPT) [56] including lattice spacing effects up
to order-a.
Now, how does the transition from WChPT to partially quenched WChPT happen?
It turns out [28] that the operators in the Symanzik expansion have exactly the same
form, and one only has to substitute the quark vectors q and q̄ for the partially quenched
ones Eq. (2.6), which comprise the sea, valence, and ghost quarks. As a consequence,
the terms appearing in the effective Lagrangian are also the same, except for the re-
placement tr→ str and the fact that the meson matrix Σ = exp(2i

f
Φ) describes the

(NS + 2NV )2 − 1 Goldstone fields of partially quenched QCD. The resulting effective
Lagrangian, containing lattice spacing effects up to and including O(a2), consists of the
continuum partially quenched Lagrangian6

LPQChPT = L2 + L4 + . . . (2.54)

L2 = f 2

4 str(∂µΣ ∂µΣ†)−
f 2

4 str(χΣ† + Σχ) +m2
0Φ2

0

L4 =− L1[str(∂µΣ ∂µΣ†)]2 − L2 str(∂µΣ ∂νΣ†) str(∂µΣ ∂νΣ†)
+ L3 str(∂µΣ ∂µΣ† ∂νΣ ∂νΣ†) + L4 str(∂µΣ ∂µΣ†) str(χΣ† + Σχ)
+ L5 str(∂µΣ ∂µΣ†[χΣ† + Σχ])− L6[str(χΣ† + Σχ)]2

− L7 [str(χΣ† − Σχ)]2 − L8 str(χΣ†χΣ† + ΣχΣχ)
−H2 str(χχ) (2.55)

6 Remember that the sources lµ and rµ as well as the scalar density p were set to zero.
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and of the following a-dependent terms7:

L[a] =− â f
2

4 str(Σ† + Σ) (2.56)

+ âW4 str(∂µΣ ∂µΣ†) str(Σ† + Σ)
+ âW5 str(∂µΣ ∂µΣ†[Σ† + Σ])
− âW6 str(χΣ† + Σχ) str(Σ† + Σ)
− âW7 str(χΣ† − Σχ) str(Σ† − Σ)
− âW8 str(χΣ†Σ† + ΣΣχ)

L[a2] =− â2W ′
6 [str(Σ† + Σ)]2 − â2W ′

7 [str(Σ† − Σ)]2

− â2W ′
8 str(Σ†Σ† + ΣΣ) (2.57)

The given Lagrangian is valid in the so-called GSM regime (the regime of generic small
quark masses) [57, 58], in which the lattice spacing a counts as one power of m, or
equivalently as two powers of p. The leading order Lagrangian therefore contains terms of
O(p2,m, a), whereas the NLO Lagrangian comprises terms ofO(p4, p2m, p2a,m2,ma, a2).
The next and most relevant step for the present work is the extension of the described
matching process to mixed-action ChPT with Wilson quarks in the sea and Ginsparg–
Wilson quarks in the valence sector.
Dirac operators of GW-type satisfy the Ginsparg–Wilson relation [17],

{γ5, D} = aDγ5D , (2.58)

which in the continuum limit reproduces the continuum condition for chiral symmetry.
The consequence of this relation is an exact chiral symmetry of the fermion action [18].
One can thus conclude that the continuum chiral Lagrangian will be nearly unchanged
when matching the SET for Ginsparg–Wilson fermions. In the GW action, rotational
O(4) invariance is the only explicitly broken symmetry. This manifests itself in operators
of O(a2) or higher in the Symanzik expansion [28]. Corresponding terms in the effective
Lagrangian must carry at least four partial derivatives ∂µ. Multiplying these with two
or more powers of the lattice spacing makes these terms negligible to the order that is
considered in the present work.8
Now, with Wilson quarks in the sea and GW quarks in the valence sector, the symmetry
of the lattice action is no longer GPQ = SU(NS +NV |NV )L ⊗ SU(NS +NV |NV )R, but
rather [28]

GMA = SU(NS)L ⊗ SU(NS)R︸ ︷︷ ︸
Gsea

⊗SU(NV |NV )L ⊗ SU(NV |NV )R︸ ︷︷ ︸
Gval

. (2.59)

7 Effects of order a2 originate from dimension-six operators contained in S2 in the Symanzik expansion.
The corresponding spurion analysis was done in Ref. [28].

8 Of course, rotational O(4) invariance is also broken by the Wilson action, but with the same reasoning
one finds the effects on the chiral Lagrangian to be of too high an order.
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In the limit of vanishing quark masses, Gval becomes an exact symmetry; Gsea, however,
is explicitly broken down to SU(NS)V by the Wilson term.
The leading term, S0, in the Symanzik expansion is the continuum action of partially
quenched QCD, which is invariant under GPQ for massless quarks. Now, the argument
is as before: For small enough lattice spacings a and quark masses m, the continuum
term S0 determines the pattern of spontaneous symmetry breaking in the effective the-
ory [23, 28]. This means that the low-energy dynamics of mixed-action QCD can be
described by the same (NS + 2NV )2 − 1 Goldstone bosons of PQQCD. The effective
chiral Lagrangian is then constructed from the SET by introducing spurions that make
the Symanzik action invariant under GPQ. In the end, as usual, the spurions are assigned
to their constant values.
The complete derivation can be found in Ref. [28]. The result is quite similar to the case
discussed before where the same Wilson action was used in both the sea and the valence
sector. The mixed-action effective Lagrangian,

LMA = LPQChPT + L[a] + L[a2] + . . . , (2.60)

is made up of the continuum partially quenched Lagrangian, Eq. (2.54), and of the
following lattice spacing dependent parts:

L[a] =− â f
2

4 str(PSΣ† + ΣPS) (2.61)

+ âW4 str(∂µΣ ∂µΣ†) str(PSΣ† + ΣPS)
+ âW5 str(∂µΣ ∂µΣ†[PSΣ† + ΣPS])
− âW6 str(χΣ† + Σχ) str(PSΣ† + ΣPS)
− âW7 str(χΣ† − Σχ) str(PSΣ† − ΣPS)
− âW8 str(χΣ†PSΣ† + ΣPSΣχ)

L[a2] =− â2W ′
6 [str(PSΣ† + ΣPS)]2 − â2W ′

7 [str(PSΣ† − ΣPS)]2

− â2W ′
8 str(PSΣ†PSΣ† + ΣPSΣPS)− â2WM str(PSΣPSΣ†) (2.62)

Except for the WM -term in the order-a2 Lagrangian, L[a] and L[a2] are carbon copies of
Eqs. (2.56) and (2.57) with insertions of PS at appropriate places. PS = diag(1NS×NS , 0)
is nothing but a projector on the sea sector, which guarantees that there are no O(a)
and O(a2) effects in the pure valence sector of the theory. This is expected due to the
exact chiral symmetry of GW quarks.
As before, the order-a shift of Eq. (2.52) can be applied, this time, however, only to the
sea masses. Whenever such a mass shows up in the following considerations, this shift is
implied,

M2
i = 2B0mi + 2W0a , i = u, d, s , (2.63)

M2
v = 2B0mv , v = x, y . (2.64)

Note that for O(a)-improved Wilson fermions, this shift as well as all O(a) terms in the
effective Lagrangian vanish.
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Where does the new term −â2WM str(PSΣPSΣ†), in the following referred to as mix-
term, come from? Due to the different discretizations, there is no transformation that
can rotate sea quarks into valence quarks and vice versa. This reduced symmetry allows
for new operators in the Symanzik expansion and consequently leads to this new term
coming with a new low-energy constantWM .9 In fact, the nature of this term is universal
for all mixed-action theories [30].

2.2.2. Changes in the tree-level masses and propagators
With the effective Lagrangian at hand, it is now possible to tackle calculations. At first,
the tree-level squared meson masses for charged mesons, now afflicted by lattice spacing
effects, will be computed. In the GSM regime, nothing really changes, since only the sea
quark masses receive an additional shift proportional to a. Expanding the Lagrangian
in the meson fields Φ(x) = 1√

2π(x) therefore simply yields

M2
ab ≡

M2
a +M2

b

2 . (2.65)

When decreasing the quark masses at fixed lattice spacing in a lattice simulation, one
will eventually reach the point where the LO quark mass term and the NLO a2-terms
are of comparable size. Therefore, the power counting has to be modified to m ∼ a2,
that is, all O(a2) terms are promoted to be of leading order. This scenario is often called
the regime of large cutoff effects [59]. As a consequence, the effective Lagrangian LMA
in Eq. (2.60) is no longer valid at next-to-leading order, and one should in principle
construct higher-order terms that could possibly serve to cancel appearing divergencies
in a loop calculation. The computation of the scalar correlator in Chapter 3, however,
does not yield such divergent terms. It is thus sufficient for the current purposes to work
with LMA.
Carrying out the expansion in the meson fields reveals the following changes in the
squared meson masses for mesons made of sea-sea, sea-valence/valence-sea, or valence-
valence quarks (valence does also include the ghosts) [31]:

M2
sea →M2

sea + â2∆sea

M2
mix →M2

mix + â2∆mix + â2∆′mix (2.66)
M2

val →M2
val

The shift parameters ∆sea, ∆mix, and ∆′mix are given by

∆sea = 16
f 2 (NSW

′
6 +W ′

8) , ∆mix = 2
f 2WM , ∆′mix = 4

f 2 (2NSW
′
6 +W ′

8) . (2.67)

As expected, the masses of mesons made entirely out of valence (and/or ghost) quarks are
not affected by discretization effects up to order-a2. The squared sea-sea meson masses,
9 Note that the mix-term in Ref. [28] reads −â2WM str(τ3Στ3Σ†), with τ3 = (PS ,−PV ) and PV =

diag(0,12NV ×2NV ) being the projector on the valence sector. Since str(τ3Στ3Σ†) = 4str(PSΣPSΣ†) +
const., the low-energy constant WM differs by a factor of 4.
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however, are shifted by â2∆sea. The mixed meson masses are the first quantities in which
the new low-energy constantWM enters, but they also receive another contribution ∆′mix
stemming from the sea quark. The shifts Eq. (2.66) are also implied in the neutral sector,
in particular also for M2

π0 and M2
η .

In contrast to the GSM regime, the tree-level masses of the three different meson types
are no longer trivially related,

M2
iv 6=

M2
ii +M2

vv

2 . (2.68)

Here, i denotes a sea and v a valence quark.
Up next is the determination of the propagators. The charged ones are simply the same
as in Eq. (2.25), one only has to substitute the corresponding masses for the masses in
Eq. (2.66).
The neutral propagators on the other hand are not that easily computable. In Ref. [37],
the valence-valence propagator was calculated for degenerate sea quarks and degenerate
valence quarks. In the following, the generalization to any quark type and to the non-
degenerate case will be given. For this purpose, it is adequate to adopt the authors’
notation. Note, however, that they focus at first on Wilson-like mixed actions and then
specify their result to the Wilson–GW and GW–GW cases. This means that the valence
quarks are not necessarily chiral quarks, and the tree-level meson masses in Eq. (2.66)
take a slightly different form. For further details, the reader is referred to the comments
between Eqs. (13) and (14) in Ref. [37].
The operator at O(a2) in the Lagrangian that is relevant for the neutral propagator is
a generalization of the W ′

7 term in Eqs. (2.57) and (2.62),

δLW ′7 [a
2] = −â2f

2

16
[
γSS[str(PSΣ† − ΣPS)]2 + γV V [str(PV Σ† − ΣPV )]2

+ 2γSV str(PSΣ† − ΣPS) str(PV Σ† − ΣPV )
]
. (2.69)

PS and PV are the projectors on the sea and the valence sector, respectively. Note that
in Ref. [37], f is defined with an additional factor

√
2.

Using the same Wilson action in both the sea and the valence sector implies γSS = γSV =
γV V , and taking the valence quarks to be of GW-type results in γSV = γV V = 0 due to
the exact chiral symmetry. In these two scenarios, δLW ′7 reduces to the corresponding
W ′

7 term in Eqs. (2.57) and (2.62), with γSS = 16
f2W

′
7.

