### Status and perspectives of B physics from non-perturbative HQET with two dynamical light quarks

#### Patrick Fritzsch

Institut für Physik, Humboldt-Universität zu Berlin, Germany

for the ALPHA Collaboration









Beautiful Mesons and Baryons on the Lattice 2-6 April 2012, ECT\*, Trento, Italy

#### Outline



- 2 Obstacles of HQET on the lattice
- 3 Computational strategy of ALPHA
- 4 Overview of  $N_{\rm f} = 2$  large volume (CLS) ensembles
- 5 Techniques used to compute LV matrix elements
- 6 First  $N_{\rm f} = 2$  results
- 7 Summary & outlook

E

#### Motivation

Couplings of flavor-changing weak interactions:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

processes with  $b \rightarrow u$  transitions

Inclusive  $B \to X_{\mu} \ell \nu$ 

optical theorem and heavy guark expansion

Exclusive  $B \to \pi \ell \nu$ Lattice input

hadronic formfactor  $f_+(q^2)$ 

```
Leptonic B \rightarrow \tau \nu
```

hadronic decay constant  $f_{\rm B}$ 





#### Motivation

Couplings of flavor-changing weak interactions:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

processes with  $b \rightarrow u$  transitions

Inclusive  $B \to X_{\mu} \ell \nu$ 

optical theorem and heavy guark expansion

Exclusive  $B \to \pi \ell \nu$ Lattice input

hadronic formfactor  $f_+(q^2)$ 

```
Leptonic B \rightarrow \tau \nu
```

hadronic decay constant  $f_{\rm B}$ 





#### Motivation

Couplings of flavor-changing weak interactions:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

#### processes with $b \rightarrow u$ transitions

Inclusive  $B \to X_u \ell \nu$ 

optical theorem and heavy quark expansion









#### Heavy Quark Effective Theory

Expansion in inverse heavy quark mass 1/m [Eichten; Isgur+Wise; Georgi]



$$\mathcal{L}_{HQET} = \overline{\psi}_{h} \left[ \underbrace{\underbrace{D_{0} + \delta m}_{\text{static}}}_{\text{init}(LO)} \underbrace{-\omega_{kin} \mathbf{D}^{2} - \omega_{spin} \sigma \mathbf{B}}_{\text{NLO, O(1/m)}} \right] \psi_{h} + \dots, \quad \underbrace{\omega_{kin}}_{\omega_{spin}} \left\} \sim \frac{1}{2m}$$
operator  $\mathcal{O}_{kin} \equiv -\overline{\psi}_{h} \mathbf{D}^{2} \psi_{h}$  kinetic energy from residual motion of heavy quark operator  $\mathcal{O}_{spin} \equiv -\overline{\psi}_{h} \sigma \mathbf{B} \psi_{h}$  chromomagnetic interaction with gluon field

э

#### Heavy Quark Effective Theory

Expansion in inverse heavy quark mass 1/m [Eichten; Isgur+Wise; Georgi]



$$\mathcal{L}_{\text{HQET}} = \overline{\psi}_{h} \left[ \underbrace{\mathcal{D}_{0} + \delta m}_{\text{static}} \underbrace{-\omega_{\text{kin}} \mathbf{D}^{2} - \omega_{\text{spin}} \sigma \mathbf{B}}_{\text{NLO, O(1/m)}} \right] \psi_{h} + \dots, \quad \underbrace{\omega_{\text{spin}}}_{\omega_{\text{spin}}} \right\} \sim \frac{1}{2m}$$

$$\text{operator } \mathcal{O}_{\text{kin}} \equiv -\overline{\psi}_{h} \mathbf{D}^{2} \psi_{h} \quad \text{kinetic energy from residual motion of heavy quark operator } \mathcal{O}_{\text{spin}} \equiv -\overline{\psi}_{h} \sigma \mathbf{B} \psi_{h} \quad \text{chromomagnetic interaction with gluon field }$$

$$\text{With } \mathcal{L}_{\text{HQET}} = \mathcal{L}_{\text{stat}} + \sum_{n \ge 1} \mathcal{L}^{(n)}, \text{ expand integrand in functional integral repres.}$$