Before proceeding, it is useful to split the super-singlet Φ0 into its sea and its va-
lence/ghost part [37], Φ0 = ΦS

0 + ΦV
0 . These are given by

ΦS
0 ≡

1√
NS

NS∑
a=1

Φaa , ΦV
0 ≡

1√
NS

NS+2NV∑
a=NS+1

εaΦaa . (2.70)

As in Eq. (2.29), the effective Lagrangian must be expanded up to quadratic order in the
meson fields for obtaining the neutral propagator. For the singlet part, one then finds

LΦ0 = µ2
SS (ΦS

0 )2 + 2µ2
SV ΦS

0 ΦV
0 + µ2

V V (ΦV
0 )2 , (2.71)
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where

µ2
SS = m2

0
NS

+ â2γSS , µ2
SV = m2

0
NS

+ â2γSV , µ2
V V = m2

0
NS

+ â2γV V . (2.72)

Note that in contrast to Ref. [37], the mass term of the super-singlet is defined with an
additional factor 1/NS.
The neutral propagator including lattice effects up to O(a2) is deduced from

G−1
N = G−1

0 +H (2.73)

with the connected propagators

(G−1
0 )ab = (p2 +M2

a )εaδab , (2.74)

and the non-diagonal contribution

Hab = δaSδbSµ
2
SS + (δaSδbV + δaV δbS) εaεbµ2

SV + δaV δbV εaεbµ
2
V V . (2.75)

The Kronecker deltas have indices S and V , which stand for a sea quark, and a va-
lence/ghost quark, respectively. Written in matrix form to visualize the structure of
G−1
N , Equation (2.73) reads

G−1
N =

(G−1
0 )SS

(G−1
0 )V V

−(G−1
0 )V V

+

+µ2
SS +µ2

SV −µ2
SV

+µ2
SV +µ2

V V −µ2
V V

−µ2
SV −µ2

V V +µ2
V V

 . (2.76)

Here, the µ2’s are meant to be multiplying the matrix of ones with appropriate dimen-
sions. The matrices containing the inverse connected sea and connected valence/ghost
propagators are given by

(G−1
0 )SS =

(
p2+M2

u

p2+M2
d

p2+M2
s

)
and (G−1

0 )V V =
(
p2+M2

x

p2+M2
y

)
. (2.77)

Inspired by the neutral propagator in the continuum, Eq. (2.36), and the symmetry of
G−1
N , one can expect its inverse to be given by

GN
ab(p2) = εaδab

p2 +M2
a

− Kab(p2)
(p2 +M2

a ) (p2 +M2
b )
, (2.78)

where the Kab need to be fixed by the condition (GN)ab(G−1
N )bc = 1ac. When solving

this system of equations, one makes use of Kab = Kba and of the symmetry between the
sea-valence and the sea-ghost sector, Ki,v = Ki,v+NV , where i denotes a sea index and v
a valence index. One finds

Kab(p2) = WabP (u, d, s) +NSVabP (π0, η)
P (u, d, s) +NSµ2

SSP (π0, η)
, (2.79)
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in which

P (u, d, s) = (p2 +M2
u)(p2 +M2

d )(p2 +M2
s ) ,

P (π0, η) = (p2 +M2
π0)(p

2 +M2
η ) ,

Wab = δaSδbSµ
2
SS + (δaSδbV + δaV δbS)µ2

SV + δaV δbV µ
2
V V ,

Vab =
[
µ2
SSµ

2
V V − µ4

SV

]
δa6=seaδb 6=sea .

(2.80)

Here, Mπ0 and Mη denote the physical neutral meson masses of the pion and the eta,
as defined in (2.37), now including the O(a) and O(a2) corrections as in Eq. (2.66).
Equation (2.79) is given for NS = 3, but as before, the case NS = 2 can be obtained by
dropping the (p2 +M2

s ) and (p2 +M2
η ) factors in Eq. (2.80).

Interestingly, for Wilson sea quarks (γSS 6= 0), there is an O(a2) contribution Vab to the
propagator that only affects the valence and the ghost sector, whether the valence quarks
are chiral or not. This is due to the graded nature of the meson matrix and the equality
of valence and ghost masses. For the same reason, the sea-sea and the sea-valence sector
do not depend on γV V .
Finally, the super-singlet is decoupled by sending m0 →∞:

Kab(p2) = (p2 +M2
u) (p2 +M2

d ) (p2 +M2
s )

NS(p2 +M2
π0)(p2 +M2

η )
+ â2 (γSS + γV V − 2γSV ) δa6=seaδb 6=sea (2.81)

One immediately sees that the O(a2) corrections stemming from δLW ′7 affect only the
pure valence sector (including the ghosts). If the same Wilson action is used for both the
sea and the valence quarks, that term vanishes, since γSS = γSV = γV V . This, however,
does not imply that there are no O(a2) corrections. The theory just reduces to standard
partially quenched ChPT with the lattice corrections absorbed into the squared meson
masses via a generalization of Eq. (2.66). With chiral quarks in the sea and in the valence
sector, all gammas are zero.
The relevant case in the present work, however, is that of Wilson sea quarks and GW
valence quarks. That is, γSV = γV V = 0 and γSS = 16

f2W
′
7. The neutral propagator is

thus given by

GN
ab(p2) = εaδab

p2 +M2
a

− 1
NS

(p2 +M2
u) (p2 +M2

d ) (p2 +M2
s )

(p2 +M2
a ) (p2 +M2

b ) · (p2 +M2
π0) (p2 +M2

η )

− â2γSS
δa6=seaδb6=sea

(p2 +M2
a ) (p2 +M2

b )
.

(2.82)

The lack of symmetry in the sea sector, or rather the missing symmetry between the sea
and the valence sector, directly influences the valence sector of the theory.
It seems like the lattice corrections coming with γSS (W ′

7) are independent of the number
of sea flavors. This is a priori not true, since all low-energy constants do depend on NS.
A pleasant byproduct of the result in Eq. (2.82) is the fact that an actual mixed-action
computation does not get a lot more complicated than a usual partially quenched one.
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The only slight modification is the partial fraction decomposition of the second term. If
the masses Ma and Mb are unequal, then

1
(p2 +M2

a ) (p2 +M2
b )

=
1

M2
b
−M2

a

p2 +M2
a

+
1

M2
a−M2

b

p2 +M2
b

, (2.83)

and one simply has to shift the corresponding single pole residues by ±NS â
2γSS

M2
b
−M2

a
.

On the other hand, if Ma equals Mb, the double pole residue receives a shift according
to RDP → RDP +NS â

2γSS.
For example, with NS = 2 sea flavors, isospin symmetry Mu = Md, and Ma = Mx, this
shift reads

(M2
u −M2

x)→ (M2
u −M2

x) + 2â2γSS . (2.84)

The last brief comment in this chapter concerns the issue of quark mass tunings. Since
the squared masses of sea-sea, mixed, and valence-valence mesons receive different shifts
caused by the non-zero lattice spacing, one must decide how to tune the bare quark
masses in order to get the desired meson masses. In view of the expression above, one
can, e. g., tune the valence quark mass to yield Mu = Mx. Another possibility is to
tune such that the whole double pole residue vanishes [37]. This, however, is difficult
in practice since it requires a quantity sensitive to the mass of the super-singlet. In the
continuum limit, these tunings are of course equivalent. In the next chapter, when the
scalar correlator is discussed, the tuning of the quark masses will be addressed again.
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3. The scalar correlator
This chapter is devoted to the isospin-one scalar two-point function [32, 34–36] at large
time separations in partially quenched and mixed-action chiral perturbation theory. After
a motivation why this is a useful quantity in lattice simulations, the leading contribution
to the scalar correlator in PQChPT is derived, and the unphysical effects of the double
pole are studied. Afterwards, the impact of non-zero lattice spacings and the use of
mixed actions is analyzed. Chapter 4, then, will concentrate on finite volume effects,
which will turn out to especially affect the double pole.

3.1. Motivation
This introduction follows mainly Ref. [35]. In lattice QCD, hadron correlators are used to
compute hadron masses and energies of excited states. The concrete procedure is often
referred to as hadron spectroscopy calculations [24]. The correlator of interest in the
present work is the isospin-one scalar two-point function, which in standard unquenched
QCD is given by

C(t) =
∫

d3~x 〈0|d̄(x)u(x) ū(0)d(0)|0〉 . (3.1)

Like all lattice correlators, C(t) can be represented by a sum of decaying exponentials
where each exponent corresponds to a specific energy level. C(t) receives contributions
from the propagation of the scalar a0 meson, C(t) ∝ e−ma0 t, and from multi-hadron in-
termediate states, the most important of which is the so-called bubble contribution B(t)
where two pseudoscalars propagate. This is illustrated in Fig. 3.1. In 2 + 1 flavor QCD,
the possible intermediate states in the bubble diagram are πη, KK̄, and πη′. For two
flavors, only πη′ is allowed.
At large time separations and small quark masses, B(t) gives a sizable contribution to
the correlator and will eventually dominate its shape,

C(t) = Ae−ma0 t +B(t) + . . . . (3.2)

The dots represent excited scalar meson states as well as other less important multi-
hadron intermediate states, which will not be considered here.
The aim of Ref. [34, 35] was to determine the mass of the scalar a0 meson, which appeared
to be difficult due to the bubble contribution shadowing the interesting a0-part.
Besides the extraction of ma0 , the scalar correlator is interesting for another reason:
It allows to gain more insight into the violation of unitarity occurring in unphysical
lattice simulations, since it is a quantity which is extremely sensitive to the associated
effects. Depending on the chosen quark masses and discretizations, C(t) is found to be
negative at large t [32–35]. This behavior can be explained in the framework of partially
quenched and mixed-action ChPT, where the bubble can give rise to unphysical negative
contributions to the scalar correlator, mainly due to the double pole in the disconnected
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d̄u d̄u
a0

(a)

d̄u d̄u

π, K, π

η, K̄, η′

(b)

Figure 3.1.: Diagrams contributing to the scalar correlator. Figure 3.1a represents the propagation of
the scalar a0 meson, and Fig. 3.1b shows the so-called bubble diagram with the possible
two-pseudoscalar intermediate states πη, KK̄, and πη′.

propagators. At large time separations, when all heavy intermediate states have been
decayed, C(t) will be a tool to check whether mixed-action ChPT describes all unitarity-
violating effects [38], and, if so, to quantify the size and signs of the new low-energy
constants associated with them. This is one of the motivations for this thesis.
In the following, the scalar correlator is derived for Wilson sea and Ginsparg–Wilson
valence quarks. Essentially, the form will be the same as in Ref. [35] where staggered sea
quarks were used. The authors, however, directly computed the mixed-action correlator
in a finite volume (as in Ref. [34]) and used lattice momenta instead of “standard” quan-
tized momenta that occur in a box with periodic boundary conditions [7–9]. The final
expression Eq. (24) in Ref. [34] contains five sums over all possible values of lattice mo-
menta and is therefore quite cumbersome. As a consequence, fitting lattice data to that
expression becomes very time-consuming, in particular for increasing lattice volumes.
Moreover, it is not clear how the infinite volume limit is approached.
The calculation in the present work is organized in a different way. At first, the correlator
is derived in the infinite volume. This will already make the unphysical effects visible.
Then, the computation is carried over into a finite volume. The aim is to rewrite the sums
over momenta such that the resulting expression is easy to handle in a fitting process,
and, furthermore, that higher-order terms in the sums are suppressed with larger box
sizes. In this way, one recovers the infinite volume result in the limit of infinitely large
lattice volumes.

3.2. Partially quenched infinite volume computation
3.2.1. The computation
In partially quenched QCD, the valence-valence scalar two-point function is given by10

CPQQCD
ȳx (t) =

∫
d3~xCPQQCD

ȳx (x) =
∫

d3~x 〈0|ȳ(x)x(x) x̄(0)y(0)|0〉 , (3.3)

10The space-time point x in brackets is not to be confused with the valence quark placeholders x and y.
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which corresponds to

CPQQCD
ȳx (x) = 1

ZPQQCD

∫
DADq̄Dq

[
ȳ(x)x(x) x̄(0)y(0)

]
e−SG[A]−

∫
d4y q̄( /D+m)q (3.4)

in the path integral formulation. This is the same as functional differentiating ZPQQCD
with respect to the corresponding entries of the mass matrixm (which is being promoted
to a space-time dependent object, that is, it equals the scalar density s),

CPQQCD
ȳx (x) = 1

ZPQQCD

δ2ZPQQCD

δmxy(0) δmyx(x)

∣∣∣∣∣
m→diag(m)

. (3.5)

Analogously, one considers the generating functional of PQChPT,

ZPQChPT =
∫
DΣ e−

∫
d4y [L2(y)+L4(y)+...] , (3.6)

and works out the same functional derivatives [34, 35]. A detailed calculation can be
found in Appendix A. The expression one receives reads

CPQChPT
ȳx (x) = B2

0f
4

4 〈0|
[
Σ(x) + Σ†(x)

]
xy

[
Σ(0) + Σ†(0)

]
yx
|0〉

+ 4B2
0 δ(x) 〈0|

[
2L8

(
ΣxxΣyy + Σ†xxΣ†yy

)
(0) + 2H2

]
|0〉 ,

(3.7)

which has to be expanded up to quadratic oder in the meson fields π(x). For flavor
indices x 6= y, one finds

CPQChPT
ȳx (x) = B2

0 〈0|[π2(x)]xy[π2(0)]yx|0〉+ 8B2
0 δ(x) [2L8 +H2] . (3.8)

The two low- and high-energy constants L8 and H2 enter the correlator as contact
terms. As explained in the first chapter, they are necessary for the renormalization of
CPQChPT
ȳx (0). They play no rôle at large time separations and will therefore be dropped

in the following considerations.
The full PQQCD correlator includes the a0 propagation and the πη′ bubble. One has no
access to the πη′ intermediate state when the heavy eta prime meson is decoupled from
the theory. At large space-time separations x, though, these heavy indermediate states
have been decayed, and CPQChPT