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}[\phi] \mathcal{O}[\phi] e^{-\mathcal{S}_{\text{rel}} - \mathcal{S}_{\text{HQET}}}, \quad \mathcal{Z} = \int \mathcal{D}[\phi] e^{-\mathcal{S}_{\text{rel}} - \mathcal{S}_{\text{HQET}}},$$

$$\text{as a power series in } 1/m:$$

$$e^{-S_{\text{HQET}}} = \exp\left\{-a^{4}\sum_{x}\mathcal{L}_{\text{stat}}(x)\right\} \times \left\{1-a^{4}\sum_{x}\mathcal{L}^{(1)}(x) + \frac{1}{2}\left[a^{4}\sum_{x}\mathcal{L}^{(1)}(x)\right]^{2} - a^{4}\sum_{x}\mathcal{L}^{(2)}(x) + \dots\right\}$$

### Heavy Quark Effective Theory

Expansion in inverse heavy quark mass 1/m [Eichten; Isgur+Wise; Georgi]

$$\mathcal{L}_{\text{HQET}} = \overline{\psi}_{\text{h}} \left[ \underbrace{D_{0} + \delta m}_{\text{static}} \underbrace{-\omega_{\text{kin}} D^{2} - \omega_{\text{spin}} \sigma B}_{\text{NLO, O(1/m)}} \right] \psi_{\text{h}} + \dots, \quad \underbrace{\omega_{\text{kin}}}_{\omega_{\text{spin}}} \right] \sim \frac{1}{2m}$$
This definition of HQET implies:
$$1/m \text{-terms appear as insertions of local operators only}$$

$$\Rightarrow \text{ power counting: Renormalizability to each order in 1/m}$$

$$\Leftrightarrow \exists \text{ continuum limit \& universality} \qquad (\text{in contrast to NRQCD})$$

$$(\text{remark: not rigorously proven for static theory to all orders in g)}$$

$$Effective theory = (\text{continuum}) \text{ asymptotic expansion of QCD in 1/m}$$

$$interaction with light d.o.f's still non-perturbatively \qquad (in contrast to \chi PT)$$

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}[\phi] e^{-\mathcal{S}_{\text{rel}} - \mathcal{S}_{\text{stat}}} \mathcal{O} \Big\{ 1 - a^4 \sum_{x} \mathcal{L}^{(1)}(x) + \dots \Big\}$$

∍



Heavy Quark Effective Theory on the lattice



originally formulated by [Eichten+Hill '88-'90]:

 $D_0 + \delta m \to \nabla_0 + \delta m$ 

again different discretisations: APE-,HYP-smeared actions mainly to cure bad  $\frac{\text{signal}}{\text{noise}} \propto \exp[-E_{\text{stat}}x_0] \sim \exp[-(cg_0^2/a)x_0]$ 

Explicitly: EV in HQET to subleading order

$$\begin{split} \langle \mathcal{O} \rangle &= \langle \mathcal{O} \rangle_{\text{stat}} + \omega_{\text{kin}} \, a^4 \sum_{x} \langle \mathcal{O} \mathcal{O}_{\text{kin}}(x) \rangle_{\text{stat}} + \omega_{\text{spin}} \, a^4 \sum_{x} \langle \mathcal{O} \mathcal{O}_{\text{spin}}(x) \rangle_{\text{stat}} \\ &\equiv \langle \mathcal{O} \rangle_{\text{stat}} + \omega_{\text{kin}} \langle \mathcal{O} \rangle_{\text{kin}} + \omega_{\text{spin}} \langle \mathcal{O} \rangle_{\text{spin}} \end{split}$$

with

$$\langle O \rangle_{\text{stat}} = \frac{1}{\mathcal{Z}} \int_{\text{fields}} O \exp\left\{ -a^4 \sum_{x} \left[ \mathcal{L}_{\text{light}}(x) + \mathcal{L}_{\text{h}}^{\text{stat}}(x) \right] \right\}$$

∍



#### Heavy Quark Effective Theory on the lattice

The Problem: power divergences

mixing of operators of different dim. in  $\mathcal{L}_{HQET}$  induces power divergences

**Example:** Mass renormalization pattern at static order of HQET

mixing of  $\overline{\psi}_h D_0 \psi_h$  and  $\overline{\psi}_h \psi_h \qquad \rightsquigarrow \qquad \text{linear divergence: } \delta m \propto a^{-1}$ 

$$\overline{m}_{\rm b}^{\overline{\rm MS}} = Z_{\rm pole}^{\overline{\rm MS}} \cdot m_{\rm pole}$$
,  $m_{\rm pole} = m_{\rm b} - E_{\rm stat} - \delta m_{\rm b}$ 

$$\delta m = \frac{c(g_0)}{a} \sim e^{+1/(2b_0 g_0^2)} \{ c_1 g_0^2 + c_2 g_0^4 + \dots + O(g^{2n}) \}$$