ȳx (x) matches CPQQCD
ȳx (x) up to truncation errors in the

chiral expansion.
According to Wick’s theorem, Eq. (3.8) can be reduced to a sum of products of two-
point functions, which involve only two fields. Among the non-zero contractions, the
propagators with ghost quarks cancel the corresponding valence quark propagators. The
correlator is then given by (see Appendix A)

CPQChPT
ȳx (x) = B2

0

[
〈πxyπyx〉con

(
2 〈πxxπyy〉disc + 〈πxxπxx〉disc + 〈πyyπyy〉disc

)
+

NS∑
i=1
〈πxiπix〉con 〈πiyπyi〉con

]
, (3.9)
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Figure 3.2.: Quark-flow diagrams corresponding to the bubble diagram in Fig. 3.1b. The connected-
disconnected valence pion propagations are shown in Fig. 3.2a, in which the quark labels
correspond to the term 〈πxyπyx〉con 〈πxxπyy〉disc in Eq. (3.9). The other two disconnected
diagrams can be obtained by changing the upper yy or xx labels to xx and/or yy, respec-
tively. All possible iterations of sea quark loops from the disconnected propagator Eq. (2.35)
are implied in this hairpin diagram. The connected mixed pion and mixed kaon propaga-
tions are visualized in Fig. 3.2b, where i stands for a sea quark u, d, or s. Note that among
all connected diagrams, the valence loops have been canceled by the ghost loops as described
before. This leaves only the shown diagram with a sea quark running in the loop.

where for shortness 〈π1π2〉 denotes 〈π1(x)π2(0)〉. These two-point functions are those of
Eqs. (2.25) and (2.38),

〈πab(x)πba(0)〉con =
∫ d4p

(2π)4G
con
ab (p2) eipx , (3.10)

〈πaa(x)πbb(0)〉disc =
∫ d4p

(2π)4G
disc
ab (p2) eipx , (3.11)

with the momentum-space propagators

Gcon
ab (p2) = εb

p2 +M2
ab

, (3.12)

Gdisc
ab (p2) = − 1

NS

(p2 +M2
u) (p2 +M2

d ) (p2 +M2
s )

(p2 +M2
a ) (p2 +M2

b ) · (p2 +M2
π0) (p2 +M2

η )
. (3.13)

The scalar correlator consists of connected and disconnected parts. For the three-flavor
case, NS = 3, the connected parts are mixed pion and mixed kaon intermediate states
stemming from the sum over the sea index i. The other three terms give rise to discon-
nected contributions involving valence pions. This is illustrated in Fig. 3.2.
From now on, all calculations will be restricted to the scenario of isopsin symmetry,
Mu = Md 6= Ms and Mx = My. In this limit Mu equals the sea pion mass Mπ0 , and
(M2

x +M2
y )/2→M2

x is the squared valence pion mass. The mixed pions and kaons have
the masses Mux and Msx, respectively. The correlator will be denoted as CPQChPT

ȳx →
C2+1
ȳx , and in the case of two sea flavors, it will be abbreviated by Cȳx. A generalization of

the subsequent calculations to non-degenerate quarks involves more terms to deal with.
The final expressions for C1+1+1

ȳx can be found in Appendix D. The scalar correlator now
simplifies to

C2+1
ȳx (x) = B2

0

[
4 〈πxxπxx〉con 〈πxxπxx〉disc +

∑
i=u,u,s

〈πxiπix〉con 〈πixπxi〉con
]
. (3.14)
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In the limit of equal sea and valence masses, one indeed recovers the QCD result
C2+1
ȳx → C2+1

d̄u
with a pion–eta and a kaon–antikaon intermediate state,

C2+1
d̄u

(x) = B2
0

[ 2
3 〈ππ〉 〈ηη〉+ 〈KK̄〉 〈K̄K〉

]
. (3.15)

Remember that the heavy eta prime meson was decoupled from the theory and therefore
no 〈ππ〉 〈η′η′〉 term appears. That is also the reason why one finds a vanishing correlator,
Cȳx(x) = 0, in the case of two sea flavors, since the πη′ intermediate state is the only
one allowed for NS = 2.
Now back to the partially quenched correlator. A partial fraction decomposition yields
the following expressions for the disconnected valence-valence propagator,

NS = 2: Gdisc
xx (p2) = −1

2

[
M2

u −M2
x

(p2 +M2
x)2 + 1

p2 +M2
x

]
, (3.16)

NS = 3: Gdisc
xx (p2) = −1

3

[
Rx(u, sη )

(p2 +M2
x)2 +

Dx
x(u, sη )

p2 +M2
x

+
Dx
η(u, sx )

p2 +M2
η

]
, (3.17)

with Rx(u, sη ), Dx
x(u, sη ), and Dx

η(u, sx ) being the corresponding residues of the decomposition
(see Eq. (2.41)). For the current purpose, it is useful to define so-called bubble functions.
These are products of two propagators including the integration over the spatial volume,
multiplied with the square of the low-energy constant B0:

BSP(t,Ma,Mb) ≡ B2
0

∫
d3~x

∫ d4p

(2π)4
eipx

p2 +M2
a

∫ d4k

(2π)4
eikx

k2 +M2
b

(3.18)

Here, SP stands for single pole. Equivalently, the double pole (DP) contribution is being
defined as

BDP(t,Ma,Mb) ≡ B2
0

∫
d3~x

∫ d4p

(2π)4
eipx

p2 +M2
a

∫ d4k

(2π)4
eikx

(k2 +M2
b )2 , (3.19)

where in the case of isospin symmetry only BDP(t,Ma,Ma) is needed.
With this notation, the correlator can be written in a very convenient form. Before doing
so, it is appropriate to simplify the bubble functions to expressions, which are easier to
handle. Note that in comparison to Refs. [34, 35], the integrals correspond to sums over
lattice momenta. The ~x-sum projects on ~p + ~k = 0, and the authors are left with five
sums, which cannot be simplified anymore. This is not the case in the present approach.
In order to save writing too many subscripts, the following convention is used,

BSP/DP(t,Ma,Mb)→ BSP/DP(t,M,m) , (3.20)

where, in this notation, m must not to be confused with the quark masses.
The original expression of the bubble function Eq. (3.18) can be reduced to a single
integral over a closed interval (see Appendix B),

BSP(t,M,m) = B2
0

16π2|t|

1∫
0

dc e−
√

m2+c(M2−m2)
c(1−c) |t|

. (3.21)
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Although the integrand is asymmetrical for M 6= m, the value of the integral remains
the same when interchangingM and m. This can be seen by substituting the integration
variable c for (1 − c) and reversing the limits of integration. Setting M = m yields the
single pole bubble function for equal masses,

BSP(t,m,m) = B2
0

16π2|t|

1∫
0

dc e−
m|t|√
c(1−c) . (3.22)

The double pole bubble function can be obtained from the connected one by differenti-
ating with respect to the mass,

BDP(t,m,m) = −1
2

∂

∂m2BSP(t,m,m) . (3.23)

One therefore simply gets

BDP(t,m,m) = B2
0

64π2m

1∫
0

dc e−
m|t|√
c(1−c)√

c(1− c)
. (3.24)

Apparently, in comparison to the single pole one, the double pole bubble function is
enhanced by a factor t

4m at large t.
It is insightful to show the asymptotic behavior of the three functions using a saddle-
point approximation. Up to corrections of O(t−5/2), one finds

BSP(t,M,m) = B2
0

8
√

2π3/2

√
Mm · e−(M+m)|t|

(M +m)3/2 |t|3/2
,

BSP(t,m,m) = B2
0

32π3/2
e−2m|t|
√
m|t|3/2

, (3.25)

BDP(t,m,m) = B2
0

256π3/2
1 + 4m|t|
m5/2|t|3/2

e−2m|t| .

While all three bubble functions fall off exponentially and are suppressed by a factor
1/|t|3/2, the double pole bubble function has a second contribution coming with an
additional factor |t|, which clearly dominates BDP in the limit t→∞.
What are the implications for the scalar correlator? The double pole arises from valence
pions in the disconnected propagator. Decreasing the valence masses while keeping the
sea masses fixed therefore not only increases the partial quenching parameter ∆2

PQ =
M2

sea −M2
val, which comes with the double pole, but it also enhances the effect of the

unphysical double pole bubble contribution itself. This will be illustrated in the following
subsections.
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3.2.2. The scalar correlator for NS = 2 sea flavors
Starting at first with two sea flavors, the scalar correlator reads

Cȳx(t) = −2
(
M2

u −M2
x

)
BDP(t,Mx,Mx)− 2BSP(t,Mx,Mx) + 2BSP(t,Mux,Mux) .

(3.26)
The first two terms are double and single pole contributions stemming from the valence
pions; the factor (M2

u −M2
x) is the double pole residue, and the last term indicates the

connected mixed pions. Due to the previously described behavior of the bubble functions,
one sees that the full correlator, to which the a0 as well as the πη′ intermediate state
contribute with a positive sign, can get negative if the valence mass is chosen to be
smaller than the sea mass. This unphysical effect of partial quenching was also observed
in Refs. [34, 35].
Clearly, the correlator vanishes for equal sea and valence quark masses,

Cȳx(t) Mu=Mx−−−−−→ Cd̄u(t) = 0 , (3.27)

since M2
ux = M2

u+M2
x

2 → M2
u = M2

x . If the same Wilson or GW action is used in the
sea and in the valence sector, this result still holds. In the GW case, this is because up
to order-a2, the meson masses are not afflicted by lattice spacing artifacts. For Wilson
quarks on the other hand, all squared meson masses receive the same shift caused by
the non-zero lattice spacing, and thus the difference (M2

u −M2
x) does not depend on a.

3.2.3. The scalar correlator for NS = 2 + 1 sea flavors
In this case, the partial fraction decomposition yields

C2+1
ȳx (t) =− 4

3Rx(u, sη ) ·BDP(t,Mx,Mx)−
4
3D

x
x(u, sη ) ·BSP(t,Mx,Mx) (3.28)

− 4
3D

x
η(u, sx ) ·BSP(t,Mx,Mη) + 2BSP(t,Mux,Mux) +BSP(t,Msx,Msx) .

Again, there is a double and a single pole contribution from the valence pions, πvalπval.
The other three single pole terms originate from πvalη, πmixπmix, and KmixK̄mix bubble
functions. The residues are given by

Rx(u, sη ) = (M2
u −M2

x) (M2
s −M2

x)
M2

η −M2
x

,

Dx
x(u, sη ) = 1 + 2

9
(M2

s −M2
u)2

(M2
η −M2

x)2 ,

Dx
η(u, sx ) = −2

9
(M2

s −M2
u)2

(M2
η −M2

x)2 .

(3.29)

Independently of the choice of quark masses, the single pole residue Dx
x(u, sη ) is always

positive, while Dx
η(u, sx ) has a negative sign. Therefore, the correlator always receives a
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Figure 3.3.: Infinite volume partially quenched scalar correlator for Mu = 300 MeV, Ms = 600 MeV,
and different values of Mx. The other occurring masses are determined by these values.

negative contribution from the πvalπval term, and a positive one from the πvalη term.
Moreover, for Mval < Msea, one has |Dx

x(u, sη )| > |Dx
η(u, sx )|, plus the fact that the mass of

πvalπval is much smaller compared to πvalη, which results in a less suppressed exponential
decay for the πvalπval term. Both circumstances enhance the negativity of the scalar
correlator and the associated violation of unitarity.
The sign of the double pole residue Rx(u, sη ) depends on the single-flavor masses Mu, Ms,
andMx. For common choices in lattice simulations, it has a negative value and thus also
adds to the unphysical nature of partial quenching.
In Fig. 3.3, the correlator is shown for Mu = 300 MeV, Ms = 600 MeV, and Mx =
(200 . . . 300) MeV. In the limit of equal sea and valence masses (Mx = Mu), the double
pole residue vanishes. Furthermore, −4

3D
x
x(u, sη )→ −2, which means that the SP valence

pion term cancels the SP mixed pion term, and one obtains the expected result

C2+1
d̄u

(t) = 2
3BSP(t,Mπ0 ,Mη) +BSP(t,MK ,MK) , (3.30)

which is strictly positive, as can be seen in Fig. 3.3.