■ in PT: uncertainty = truncation error ~  $e^{+1/(2b_0g_0^2)} \cdot c_{n+1} \cdot g_0^{2n+2} \xrightarrow{g_0 \to 0} \infty$ ⇒ Non-perturbative  $c(g_0)$  needed

 $\Rightarrow$  NP renormalization of HQET (resp. matching to QCD) required for continuum limit to exist

■ power-law divergences even worse at higher orders in 1/m: LO→NLO:  $a^{-1} \rightarrow a^{-2}$  in coeff.s of  $\omega_{kin} \mathcal{O}_{kin}$ ,  $\omega_{spin} \mathcal{O}_{spin}$  in  $\mathcal{L}^{(1)}$  of  $\mathcal{L}_{HQET}$ 

#### Solution: NP'ly subtract power div. by exploiting finite volume

э



[HeitgerSommer'01]



| NP matching of QCD and HQET in small volume | $\Leftrightarrow$ | relativistic b-quark feasible |
|---------------------------------------------|-------------------|-------------------------------|
| +                                           |                   |                               |
| finite size scaling procedure               | $\Leftrightarrow$ | contact to large volumes      |

Framework:

- plaquette gauge action
- mass-degenerate doublet of non-perturbatively improved Wilson fermions
- two static quark actions (HYP discretization [HasenfratzKnechtli'01])

Ingredient: Schrödinger functional as intermediate renorm. scheme

- massless, finite volume renorm. scheme in the continuum
- Dirichlet b.c. in time
- NP definition of a running coupling
- N<sub>f</sub> = 2: QCD running coupling [ALPHA'04] and mass [ALPHA'05] known

э

 $\Rightarrow$  'IR save': m = 0 on the lattice

 $\Rightarrow ar{g}^2(\mu)$ , w/ box size  $L=1/\mu$ 











- ▲ 문 ▶ - ▲ 문 ▶

Ē





see [arXiv:1203.6516] for details

















Beautiful Mesons and Baryons, ECT\*











[arXiv:1203.6516],  $N_{
m f}=2$ , all z



[arXiv:1203.6516],  $N_{
m f}=2, z=13,$  HYP1, HYP2

 $\checkmark\,$  expected absorption of power divergences

Example: bare quark mass

static order:

$$L_1 m_{\text{bare}}^{\text{stat}} \propto \frac{1}{a}$$

(1/m)-correction:

$$L_1 m_{\text{bare}}^{1/m} \propto \left(\frac{1}{a}\right)^2$$

 $\checkmark$  clear hierarchy in HQET expansion observed



Beautiful Mesons and Baryons, ECT\*





(std. matching conditions)

parameters at  $\beta$ -values used in large volume simulations (HYP2)

| β   | LM <sub>Q</sub> | <i>am</i> bare | $\ln(Z_{\rm A}^{\rm HQET})$ | $\frac{c_{\rm A}^{(1)}}{a}$ | $\frac{\omega_{\rm kin}}{a}$ | $\frac{\omega_{\rm spin}}{a}$ |
|-----|-----------------|----------------|-----------------------------|-----------------------------|------------------------------|-------------------------------|
| 5.2 | 13              | 1.207(18)      | -0.139(31)                  | -0.54(9)                    | 0.386(7)                     | 0.825(30)                     |
|     | $z_{b}$         | *              | *                           | *                           | *                            | *                             |
|     | 15              | 1.459(20)      | -0.119(31)                  | -0.50(9)                    | 0.345(7)                     | 0.727(28)                     |
| 5.3 | 13              | 0.985(17)      | -0.148(32)                  | -0.56(10)                   | 0.425(8)                     | 0.899(34)                     |
|     | $z_{b}$         | *              | *                           | *                           | *                            | *                             |
|     | 15              | 1.212(18)      | -0.127(32)                  | -0.52(10)                   | 0.380(8)                     | 0.791(31)                     |
| 5.5 | 13              | 0.582(14)      | -0.166(36)                  | -0.68(12)                   | 0.533(10)                    | 1.109(42)                     |
|     | $z_{b}$         | *              | *                           | *                           | *                            | *                             |
|     | 15              | 0.769(15)      | -0.142(36)                  | -0.63(12)                   | 0.476(11)                    | 0.976(39)                     |