3.3. Consequences of using mixed actions
It is now time to incorporate the lattice spacing effects stemming from the use of Wilson
quarks in the sea and Ginsparg–Wilson quarks in the valence sector. The transition is
simple. As shown in the previous chapter (Section 2.2.2), the squared sea and mixed me-
son masses receive a shift â2∆sea and â2∆mix + â2∆′mix, respectively,11 and, furthermore,

11Note that for unimproved Wilson fermions, they include a shift â and â/2, respectively.
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the double pole residue of the disconnected propagator must be shifted according to
NS = 2: (M2

u −M2
x)→ (M2

u −M2
x) + 2â2γSS , (3.31)

NS = 3: Rx(u, sη )→ Rx(u, sη ) + 3â2γSS . (3.32)
The impact of the different discretizations on the scalar correlator is now studied, starting
again with the two-flavor case:

Cȳx(t) =− 2
(
M2

u −M2
x + 2â2γSS

)
·BDP(t,Mx,Mx)

− 2BSP(t,Mx,Mx) + 2BSP(t,Mux,Mux) (3.33)
Owing to the exact chiral symmetry in the valence sector, the double and single pole
valence pion bubble functions BDP(t,Mx,Mx) and BSP(t,Mx,Mx) are not afflicted by
lattice spacing effects. The mixed pion bubble function BSP(t,Mux,Mux) on the other
hand depends on the parameters ∆mix and ∆′mix. Lastly, the double pole residue has,
next to γSS, a ∆sea-dependence stemming from the sea pion mass Mu.
In the continuum limit, one recovers the physical vanishing correlator (at large time
separations) when setting the sea meson mass equal to the valence mass. At non-zero
lattice spacing, though, this is no longer the case due the different shifts in the squared
meson masses. Because of these, one also has different possibilities of tuning the quark
masses, which all yield the same result when taking a → 0. The choice of tuning will
strongly affect the shape of the scalar correlator, especially its negativity, which is a
clear sign for the violation of unitarity.
The first tuning would be a matching of the sea and valence pion squared masses M2

u

and M2
x . Their difference thus cancels, and the correlator becomes sensitive to γSS and

∆mix+∆′mix. The second way is to match the sea pion massMu to the mixed pion oneMux.
As a consequence, the last two terms in Eq. (3.33) cancel, and the only a2-dependence
stems from γSS and ∆sea. Another possibility is to tune the whole double pole residue
(M2

u −M2
x + 2â2γSS) to zero, which leaves the mixed pion bubble function with the pa-

rameters ∆mix+∆′mix as the only a2-dependent part of the correlator. This tuning requires
a quantity sensitive to γSS, that is, a quantity sensitive to the eta prime mass [37].12

These various tunings seem to be promising when it comes to the determination of γSS,
∆sea, and ∆mix + ∆′mix and the associated strength of unitarity violation.
In a fit of the lattice scalar correlator to Eq. (3.33), the only free parameter is γSS.
The meson masses, which the bubble functions come with, can be obtained from meson
spectroscopy, and the low-energy constant B0 can be determined by the tree-level ChPT
relationM2

ab = B0(ma+mb) between quark and squared meson masses, using for instance
the pion mass M2

π = 2B0mu.
This section is completed with the scalar correlator for 2 + 1 sea flavors:

C2+1
ȳx (t) =− 4

3
[
Rx(u, sη ) + 3â2γSS

]
·BDP(t,Mx,Mx)−

4
3D

x
x(u, sη ) ·BSP(t,Mx,Mx)

− 4
3D

x
η(u, sx ) ·BSP(t,Mx,Mη) + 2BSP(t,Mux,Mux) +BSP(t,Msx,Msx) (3.34)

12Yet another interesting idea was suggested by the UKQCD Collaboration. They proposed to use the
sign change of the scalar correlator in order to tune the sea and valence quark masses [60].
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4. Finite volume corrections to the scalar
correlator

Numerical calculations are necessarily performed in a finite volume. Most often, the
lattice geometry is a box of size V = L3 × T with periodic boundary conditions in the
three spatial directions as well as in the time direction. Physical quantities that are
obtained from such simulations will in general depend on both L and T . It is therefore
imperative to study and to quantify the size of finite volume effects for the observable
in question. This also means that chiral perturbation theory must be formulated in a
finite volume [7–9] in order for it to yield reliable fitting formulae.

4.1. Chiral perturbation theory in a finite volume
Gasser and Leutwyler showed that in a finite volume (FV), chiral symmetry still dictates
the dynamics in the low-energy regime of QCD, provided the box is large enough and
the masses of the lightest pseudoscalar mesons are not too small [9]. In an isotropic box
with periodic boundary conditions for the meson fields, the form of the chiral Lagrangian
is exactly the same as in the infinite volume. In particular, the low-energy constants are
volume-independent. The finite volume dependence enters ChPT solely through the
propagators,

G
(FV)
0 (x) ≡ 〈π(x) π†(0)〉FV =

∑
n∈Z4

G0(x+ nµLµ) , (4.1)

where G0(x) = 〈π(x) π†(0)〉 denotes the infinite volume propagator, and Lµ is the box
extent in the µ-th direction. The propagators consist of the infinite volume contribution
where all nµ are zero, but they also receive contributions from the particles propagating
multiple times around the box in each direction. Since the infinite volume propagator falls
off exponentially at large distances, these additional terms are suppressed with increasing
volume. The first three contributions to a propagation in time (n1 = n2 = n3 = 0) are
shown in Fig. 4.1.
Equivalently, to Eq. (4.1), integrals over four-momenta p are substituted for sums,∫ d4p

(2π)4G
con
ab (p2) eipx −→ 1

V

∑
p

Gcon
ab (p2) eipx = 〈πab(x)πba(0)〉con

FV , (4.2)

∫ d4p

(2π)4G
disc
ab (p2) eipx −→ 1

V

∑
p

Gdisc
ab (p2) eipx = 〈πaa(x)πbb(0)〉disc

FV , (4.3)

with V = L0L1L2L3. The now quantized momenta pµ are integer multiples of 2π/Lµ,
that is (no summation over µ),

pµ = 2π
Lµ
nµ , with nµ ∈ Z . (4.4)
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Figure 4.1.: One-dimensional lattice with periodic boundary conditions (ring of lattice points). The first
three contributions (n0 = 0, −1, and 1) to the finite volume propagator from a lattice point
t to t+ 2 are shown with a thick solid, a dashed, and a dotted line, respectively.

In the present work, the box lengths are chosen to be L0 = T and L1 = L2 = L3 = L.
A generalization to arbitrary Lµ will be evident. Typically for lattice simulations, the
extent in time direction is equal to or larger than the spatial extent, T ≥ L, and it is
therefore sufficient to focus on L in the following considerations.
The expansion parameters of ChPT are the momenta p and the light meson masses
MGB, which both have to be much smaller than the typical hadronic scale Λhad ∼ 1 GeV

p� Λhad , MGB � Λhad . (4.5)

Since pi = 2π
L
ni, the box length L must fulfill the condition

L� 2π
Λhad

∼ 1 fm (4.6)

in order to have any non-zero momenta allowing for the expansion in p. The massesMGB,
however, are not constrained by such a relation. If the Compton wavelengths of the light
mesons are larger than the box size, MGBL� 1, one enters the so-called ε-regime [8, 9].
The propagators develop a zero-mode, 1/(M2

GBV ), which diverges in the chiral limit and
cannot be treated perturbatively. On the other hand, with Compton wavelengths much
smaller than the box size, MGBL � 1, the standard p-expansion can be adopted, in
which the power-counting is as follows [7]:

p2 ∼M2
GB ∼ mq , p ∼ 1

L
∼ 1
T

(4.7)

In this thesis, all finite volume calculations will be restricted to the p-regime.
How observables like meson masses and decay constants are affected by the finite vol-
ume has been studied extensively, and the corrections are found to be exponentially
suppressed by powers of exp(−MGBL), [7, 61–64].
Before tackling the FV computation of the scalar correlator, some basic strategies used
in finite volume calculations are illustrated at the example of the charged meson masses
[7, 61, 63].
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4.2. Finite volume corrections to meson masses
In order to get familiar with finite volume calculations in ChPT, the relatively simple
example of the charged meson masses is considered, following mainly Ref. [61]. For
simplicity, the lattice spacing is taken to be zero. The physical masses of the charged
mesons πab(x) are defined as the pole of the full propagator

Gfull
ab (p2) ≡

∫
d4x e−ipx 〈Ω|πab(x)πba(0)|Ω〉 = εb

p2 +M2
ab + Σab(p2) , a 6= b , (4.8)

in which the self-energy Σab(p2) is the negative sum of all one-particle irreducible dia-
grams. At one-loop order, all contributions to the self-energy are tadpole diagrams

whose vertices arise from the kinetic term f2

4 str(∂µΣ ∂µΣ†) and from the mass term
−f2

4 str(χΣ† + Σχ) in the partially quenched Lagrangian. These diagrams give rise to
the scalar integrals [65]

Ii =
∫ d4p

(2π)4
1

(p2 +M2)i
, i = 1, 2, (4.9)

where I2 can be obtained from I1 by differentiation with respect to M2. For the sake
of simplicity, the finite volume corrections (FVCs) due to the spatial volume are taken
to be much bigger than the corrections stemming from the box extent in time direction,
that is, T →∞. For i = 1, the finite volume equivalent to Eq. (4.9) reads

I(FV)
1 = 1

L3

∑
~p

∫ dp0

2π
1

p2
0 + ~p 2 +M2 . (4.10)

The integrals and sums in Eqs. (4.9) and (4.10) are divergent and must be regulated
appropriately. After doing so, one can define the dimensionless FVC

δ1 ≡
16π2

M2

(
I(FV)

1 − I1
)
. (4.11)

The expressions I1 and I(FV)
1 are related to the infinite volume and the finite volume

propagators G0(x) and G(FV)
0 (x), respectively: The former can be written in terms of the

modified Bessel function of the second kind [66], K1,

G0(x) =
∫ d4p

(2π)4
eipx

p2 +M2 = M

4π2|x|
K1(M |x|) . (4.12)

As discussed in the beginning, the FV propagator is given by

G
(FV)
0 (x) = 1

L3

∑
~p

∫ dp0

2π
eipx

p2
0 + ~p 2 +M2 = G0(x) +

∑
~n6=0

G0(x+ L~n) . (4.13)
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Subtracting these two expressions and setting x = 0 finally yields

δ1(ML) = 4
ML

∑
~n6=0

K1(|~n|ML)
|~n|

(4.14)

=
√
π

2
24

(ML)3/2 e−ML +O
(
e−
√

2ML
)
. (4.15)

One immediately sees the exponential suppression for large ML. In fact, for values
ML & 3, the sum in Eq. (4.14) converges very quickly. Note that the shown expansion
is not possible in the ε-regime [8, 9]. If ML < 1, the sum does not converge, and one
has to treat the zero-mode of the propagator exactly.
One can now write down the one-loop expressions for the finite volume meson masses
simply by shifting the chiral logarithms [61] arising from the integration in Eq. (4.9),

ln
(
M2

µ2

)
→ ln

(
M2

µ2

)
+ δ1(ML) . (4.16)

This shift applies, for instance, to the valence-valence pion mass for degenerate sea and
degenerate valence quark masses, as it was discussed in Section 2.1.2, Eq. (2.44). A
simpler example is the pion mass in unquenched ChPT, which was first calculated in
Ref. [8],

M (FV)
π = Mπ

[
1 + M2

π

2NS(4πf)2 δ1(MπL)
]
. (4.17)

Here, Mπ denotes the infinite volume pion mass. For typical values of masses and vol-
umes, the finite volume corrections are small, e. g., if L ≈ 2 fm and Mπ ≈ 300 MeV
(⇒MπL ≈ 3), they are of O(1%). This stands in contrast to the rather large FVCs to
the scalar correlator, which will be discussed in the next section.
Generalizations of the outlined procedure but also different approaches to calculating
FVCs to meson masses and decay constants were pursued in the literature [67, 68, 63].
The pion mass was even analyzed to two-loop order in standard ChPT [64]. In general,
the finite volume corrections are found to be small if MπL > 5.

4.3. A fitting formula for large volumes
The mixed-action computation of the scalar correlator is now extended to account for
the finite volume. Since the only effect occurs in the propagators, one can use the infinite
volume correlator of Eqs. (3.33) and (3.34) as the starting point and analyze the changes
of the bubble functions when restricting them to a finite volume.
Two formulae will be derived, which are applicable for either large or small volumes. The
first calculation will make the exponential suppression with factors of “meson mass times
box extent” explicit and will therefore be fit for large volumes. The second calculation,
on the other hand, is similar in spirit to Ref. [34], in which an asymptotic form for the
bubble contributions at large times t and for T →∞ is given. The aim here, however,
is to compute an exact fitting formula usable for small volumes.
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The first steps of rewriting the single pole bubble function are the same as in the infinite
volume case (see Appendix B). One has to deal with

B
(FV)
SP (T, L, t,M,m) = B2

0

∫
d3~x

1
TL3

∑
p

B
(FV)
SP (T, L, p,M,m) eipx . (4.18)

The function

B
(FV)
SP (T, L, p,M,m) = 1

TL3

∑
k

1
(k + p)2 +M2

1
k2 +m2 (4.19)

is the corresponding finite volume momentum-space representation of the bubble func-
tion Eq. (3.18), and it is obtained by a convolution of the two propagators. The ~x-integral
in Eq. (4.18) is over the spatial volume L3, and it yields a Kronecker delta δ~p,~0 resulting
in

B
(FV)
SP (T, L, t,M,m) = B2

0
T 2L3

∑
p0,k

1
(k + p0)2 +M2

1
k2 +m2 eip0t , (4.20)

where p0 denotes the four-vector (p0, 0, 0, 0)T .
This equation is used in Refs. [34, 35] for a numerical evaluation of the scalar correlator.
Although the authors did not employ lattice regularized chiral perturbation theory [69–
71], they do not use integer multiples of 2π/Lµ as the quantized momenta. Instead,
they choose discrete lattice momenta k̂2 = ∑

µ
4
a2 sin2(a2kµ) and p̂2

0 = 4
a2 sin2(a2p0) in

the propagators, and let the finite sums run over kµ = 2π
Lµ
nµ and p0 = 2π

L0
n0 with

nµ ∈ {−Lµ/(2a), . . . Lµ/(2a)− 1} and Lµ/a ∈ N.
In the present work, the lattice spacing effects were incorporated by matching the
Symanzik’s effective theory to an effective continuum chiral Lagrangian [5, 6, 10]. The
SET describes the underlying lattice theory at momenta much smaller than the lattice
cutoff π/a, which, for typical lattice spacings of order 0.1 fm, is about 6 GeV. This is
certainly much larger than the scale of chiral symmetry breaking, Λhad ∼ 1 GeV, and
it should therefore be sufficient to use the continuum Lagrangian with the quantized
momenta pµ = 2π/Lµnµ in order to study finite volume effects [72, 63], as illustrated in
Fig. 4.2.
One can now start to rewrite Eq. (4.20). The two denominators are combined by intro-
ducing a Feynman parameter c and completing the square:

B
(FV)
SP (T, L, t,M,m) = B2

0
T 2L3

∑
p0,k0,~k

1∫
0

dc eip0t[
~k2 + c(1− c)p2

0 + (k0 + cp0)2 + α2
]2 (4.21)

The masses are contained in α2 = m2 + c(M2 −m2). In contrast to the infinite volume
case, where the denominator can be written as [k2+κ2] by shifting the integration variable
k0 → k0 + cp0 ≡ k0, this procedure would here lead to a c-dependent summation and is
therefore not appropriate. One can, however, use the expression [68]

1
(u2)s = 1

Γ(s)

∞∫
0

dτ τ s−1e−τu2
, s ≥ 1 , (4.22)
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Lµ
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p̂µ = 2
a sin(a

2pµ)

Figure 4.2.: Finite volume quantized momenta pµ and discrete lattice momenta p̂µ. ChPT is insensitive
to momenta larger than Λhad. Since the lattice cutoff π/a is much larger than Λhad for
typical lattice spacings, there is no difference in using pµ or p̂µ in a calculation [72, 63].

to bring the finite volume bubble function into the following form:

B
(FV)
SP (T, L, t,M,m) = B2

0
T 2L3

∑
p0,k0,~k

1∫
0

dc
∞∫
0

dτ τ e−τα2e−τ~k2e−τc(1−c)p20 e−τ(k0+cp0)2eip0t

(4.23)

In the next step, the three sums over p0, k0, and ~k are taken care of. At the mo-
ment, the exponentials show a growing behavior with increasing box volume, e. g.,
exp (−const. (2π)2/L2). The aim is to rewrite them into exponentially falling terms.
This is achieved with the help of the Poisson summation formula (PSF) [73], which
is derived in Appendix C. This convenient formula relates the values of a continuous
T -periodic function f to the values of its Fourier transform f̃ ,

∞∑
n=−∞

f(nT ) = 1
T

∞∑
k=−∞

f̃

(
2πk
T

)
. (4.24)

Although the PSF exists in many other alternative forms, the above expression is the
one needed for the current purposes. With this powerful tool at hand, one can handle the
occurring sums in the bubble function. They all are elliptic theta functions [74, 68, 75]

ϑ(σ, ω) ≡
∞∑

n=−∞
e−σ(n+ω)2 , (4.25)

which obey the Poisson resummation formula in the following way (see Appendix C):

ϑ(σ, ω) =
√
π

σ
e−σω2 · ϑ

(
π2

σ
,−iωσ

π

)
(4.26)

In all three cases, σ will be proportional to either (2π)2
L2 or (2π)2

T 2 , and the structure of ω
will be such that the exponential e−σω2 cancels, which makes the exponential suppression
with L or T explicit. This is demonstrated now.
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Rewriting the ~k-sum:
The first sum, or rather three sums, read

∑
~k

e−τ~k2 =
∞∑

~n=−∞
e−τ(

2π
L
~n)2

, (4.27)

with ~n = (nx, ny, ny) ∈ Z3. These are elliptic theta functions with ω = 0 and σ = τ (2π)2
L2 .

The Poisson summation formula then allows to write them as∑
~k

e−τ~k2 = L3

8 3
√
πτ

∞∑
~n=−∞

e−L
2

4τ ~n
2
. (4.28)

Rewriting the k0-sum:
This sum is an elliptic theta function with parameters σ = τ (2π)2

T 2 and ω = Tcp0
2π . Applying

the PSF yields
∑
k0

e−τ(k0+cp0)2 = T

2
√
πτ

∞∑
n0=−∞

e−
T2
4τ (n0−i

2τcp0
T )2

e−τc2p20 . (4.29)

By combining the two previously given findings, one obtains the intermediate result

B
(FV)
SP (T, L, t,M,m) = B2

0
16π2

1
T

∑
p0,n0,~n

1∫
0

dc
∞∫
0

dτ τ−1e−τα2e−
1
4τ

[
T 2(n0−i

2τcp0
T )2

+L2~n2
]

× e−τc(1−c)p20 e−τc2p20 eip0t . (4.30)

Rewriting the p0-sum:
Now, all p0-dependent parts are collected and the square is completed in p0:

1
T

∑
p0

e−
T2
4τ (n0−i

2τcp0
T )2

e−τc(1−c)p20 e−τc2p20 eip0t = e−T
2

4τ n
2
0
1
T

∑
p0

e−λ(p0−i
t̃

2λ)
2

e− t̃2
4λ (4.31)

Here, the abbreviations λ = τc(1− c) and t̃ = t+ cn0T were used. Again, the sum is an
elliptic theta function, this time with σ = λ (2π)2

T 2 and ω = −i t̃T4πλ . The Poisson summation
formula thus leads to

e−T
2

4τ n
2
0
1
T

∑
p0

e−λ(p0−i
t̃

2λ)
2

e− t̃2
4λ = e−T

2
4τ n

2
0

1
2
√
πλ

∞∑
ñ0=−∞

e−
T2
4λ (ñ0− t̃

T )2

. (4.32)

Plugging everything together results in

B
(FV)
SP (T, L, t,M,m) = B2

0
32π5/2

∑
ñ0,n0,~n

1∫
0

dc
∞∫
0

dτ τ
− 3

2
√
β

e−τα2e−
γ
4τ , (4.33)

with the short-hand notation

β = c(1− c) , γ = T 2

c(1− c)

(
ñ0 − cn0 −

t

T

)2
+ T 2n2

0 + L2~n2 . (4.34)
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ρ(n) 1 6 12 8 6 24 24 0 12 30 24 24 8 24 48 0 6 48

Table 4.1.: Multiplicities ρ(n) for n ≤ 17

The τ -integration can be performed analytically (see Eq. (B.10) in Appendix B), and
one receives

B
(FV)
SP (T, L, t,M,m) = B2

0
16π2

∞∑
ñ0,n0,~n=−∞

1∫
0

dc 1√
βγ

e−
√

m2+c(M2−m2)
c(1−c)

√
βγ
. (4.35)

This expression looks familiar, and indeed, the summand with (ñ0, n0, ~n) = (0, 0,~0)
equals the infinite volume bubble function Eq. (3.21), since

√
βγ simplifies to |t|. All other

terms in the sum occur due to the finite volume and are corrections to the corresponding
integrals of the infinite volume.
In the last step, the sum over ~n can be written as

∞∑
~n=−∞

f(~n 2) =
∞∑
n=0

ρ(n) f(n) . (4.36)

How often the different summands n = ~n2 = n2
x + n2

y + n2
z occur, is encoded in the

multiplicities ρ(n), which are given in Tab. 4.1 for n ≤ 17.
By setting M = m, one obtains the FV single pole bubble function for equal masses.
Derivation with respect to the mass, −1

2
∂

∂m2 , then yields the FV double pole bubble
function. The final results for B(FV)

SP and B
(FV)
DP are presented with a factor mL pulled

out of the exponent:

B
(FV)
SP (T, L, t,M,m) = B2

0
16π2

∞∑
ñ0,n0=−∞

∞∑
n=0

1∫
0

dc ρ(n)
L
√
c(1− c)γ̃

e
−mL

√
1+c
(
M2
m2 −1

)√
γ̃

B
(FV)
SP (T, L, t,m,m) = B2

0
16π2

∞∑
ñ0,n0=−∞

∞∑
n=0

1∫
0

dc ρ(n)
L
√
c(1− c)γ̃

e−mL
√
γ̃ (4.37)

B
(FV)
DP (T, L, t,m,m) = B2

0
64π2

∞∑
ñ0,n0=−∞

∞∑
n=0

1∫
0

dc ρ(n)
m
√
c(1− c)

e−mL
√
γ̃

When considering the scalar correlator without isospin symmetry, one also needs the
FV double pole bubble function B

(FV)
DP (T, L, t,M,m) = − ∂

∂m2B
(FV)
SP (T, L, t,M,m) for

unequal masses. This can be found in Appendix D together with the whole expression
for the correlator C1+1+1

ȳx (t).
In Eqs. (4.37), γ̃ is the abbreviation for

γ̃ = T 2

L2

(
ñ0 − cn0 − t

T

)2

c(1− c) + T 2

L2n
2
0 + n . (4.38)
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Figure 4.3.: Integrands of the four main contributions to the FV single pole bubble function with
T = 3 fm, L = 3 fm, t = T/4, M = m = 200 MeV. The thin solid line is the infinite
volume part (ñ0, n0, n) = (0, 0, 0). The dotted, dashed, and dot-dashed lines correspond
to (1, 0, 0), (0, 0, 1), and (1, 1, 0), respectively. The thick solid line shows the whole finite
volume integrand.

These three expressions are exact and can be used to evaluate the scalar correlator,

NS = 2:

Cȳx(t) =− 2
(
M2

u −M2
x + 2â2γSS

)
·B(FV)

DP (T, L, t,Mx,Mx)

− 2B(FV)
SP (T, L, t,Mx,Mx) + 2B(FV)

SP (T, L, t,Mux,Mux) , (4.39)

NS = 2 + 1:

C2+1
ȳx (t) =− 4

3
[
Rx(u, sη ) + 3â2γSS

]
·B(FV)

DP (T, L, t,Mx,Mx)

− 4
3D

x
x(u, sη ) ·B(FV)

SP (T, L, t,Mx,Mx)−
4
3D

x
η(u, sx ) ·B(FV)

SP (T, L, t,Mx,Mη)

+ 2B(FV)
SP (T, L, t,Mux,Mux) +B

(FV)
SP (T, L, t,Msx,Msx) , (4.40)

in the p-regime, that is, as long as ML� 1 and mL� 1.
The integrals need to be solved numerically, which poses no problem: On the one hand,
the integrations are over a closed interval c ∈ [0, 1], and on the other hand, the integrands
are smooth functions, as illustrated in Fig. 4.3.
The following analysis of the formula’s practical applicability refers at first to the single
pole bubble functions. Furthermore, M ≥ m and T ≥ L is assumed. The special rôle of
the double pole is discussed afterwards.
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Discussion:
The finite volume corrections, B(FV)

SP/DP−BSP/DP, are depending on the product mL� 1,
the ratios M

m
, T
L
, and t

T
, as well as an explicit factor 1

L
in the case of the SP bubble

functions, and, respectively, a factor 1
m

in the DP bubble function.
The first observation is that the FVCs are indeed exponentially suppressed with powers
of exp(−mL),

−mL
√
γ̃ ≤ −mL√

3

T 2

L2

(
ñ0 − cn0 − t

T

)2

c(1− c) + T 2

L2n
2
0 + n

 . (4.41)

Physically, this makes sense, since mL determines how often the Compton wavelength
λ = 1/m of a particle fits into the box. For larger mL, the particles are less affected by
the finite volume, and therefore the FVCs are smaller.
The sums’ rate of convergence is determined mainly by the size of mL. Two cases are
distinguished now: t � T/2 and t → T/2. Numerical (theoretical) examples for the
scenarios discussed in the next paragraphs can be found in Tab. 4.2.

Small t:
At small time separations t� T/2, the size of the different summands is dominated solely
by the ratio T 2/L2. If it were not for cn0, only the zeroth term in the ñ0-sum would yield
a substantial contribution, since then, t2/T 2 � (1 − t/T )2 in the first summand of γ̃
and 0� T 2/L2 in the second one. The explicit dependence on cn0 slightly changes this
behavior. Nevertheless, only the first few terms in n0 are relevant, and also the n-sum
can be truncated at relatively small n.

Large t:
The main interest is in large time separations, because then the mixed-action ChPT
correlator matches the corresponding mixed-action QCD correlator. As a consequence of
increasing t, a larger amount of higher-order terms in the sums is needed. If t approaches
T/2, the FVCs reach their maximum, and they are at least of O(100%). This can be
seen by considering the terms (ñ0, n0, n) = (0, 0, 0) and (1, 0, 0), which are identical. As
the particles “travel” through the box, they more and more experience the effects of the
finite volume with its periodic boundary conditions.
At large t, the first terms in the n-sum will all yield a contribution of the same order of
magnitude, since the first term in γ̃ is much bigger than small n. Generally, the larger t
is, the more terms are needed (at fixed L and T ).

Truncating the sums:
In order for the bubble functions to fulfill their purpose of practical fitting functions,
it is now examined where the sums can be truncated to yield results to the accuracy
of interest. The examples in Tab. 4.2 are exact up to 1% (3%). The convergence of the
sums was tested numerically, and it was found that quantitatively good results with only
a few number of numerical integrations are obtained when mL > 3 and m > 200 MeV.
Otherwise, the sums converge too slowly, up to the point where many hundreds of
integrations need to be performed.
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mL m [MeV] L [fm] T [fm] t/T ñ0 n0 n FV/InfV

2.0 200 2.0 2.0 1/4 2 (2) 3 (2) 26 (18) 8.33
1/3 3 (2) 3 (3) 21 (14) 14.12
1/2 3 (2) 3 (3) 21 (15) 41.01

3.0 200 3.0 3.0 1/4 2 (1) 2 (2) 8 (6) 2.98
1/3 2 (1) 3 (2) 9 (6) 4.95
1/2 2 (2) 3 (2) 9 (6) 17.35

4.5 300 3.0 3.0 1/4 1 (1) 1 (1) 3 (2) 1.49
1/3 1 (1) 1 (1) 5 (3) 2.15
1/2 1 (1) 2 (1) 5 (3) 2.15

5.3 350 3.0 3.0 1/4 1 (1) 1 (1) 2 (2) 1.27
1/3 1 (1) 1 (1) 3 (2) 1.69
1/2 1 (1) 1 (1) 4 (2) 7.10

3.3 200 3.3 4.4 1/5 1 (1) 1 (1) 6 (5) 2.06
1/4 1 (1) 1 (1) 8 (5) 2.69
1/3 1 (1) 1 (1) 10 (6) 4.48

6.2 350 3.5 7.0 1/6 0 (0) 0 (0) 1 (1) 1.13
1/5 0 (0) 0 (0) 2 (1) 1.20
1/4 0 (0) 0 (0) 3 (2) 1.34

2.0 200 2.0 2.0 1/4 3 (2) 3 (3) 41 (23) 27.84
1/3 3 (2) 3 (3) 48 (25) 39.30
1/2 3 (2) 4 (3) 27 (20) 82.63

3.0 200 3.0 3.0 1/4 2 (2) 2 (2) 12 (8) 6.67
1/3 2 (2) 2 (2) 14 (8) 10.07
1/2 2 (2) 2 (2) 17 (9) 27.28

4.5 300 3.0 3.0 1/4 1 (1) 1 (1) 6 (3) 2.20
1/3 1 (1) 2 (1) 6 (5) 3.24
1/2 2 (2) 2 (2) 10 (7) 11.34

5.3 350 3.0 3.0 1/4 1 (1) 1 (1) 3 (2) 1.64
1/3 1 (1) 1 (1) 5 (3) 2.30
1/2 1 (1) 1 (1) 6 (3) 8.66

3.3 200 3.3 4.4 1/5 1 (1) 1 (1) 12 (6) 3.74
1/4 1 (1) 2 (1) 10 (6) 4.77
1/3 1 (1) 2 (2) 11 (6) 7.51

6.2 350 3.5 7.0 1/6 0 (0) 0 (0) 2 (2) 1.26
1/5 0 (0) 0 (0) 3 (2) 1.36
1/4 0 (0) 1 (0) 4 (2) 1.55

Table 4.2.: Numerical examples for where the ñ0-, n0-, and n-sum have to be truncated in order to
reach at least 1% (3%) accuracy. Values for B(FV)

SP (T, L, t,m,m) are presented in the upper
half, and for B(FV)

DP (T, L, t,m,m) in the lower half. The last column shows the ratio of finite
volume to infinite volume bubble function.
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Generally, when mL > 5 and m > 300 MeV, it is sufficient to truncate the sums at
ñ0 = n0 = ±1 and n ≈ 5. For smaller values of masses and box lengths, the FVCs grow
tremendously, and the slow rate of convergence makes the numerical evaluation very
time-consuming.
The power of the bubble functions as they are given in Eq. (4.37) is their applicability
at large volumes (and large masses). From now on, mL > 5 is assumed.
If T � L, non-zero ñ0- and n0-terms are largely suppressed due to the factors T 2

L2 � 1
in γ̃, and one can truncate the sums at ñ0 = n0 = 0. In this case, γ̃ simplifies to

γ̃ = 1
L2

t2

c(1− c) + n , (4.42)

and the remaining n-sum needs to be evaluated up the first or second term only, depend-
ing on t and the size of m. If furthermore m ≥ 350 MeV or L ≥ 3.5 fm, only the first
correction to the infinite volume term needs to be respected. That is, for each term in
the scalar correlator C2+1

ȳx (t), one has to compute two integrals numerically and receives
the final finite volume result.
Note, however, that it is still necessary to keep t < T/2. One should also caution that
the FVCs at a fixed ratio t/T diverge with a growing box extent in time direction T .

The double pole:
The FV double bubble function deserves a closer look. As in the infinite volume, it is
enhanced by t

4m , but moreover, it experiences additional effects due to the final volume
itself [76, 37]. When comparing the factors in front of the exponential in the integrands
of the single and double pole bubble functions,

SP: 1/
√
T 2
(
ñ0 − cn0 −

t

T

)2
+ c(1− c) (T 2n2

0 + L2~n2)

DP: 1/m
√
c(1− c) ,

(4.43)

one immediately sees that the double pole is also enhanced with T and L. This effect
reduces as t approaches T/2, since the impact of c(1− c) (T 2n2

0 + L2~n2) becomes small
compared to T 2(ñ0 − cn0 − t

T
)2. Again, numerical examples can be found in Tab. 4.2.

The ratio of double to single pole FVCs for M = m = 300 MeV, T = 4.5 fm, and
L = (2 . . . 4.5) fm at three different values of t is shown in Fig. 4.4. For comparability,
the ratios have been normalized tom. The enhancement with growing t and L is evident.
The consequence of the “enhanced” prefactor in the integrands is a slower rate of con-
vergence of all three sums. This sets new bounds to the practical applicability of the
fitting formula. Whereas the ñ0- and n0-sums are just slightly affected, the n-sum must
be truncated at much higher values. For mL > 5 and L > 3.5 fm, however, it is still
sufficient to regard only the terms with ñ0 = n0 = 0, and the n-sum can be truncated
at n = 5.
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Figure 4.4.: L-dependence of the ratio of double to single pole FVCs for M = m = 300 MeV and
T = 4.5 fm at three different values of t, normalized to m. The double pole is enhanced
with growing t and L.

The actual size of the double and single pole terms in the scalar correlator depends
on the residues of the partial fraction decomposition. The double pole enhancement is
therefore more pronounced if the difference between sea and valence masses is big.
In Fig. 4.5, the dramatic effect of the double pole is exemplified. Shown are the double
pole contribution, the sum of all single pole contributions, as well as the whole correlator
C2+1
ȳx (t) for the following set of parameters (note that â2∆sea is included in the sea-sea

masses): T = 3.5 fm, L = 3.5 fm, Mu = 300 MeV, Ms = 600 MeV, Mx = 250 MeV,
â2∆mix = â2∆′mix = â2γSS = (160 MeV)2.
The other needed masses (the eta and the mixed meson masses) follow from these values:
Mη = 520 MeV,Mux = 360 MeV,Msx = 210 MeV. The kaon mass, which does not occur
explicitly in the correlator, is Mus = 475 MeV.
The actual values of â2∆mix and â2∆′mix have not yet been determined for mixed action
ChPT with Wilson sea and GW valence quarks. They are inspired by the findings in
Ref. [47] where staggered sea and domain-wall valence quarks were used. The authors
determined the total mixed meson mass shift and found â2∆mix + â2∆′mix ≈ (320 MeV)2

for the asqtad-improved coarse MILC lattice. Then, in Ref. [31], â2∆mix ≈ (160 MeV)2

was estimated. For this particular plot, the unknown parameter â2γSS was chosen to
have the same size as â2∆mix.
The correlator’s negativity is clearly dominated by the double pole (for the above choice
of masses). To study the influence of â2γSS on the correlator, this parameter was varied
between −(250 MeV)2 and (250 MeV)2. Negative values suppress and positive values
enhance the negativity of the double pole. The correlator was found to be positive for
â2γSS . −(190 MeV)2.
The parameters â2∆sea and â2∆′mix, which depend on the low-energy constants W ′

6 and
W ′

8, were also varied within a reasonable range (the meson masses should not become
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Figure 4.5.: Double pole contribution, sum of all single pole contributions, and the whole correlator
for T = 3.5 fm, L = 3.5 fm, Mu = 300 MeV, Ms = 600 MeV, Mx = 250 MeV, and
â2∆mix = â2∆′mix = â2γSS = (160 MeV)2.

negative). Since the shape of the correlator strongly depends on the size and signs of
the other parameters, one can only make rather qualitative statements. The dependence
was found to be mild for |â2∆sea|, |â2∆′mix| < (160 MeV)2. For more extreme values, they
can easily dominate the correlator’s shape.
Eventually, the shift parameters â2∆mix, â2∆′mix, â2∆sea, and â2γSS have to be deter-
mined by fitting lattice data.

Finite volume corrections:
Lastly, to visualize the size of the finite volume effects, the infinite volume correlator is
shown in Fig. 4.6 together with the FVCs (for the masses and shift parameters given
above). As can be seen in this plot and also in Tab. 4.2, the FVCs to the correlator are
rather large for typical meson masses and box sizes. They are by no means a negligible
contribution to the infinite volume formulae. This stands in contrast to the meson masses
determined in a finite volume. The pion mass, for instance, receives a correction ofO(1%)
if MπL > 3 and L > 2 fm [63, 64]. As shown in Sec. 4.2, the only types of integrals one
encounters in the calculation are the scalar integrals I1 and I2, which are “space-time
independent” and thus only slightly affected when making the transition to the finite
volume. The scalar two-point function, on the other hand, is a correlation function and
therefore explicitly depends on the (space-)time separation. This results in much larger
finite volume effects, especially for large time separations.

Summary:
The main results of this first finite volume calculation are now summarized. Starting from
the momentum-space representation of the bubble functions, the Poisson summation
formula allowed to rewrite the occurring sums over momenta into an expression which
falls off exponentially with powers of “meson mass times box extent”. In the final formulae
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Eqs. (4.37) and (D.4), one is left with three sums and an integration over a closed interval,
which can be performed numerically. Together with the expressions Eqs. (4.39), (4.40),
and (D.2) of the scalar correlator (Cȳx(t), C2+1

ȳx (t), and C1+1+1
ȳx (t)), the bubble functions

fulfill their purpuse as a fitting formula for data obtained from lattice simulations.
The derived form of the bubble functions is not practical for small volumes and masses
due to the slow rate of convergence caused by the factor −mL in the exponentials. A
similar problem is present in the limit t→ T/2. However, for large, yet still theoretical
values of masses and volumes (ML > 5, mL > 5, L > 5 fm, T ≥ L, and t � T/2),
they are perfectly applicable, because then the finite volume bubble functions reduce to
two integrals, one of which is the infinite volume contribution and one which is the first
correction term.

4.4. A fitting formula for small volumes
The aim of this second calculation is to find a fitting formula, which is applicable for
small volumes (and masses). Instead of starting from momentum-space, the calculation
begins with the single pole bubble function as it was first introduced in Eq. (3.18), now
restricted to the finite volume,

B
(FV)
SP (T, L, t,M,m) = B2

0

∫
d3~x

1
TL3

∑
p

eipx
p2 +M2

1
TL3

∑
k

eikx
k2 +m2

= B2
0

T 2L3

∑
p,k0

ei(p0+k0)t
(p2

0 + ~p 2 +M2)(k2
0 + ~p 2 +m2) . (4.44)
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The finite volume double pole function is discussed afterwards. In the equation above,
the ~x-integral over the spatial volume projected on the spatial momenta ~p +~k = 0. The
~p-sum consists in fact of three sums: ~p = 2π

L
~n with ni ∈ Z. As before, it is more practical

to evaluate the single sum

∑
~p

f(~p 2) =
∞∑
n=0

ρ(n) f
(
n · (2π)2/L2

)
, (4.45)

where the ρ(n) are again the multiplicities given in Tab. 4.1. It is also convenient to
define the energies En(M) =

√
~p 2 +M2 and En(m) =

√
~p 2 +m2. With the notation of

Eq. (4.45), they read

En(M) =
√
n ·
(2π
L

)2
+M2 , En(m) =

√
n ·
(2π
L

)2
+m2 . (4.46)

The p0- and k0-summations in Eq. (4.44) can be thought of as Fourier transformations of
a one-dimensional momentum-space propagator with mass En. As before, it is possible
to rewrite the sums with the help of an auxiliary integration 1

Q
=
∫∞
0 dτ exp(−τQ), the

Poisson summation formula (see Appendix C), and Eq. (B.10) from the Appendix B.
One finds

1
T

∑
p0

eip0t
p2

0 + En(M)2 =
∞∑

ñ0=−∞

e−En(M)|t−ñ0T |

2En(M) . (4.47)

The term with ñ0 = 0 equals the infinite volume propagator. All other terms occur due
to the finite volume and are corrections to the corresponding Fourier integral.
Since |t| ≤ T , the sum over ñ0 can be split up, and the resulting geometric series
∞∑
n=1

qn = q
1−q with q = e−En(M)ñ0T yields

∞∑
ñ0=−∞

e−En(M)|t−ñ0T |

2En(M) = 1
2En(M)

e−En(M)t + e−En(M)[T−t]

1− e−En(M)T . (4.48)

When plugging everything together, the finite volume single pole bubble function turns
into

B
(FV)
SP (T, L, t,M,m)

= B2
0

4L3

∞∑
n=0

ρ(n)
[
e−En(M)t + e−En(M)[T−t]

En(M) (1− e−En(M)T )

][
e−En(m)t + e−En(m)[T−t]

En(m) (1− e−En(m)T )

]
. (4.49)

Each of the two fractions corresponds to one of the intermediate states in the bubble
diagram. The periodic boundary conditions imposed on the meson fields render a propa-
gation in time t equal to a propagation in T − t. This is exactly what the two nominators
state. As in the fitting formula derived before, one sees that the finite volume corrections
reach their maximum at t/2.
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The above formula is exact; no approximations were made. Nevertheless, it is insightful
to discuss some special theoretical cases. In the limit T →∞, the exponentials involving
T tend to zero, which results in

B
(FV)
SP (T, L, t,M,m) t�T/2−−−−→

T→∞

B2
0

4L3

∞∑
n=0

ρ(n)e
−En(M)t

En(M)
e−En(m)t

En(m) . (4.50)

Taking also t to be large, suppresses all non-zero momentum terms in the sum and
reduces the expression to the asymptotic formula given in Ref. [34],

B
(FV)
SP (T, L, t,M,m) large t−−−→ B2

0
4L3

e−(M+m)t

Mm
. (4.51)

At first glance, the bubble function seems to be suppressed by a factor L3. One might
therefore argue (as in Ref. [34]) that the influence of the bubble contributions on the
correlator becomes less important for larger spatial volumes. This, however, is not true
(at fixed t), since for increasing L, the difference between the energies En+1 and En is
getting smaller and so does the exponential suppression, that is, higher-order terms in
the sum will be of the same order of magnitude as the zero-momentum term.
Eventually, for L→∞, the sum turns into the infinite volume single pole bubble integral,
and all “summands” need to be respected. This stands in contrast to the first fitting
formula Eq. (4.37), in which the sum contains one single term corresponding to the
infinite volume bubble function. In this second formula, it is less clear how the infinite
volume limit is approached. Loosely speaking, it works exactly the other way round.
Larger L require more terms to be respected; smaller L require less, and finally, for
small enough L, the zero-momentum approximation becomes exact to the precision of
interest.
This second formula is perfectly applicable for fitting lattice data obtained in small
volumes and with small masses. The condition, though, is still to be in the p-regime
where ML � 1 and mL � 1. The formula has also the advantage that large t require
less higher-order momentum terms of the sum to be respected due to the increasing
exponential suppression. Furthermore, the formula involves only one summation and no
integration. This makes it preferable to the first fitting formula.
Its limitations are at large spatial box extents L, at large masses M and m, and at time
separations t� T/2, for then, the convergence of the sum slows down. However, it turns
out that this does not happen in practice for common values of masses and volumes.
The following consideration refers to rather theoretical numerical examples:
Generally, the convergence is quick if t approaches T/2. Not more than 20 summands
need to be respected, even at masses much larger than 500 MeV and volumes L > 6 fm.
The other scenario is t � T/2. If the box is larger in the time than in the spatial
directions, and ML,mL > 10, one needs about 30 terms. Bad convergence is given only
for T < L. Then up to 100 summands must be taken into account, but still, only if the
products ML and mL are much larger than 10.
Why does the sum converge this quickly? Only momenta 2π

L
n smaller than Λhad ∼

1 GeV yield significant contributions to the bubble functions. If, e. g., L = 4.5 fm, then
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2π
L
n = 275 MeV, which means that only summands up to n ≈ 4 are relevant. One there-

fore sees that it is more convenient to use the second derived expression Eq. (4.49) for
the bubble function in an actual fitting process.
Lastly, for this purpose, the FV double pole bubble function for equal masses is needed.
Setting M = m in Eq. (4.49) yields

B
(FV)
SP (T, L, t,m,m) = B2

0
4L3

∞∑
n=0

ρ(n)
[
e−En(m)t + e−En(m)[T−t]

En(m) (1− e−En(m)T )

]2

, (4.52)

and taking the derivative with respect to the mass, −1
2

∂
∂m2 , results in the following

equation:

B
(FV)
DP (T, L, t,m,m) = B2

0
8L3

∞∑
n=0

ρ(n)

(
e−Et + e−E[T−t]

)(
te−Et + [T − t]e−E[T−t]

)
E3 (1− e−ET )2

+

(
1− e−ET + ET e−ET

)(
e−Et + e−E[T−t]

)2

E4 (1− e−ET )3

 (4.53)

Here, for brevity, E ≡ En(m). The special features of the FV double pole bubble func-
tion, as they were discussed before, are apparent also in this form. They are, however,
more obvious in the limits of T →∞ and large t, in which the above expression simplifies
to

B
(FV)
DP (T, L, t,m,m) T→∞−−−→ B2

0
8L3

∞∑
n=0

ρ(n)1 + tEn(m)
[En(m)]4

e−2En(m)t (4.54)

large t−−−→ B2
0

8L3
1 + tm

m4 e−2mt . (4.55)

Similarly to the infinite volume case, there is a contribution proportional to t. The addi-
tional factor En(m) implies a finite volume enhancement for increasing L. The differences
between two energies En+1 and En become smaller, and hence more higher-momentum
terms in the sum are required. Equation (4.55) equals the asymptotic form given in
Ref. [34].

Summary:
The findings of the second finite volume calculation are now summarized. Starting point
was the position-space representation of the bubble function. The Poisson summation
formula allowed to rewrite two of the three occurring sums, which could then be solved by
performing the geometric series. The result was one single summation over terms which
are suppressed for small spatial volumes and masses, and for large time separations. The
obtained fitting formulae for the scalar correlator Eqs. (4.39), (4.40), and (D.2) (Cȳx(t),
C2+1
ȳx (t), and C1+1+1

ȳx (t)) together with the expressions Eqs. (4.49), (4.52), (4.53), and
(D.5) for the bubble functions are perfectly applicable for common lattice parameters.
A slow convergence of the sum is given only for extreme values of L, M , and m.
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Summary and conclusions
Mixed-action lattice QCD simulations are suffering from a lack of unitarity at non-zero
lattice spacing, even if the sea and valence renormalized quark masses are tuned to be
equal. Although this unphysical effect is expected to vanish in the continuum limit,
it is desirable to account for it when extrapolating lattice data to the physical quark
masses and to the continuum as well as to the infinite volume. Chiral perturbation theory
provides the framework to perform such extrapolations.
In this diploma thesis, an introduction to ChPT was given. The effective theory was then
extended to partially quenched and mixed-action ChPT with Wilson sea and Ginsparg–
Wilson valence quarks. It was shown that unitarity-violating effects manifest themselves
in double poles in the flavor-neutral propagators and in new low-energy constants asso-
ciated with new operators which arise due to the lack of symmetry between the sea and
the valence sector.
The main object of interest in the present work was the isospin-one scalar two-point
function for 2 and 2 + 1 sea flavors. This quantity is known to be very sensitive to
unitarity-violating effects. Since the final expression of the scalar correlator contains only
one free parameter, γSS, it is a useful tool to verify if mixed-action ChPT describes all
sources of unitarity-violation observed in lattice data. By fitting such data, one will gain
information about the size and signs of the associated low-energy constants (or rather
the combinations of low-energy constants ∆sea, ∆mix + ∆′mix, and γSS).
The scalar correlator was at first analyzed in partially quenched ChPT, focusing on the
so-called bubble diagram with two pseudoscalar intermediate states. The effect of the
double pole was made visible: For valence quark masses smaller than the sea masses, the
correlator becomes negative – a clear sign for the violation of unitarity. Mixed-action
expressions were derived afterwards, and different quark mass tunings were discussed.
The main part of this work focused on the impact of finite volume effects on the correla-
tor. For this purpose, ChPT was formulated in a finite volume with periodic boundary
conditions. The working assumption for the following calculations was that one is in the
p-regime of ChPT where the product of “meson mass times box extent” is much larger
than one (ML� 1, mL� 1). The calculation was then split into two separate parts.
The first part was inspired by the expressions Eq. (8) and Eq. (16) in Refs. [34] and [35],
respectively. These are finite volume momentum-space representations of the bubble
contribution, in which the five present sums run over all possible combinations of lattice
momenta.
The aim of the present work was to find simpler expressions which are more convenient to
use in a fitting process and which show how the infinite volume limit is being approached.
It was argued that, as long as the lattice cutoff π/a is much larger than the scale of
chiral symmetry breaking Λhad, it is sufficient to work with standard quantized momenta
occurring in a box with periodic boundary conditions. As a consequence, the now infinite
sums over these momenta could be rewritten using the Poisson summation formula.
The final expression contains three sums and an integration over a closed interval, which
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can be performed numerically. For higher-order terms in the sums, the integrand is
suppressed with increasing powers of exp(−mL). The rewriting thus made the infinite
volume limit transparent: As the volume increases, these terms become irrelevant, and
the sums reduce to a single summand which is exactly the infinite volume contribution.
It was shown that, with growing box size, the double pole contribution is finite volume
enhanced in comparison to the single pole contributions. The generally large size of the
finite volume corrections to the correlator was explained.
The practical applicability of the fitting formula was studied, and numerical examples of
where to truncate the sums in order to reach a result of satisfying accuracy were given.
It was found that the sums’ rate of convergence is very slow for small volumes and meson
masses, as well as for large time separations t → T/2. However, at large volumes and
masses,ML > 5, mL > 5, m > 300 MeV (M ≥ m), only the first ∼ 30 terms are needed.
The strength of the fitting formula turned out to be at larger, yet still theoretical values
of volumes and masses (ML > 5, mL > 5, L > 5 fm, T ≥ L, and t � T/2), for then,
the sums reduce to two terms: the infinite volume contribution and the first correction
term.
In an actual lattice simulation, these values are still out of reach. Therefore, in a second
calculation, a formula applicable for smaller volumes and masses was derived. Starting
point was the position-space representation of the bubble contribution. Again, the Pois-
son summation formula allowed to rewrite two of the three occurring sums. These could
then be solved by performing the geometric series. In the final result, one is left with a
single sum over terms which are suppressed for small spatial volumes and small masses,
as well as for large time separations. The sum converges rather quickly, and for standard
masses and box sizes, only the first O(10) terms are needed. Even for extreme values of
L, M , and m, not more than 100 terms are relevant.
Owing to the fast convergence of the sum and due to the fact that no integration appears,
the second derived formula is superior to the first one, and it should be used for fitting
lattice data. In comparison to the first formula, it is not clear, though, how the infinite
volume limit is being approached. For increasing L, more and more summands need to
taken into account, and finally, the sum turns into the infinite volume expression.
Lastly, the important formulae necessary for fitting the lattice correlator are listed:
The scalar correlator with isospin symmetry for 2 and 2 + 1 sea flavors is given in
Eqs. (4.39) and (4.40), respectively. A generalization to non-degenerate quark masses
can be found in Eq. (D.2). The appearing bubble functions are those of Eqs. (4.37) and
(D.4), relevant for the first fitting formula, and Eqs. (4.49), (4.53), and (D.5) for the
second formula.
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A. The bubble contribution
Consider the scalar two-point function for arbitrary (sea and/or valence) flavors a and
b in partially quenched ChPT:

Cab
PQChPT(x) = 〈0|b̄(x)a(x) ā(0)b(0)|0〉

= 1
ZPQChPT

δ2ZPQChPT

δmab(0) δmba(x)

∣∣∣∣∣
m→diag(m)

(A.1)

Here,
ZPQChPT =

∫
DΣ e−

∫
d4y [L2(y)+L4(y)+...] (A.2)

denotes the partition function of PQChPT with the mass matrix m being promoted to
a space-time dependent object (The sources lµ and rµ as well as the scalar density p are
set to zero.). The functional derivatives are now worked out. For sea or valence flavor
indices a 6= b, one finds

Cab
PQChPT(x) = 1

ZPQChPT

∫
DΣB(x) e−

∫
d4y [L2(y)+L4(y)]

∣∣∣∣
m→diag(m)

(A.3)

with

B(x) = + ∂L2

∂mba

(x) ∂L2

∂mab

(0) + ∂L2

∂mba

(x) ∂L4

∂mab

(0)

+ ∂L4

∂mba

(x) ∂L2

∂mab

(0)− δ(x) ∂2L4

∂mab ∂mba

(0) .
(A.4)

The term ∂L4
∂mba

(x) ∂L4
∂mab

(0), which in principle would be also present, does not contribute,
since it corresponds to the next-higher order in the chiral expansion. In the expression
above, L2 and L4 must be expanded up to quadratic and zeroth order in meson fields
Φ(x) = 1√

2π(x), respectively. The LO Lagrangian L2 results in the following contribution:

∂L2

∂mab

(x) = B0f
2

2
[
Σ(x) + Σ†(x)

]
ba

= B0f
2
[
1− 1

f 2π
2(x)

]
ba

+O(π4)

= −B0
[
π2(x)

]
ba

+O(π4) (A.5)

The mass dependence of the NLO Lagrangian L4, see Eq. (2.22), comes from the six
terms containing L4, . . . , L8 and H2. The first two, LL4 and LL5 , include derivatives of
the meson fields and are therefore of O(π2). So are LL6 and LL7 due to their structure,
which is similar to the LO Lagrangian Eq. (A.5). When setting the mass matrix m to
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its physical value diag(m), one finds that LL8 and LH2 contribute only to the last term
of Eq. (A.4):

−δ(x) ∂2L4

∂mab ∂mba

(0) = 4B2
0 δ(x)

[
2L8

(
ΣaaΣbb + Σ†aaΣ

†
bb

)
(0) + 2H2

]
= 8B2

0 δ(x) [2L8 +H2] +O(π2) (A.6)

The second and third term in Eq. (A.4) vanish completely to the order of interest.
Finally,

Cab
PQChPT(x) = B2

0 〈0|[π2(x)]ab[π2(0)]ba|0〉+ 8B2
0 δ(x) [2L8 +H2] . (A.7)

The low- and high-energy constants L8 and H2 enter the correlator only as contact
terms. They play no rôle at large time separations and will therefore be dropped in the
following considerations.
According to Wick’s theorem, Eq. (A.7) can be reduced to a sum of products of two-point
functions, which involve only two fields. Among the non-zero

Cab
PQChPT(x) = B2

0

NS+2NV∑
k,l=1

〈0|πak(x)πkb(x)πbl(0)πla(0)|0〉

= B2
0

NS+2NV∑
k,l=1

[
+ 〈πak(x)πkb(x)〉 〈πbl(0)πla(0)〉
+ 〈πak(x)πbl(0)〉 〈πkb(x)πla(0)〉
+ 〈πak(x)πla(0)〉 〈πkb(x)πbl(0)〉

]
= B2

0

[
2 〈πabπba〉 〈πaaπbb〉+

NS+2NV∑
l=1

〈πalπla〉 〈πlbπbl〉
]

= B2
0

[
2 〈πabπba〉 〈πaaπbb〉+

NS∑
i=1
〈πaiπia〉con 〈πibπbi〉con

+ 〈πabπba〉 〈πaaπaa〉disc + 〈πabπba〉 〈πbbπbb〉disc
]

(A.8)

Here, 〈π1π2〉 ≡ 〈π1(x)π2(0)〉. Wick’s theorem yields the expression in the second line.
Then, most propagators are zero, which simplifies the expression to line three. There, in
the sum over l, propagators with ghost quarks cancel the corresponding valence quark
propagators, see Eq. (2.25), resulting in the final result.
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B. Rewriting the bubble function
The rewriting of the bubble function starts with

BSP(t,M,m) = B2
0

∫
d3~x

∫ d4p

(2π)4BSP(p,M,m) eipx , (B.1)

where
BSP(p,M,m) =

∫ d4k

(2π)4
1

(k + p)2 +M2
1

k2 +m2 (B.2)

is the corresponding momentum-space representation of the bubble function Eq. (3.18).
It is obtained by a convolution of the two propagators. Since the ~x-integration projects
on ~p = 0, that is, p = (p0, p1, p2, p3)T → (p0, 0, 0, 0)T ≡ p0, the integral simplifies to

BSP(t,M,m) = B2
0

∫ dp0

2π BSP(p0,M,m) eip0x . (B.3)

At first, the two denominators in Eq. (B.2) are combined by introducing a Feynman
parameter c, completing the square and shifting the integration variable k,

BSP(κ(p0,M,m, c)) =
1∫

0

dc
∫ d4k

(2π)4
1

[k2 + κ2]2
, (B.4)

with
κ2 ≡ c(1− c)p2

0 +m2 + c
(
M2 −m2

)
. (B.5)

It is convenient to make use of the following expression:

1
(u2)s = 1

Γ(s)

∞∫
0

dτ τ s−1e−τu2
, s ≥ 1 (B.6)

With u2 = k2 + κ2, the momentum k appears in form of a standard Gaussian integral,∫
d4k e−τk2 = π2

τ2 , resulting in

BSP(κ(p0,M,m, c)) = 1
16π2Γ(s)

1∫
0

dc
∞∫
0

dτ τ s−3e−τκ2
, s = 2 . (B.7)

Now, BSP(κ) must be Fourier-transformed back into position-space. The integration
over the p0-dependent part in κ, see Eq. (B.5), is easily done (the short-hand notation
λ = τc(1− c) is being used),

∞∫
−∞

dp0

2π e−λp20 eip0t =
∞∫
−∞

dp0

2π e−λ(p0−
it
2λ)

2

e− t2
4λ = e− t2

4λ

2
√
πλ

. (B.8)
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Being left with the integration over the Feynman parameter c and the auxiliary param-
eter τ , the single pole bubble function reads

BSP(t,M,m) = B2
0

32π5/2Γ(s)

1∫
0

dc
∞∫
0

dτ τ s−
7
2√

c(1− c)
e−τ[m

2+c(M2−m2)]− t2
4τ c(1−c) . (B.9)

The last step is the τ -integration, which can also be performed analytically. It is of the
form ∞∫

0

dτ τ
s− 7

2
√
β

e−τα2− γ
4τ = 1√

β
· 2 7

2−sα
5
2−sγ

s
2−

5
4 ·K 5

2−s
(α√γ) , (B.10)

where K is the modified Bessel function of the second kind, and α2 = m2 + c(M2−m2),
β = c(1− c), and γ = t2

c(1−c) .
For the present case, s = 2, the Bessel function is essentially an exponential function,
K1/2(x) =

√
π
2xe
−x, and it follows the final result

BSP(t,M,m) = B2
0

16π2|t|

1∫
0

dc e−
√

m2+c(M2−m2)
c(1−c) |t|

. (B.11)
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C. Poisson summation formula
Let the Fourier transform (F.T.) of a function f be defined as

f(x) =
∞∫
−∞

dk
2π f̃(k) eikx , f̃(k) =

∞∫
−∞

dx f(x) e−ikx , (C.1)

and consider the continuous integrable function

h(x) ≡
∞∑

n=−∞
f(x+ nT ) (C.2)

with T being the period of h. The function h(x) can be expanded in a pointwise con-
vergent Fourier series

h(x) =
∞∑

k=−∞
hk · e2πi kT x , (C.3)

in which its Fourier coefficients are given by

hk = 1
T

T∫
0

dxh(x) e−2πi kT x

= 1
T

T∫
0

dx
∞∑

n=−∞
f(x+ nT ) e−2πi kT x . (C.4)

Lebesgue’s dominated convergence theorem [77, 78] justifies the commutation of integra-
tion and summation. Additionally, the integration variable is shifted to x′ = x+ nT :

= 1
T

∞∑
n=−∞

T (n+1)∫
nT

dx f(x′) e−2πi kT (x′−nT )

= 1
T

∞∫
−∞

dx f(x′) e−2πi kT x
′

hk = 1
T
· f̃
(

2πk
T

)
(C.5)

This combined with Eqs. (C.2) and (C.3) yields the Poisson summation formula
∞∑

n=−∞
f(x+ nT ) = 1

T

∞∑
k=−∞

f̃

(
2πk
T

)
e2πi kT x , (C.6)

with the special case, x = 0,
∞∑

n=−∞
f(nT ) = 1

T

∞∑
k=−∞

f̃

(
2πk
T

)
. (C.7)
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The following detailed example is showing the rewriting of the elliptic theta function
ϑ(σ, ω) ≡

∞∑
n=−∞

e−σ(n+ω)2 , which is made extensive use of in the main text, Chapter 4.
For doing so, one needs

f(x) = e−β(x+y)2 F. T.−→ f̃(t) =
√
π

β
e−

t2
4β+iyt . (C.8)

Now,
f(σn) = e−σ(n+ω)2 = e−

(σn+σω)2
σ , β = 1

σ
, x = σn , y = σω (C.9)

⇒ ϑ(σ, ω) ≡
∞∑

n=−∞
e−σ(n+ω)2

= 1
σ

∞∑
k=−∞

√
πσ e−

σ
4 ( 2πk

σ )2+iσω 2πk
σ

=
√
π

σ

∞∑
k=−∞

e−π
2
σ
k2+i2πkω

=
√
π

σ

∞∑
k=−∞

e−
π2
σ (k−iωσπ )2

e−σω2

ϑ(σ, ω) =
√
π

σ
e−σω2 · ϑ

(
π2

σ
,−iωσ

π

)
. (C.10)
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D. The finite volume scalar correlator
without isospin symmetry

For NS = 3 sea flavors, the finite volume scalar correlator for non-degenerate quark
masses reads

C1+1+1
ȳx (x) = B2

0

[
〈πxyπyx〉conFV

(
2 〈πxxπyy〉disc

FV + 〈πxxπxx〉disc
FV + 〈πyyπyy〉disc

FV

)
+

∑
i=u,d,s

〈πxiπix〉con
FV 〈πiyπyi〉

con
FV

]
. (D.1)

When carrying out the partial fraction decomposition of the disconnected propagators
and summing over the spatial volume L3, one receives

C1+1+1
ȳx (t) =− 2

NS

∑
v=x,y,π0,η

Rv( u, d, s
x, y, π0, η) ·B

(FV)
SP (T, L, t,Mxy,Mv)

− 2â2γSS
M2

y −M2
x

[
B

(FV)
SP (T, L, t,Mxy,Mx)−B(FV)

SP (T, L, t,Mxy,My)
]

− 1
NS

∑
w=x,y

[[
Rw(u, d, sπ0, η ) +NS â

2γSS
]
·B(FV)

DP (T, L, t,Mxy,Mw)

+
∑

v=w,π0,η

Dw
v ( u, d, s

x, y, π0, η) ·B
(FV)
SP (T, L, t,Mxy,Mv)

]

+
∑

i=u,d,s
B

(FV)
SP (T, L, t,Mix,Mix) . (D.2)

From this lengthy expression, the scalar correlator for two sea flavors, C1+1
ȳx (t), can be

deduced by dropping s and η in all residues and sums.
The finite volume single pole bubble function B(FV)

SP is given in Eqs. (4.37) and (4.49).
The residues R and D are denoted as [53]

Rv( u, d, s
x, y, π0, η) ≡

∏
i=u,d,s

(M2
i −M2

v )∏
j=x, y, π0, η

j 6=v

(M2
j −M2

v )
and Dw

v ( u, d, s
x, y, π0, η) ≡ −

∂

∂M2
w

Rv( u, d, s
x, y, π0, η) , (D.3)

where the upper and lower neutral meson states in the parenthesis of Rv correspond
to the product indices i and j, respectively. The factor with j = v is excluded from
the product in the denominator. The residue Rw(u, d, sπ0, η ) is obtained from Rv( u, d, s

x, y, π0, η) by
dropping the x- and y- terms in the product over j.
In order to evaluate the correlator, one also needs the finite volume double pole bubble
function for unequal masses, B(FV)

DP (T, L, t,M,m) = − ∂
∂m2B

(FV)
SP (T, L, t,M,m), which
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was not considered in the main text. It is shown in the two different forms necessary for
either of the two finite volume calculations in Section 4.3 and 4.4.
From Eq. (4.37), one obtains the following expression:

B
(FV)
DP (T, L, t,M,m) = B2

0
32π2

∞∑
ñ0,n0=−∞

∞∑
n=0

1∫
0

dc ρ(n)
√

1− c√
cm2 + c2(M2 −m2)

e
−mL

√
1+c
(
M2
m2 −1

)√
γ̃

(D.4)
γ̃ is given in Eq. (4.38). For the second calculation, one considers Eq. (4.49) and finds

B
(FV)
DP (T, L, t,M,m) = B2

0
8L3

∞∑
n=0

ρ(n)
[
e−En(M)t + e−En(M)[T−t]

En(M) (1− e−En(M)T )

]

×


(
te−Ẽt + [T − t]e−Ẽ[T−t]

)
Ẽ2(1− e−ẼT )

+

(
1 + [ẼT − 1]e−ẼT

)(
e−Ẽt + e−Ẽ[T−t]

)
Ẽ3(1− e−ẼT )2

 ,
(D.5)

where, for brevity, Ẽ ≡ En(m).
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