э



(std. matching conditions)

parameters at  $\beta$ -values used in large volume simulations (HYP2)

| β   | LM <sub>Q</sub> | <i>am</i> bare | $\ln(Z_{\rm A}^{\rm HQET})$ | $rac{c_{\mathrm{A}}^{(1)}}{a}$ | $\frac{\omega_{\rm kin}}{a}$ | $\frac{\omega_{\rm spin}}{a}$ |
|-----|-----------------|----------------|-----------------------------|---------------------------------|------------------------------|-------------------------------|
| 5.2 | 13              | 1.207(18)      | -0.139(31)                  | -0.54(9)                        | 0.386(7)                     | 0.825(30)                     |
|     | $z_{b}$         | *              | *                           | *                               | *                            | *                             |
|     | 15              | 1.459(20)      | -0.119(31)                  | -0.50(9)                        | 0.345(7)                     | 0.727(28)                     |
| 5.3 | 13              | 0.985(17)      | -0.148(32)                  | -0.56(10)                       | 0.425(8)                     | 0.899(34)                     |
|     | $z_{b}$         | *              | *                           | *                               | *                            | *                             |
|     | 15              | 1.212(18)      | -0.127(32)                  | -0.52(10)                       | 0.380(8)                     | 0.791(31)                     |
| 5.5 | 13              | 0.582(14)      | -0.166(36)                  | -0.68(12)                       | 0.533(10)                    | 1.109(42)                     |
|     | $z_{b}$         | *              | *                           | *                               | *                            | *                             |
|     | 15              | 0.769(15)      | -0.142(36)                  | -0.63(12)                       | 0.476(11)                    | 0.976(39)                     |

 $z_{\rm b} = L_1 M_{\rm b}$  to be determined through spectrum calculation in large volume HQET

▲ 문 ▶ . ▲ 문 ▶ ...

э



#### CLS ensembles for large volume computations

subset used in this analysis

**CLS** ensembles 
$$(T = 2L)$$
:

| β   | a<br>(fm) | L/a            | $Lm_{\pi}$        | <i>m</i> <sub>π</sub><br>(MeV) | no. of<br>cnfg.s   | separ.<br>(MD u.) | label                    | code           |
|-----|-----------|----------------|-------------------|--------------------------------|--------------------|-------------------|--------------------------|----------------|
| 5.2 | 0.075     | 32<br>32       | 4.7<br>4.0        | 380<br>330                     | 800<br>200         | 8<br>4            | A4 <mark>0</mark><br>A50 | DD<br>MP3      |
| 5.3 | 0.065     | 32<br>48<br>48 | 4.7<br>5.0<br>4.3 | 440<br>310<br>270              | 1000<br>500<br>600 | 16<br>8<br>8      | E5□<br>F6□<br>F7□        | DD<br>DD<br>DD |
| 5.5 | 0.048     | 48<br>64       | 5.2<br>4.2        | 440<br>270                     | 400<br>700         | $\frac{8}{4}$     | N5♦<br>O7♦               | DD<br>MP2      |

- full Jackknife analysis (100 bins) from small to large volume
- scale setting through f<sub>K</sub> [ALPHA:to appear soon]

э



 $m_{\pi}L \gtrsim 4.0$ 

#### Some details about our algorithm

MP-HMC implementation [MarinkovicSchaefer'10] supersedes domain decomposed HMC [Lüscher'05]

Idea: use efficient solver from DD-HMC package and get rid off inactive links (autocorr. )

- $\Rightarrow$  allows to reach smaller pion masses
- $\Rightarrow$  drawback: increased number of parameters to optimize
- mass preconditioning [Hasenbusch'10] for arbitrary N<sub>pf</sub>
- SAP-GCR with switch for
  - deflation
  - chronological inversion

for each pseudo-fermion  $1, \ldots, N_{pf}$ 

- Multiple time scale integrator [SextonWeingarten'92]
  - 2<sup>nd</sup> order integrator [OmelyanEtAl'] for pseudo-fermions
  - leapfrog for gauge field on finest integration scale



#### Dynamical fermion simulations

criteria for subsequent data analysis:

FV effects small by construction

 $Lm_{\pi} \geq 4.0$ 

data for chiral extrapolation uses

 $(250 \leq m_\pi \leq 400 - 450)$  MeV

lattice spacings

(0.048, 0.065, 0.075 < 0.1)fm

#### 7 simulations fulfill our current criteria







CLS

#### Dynamical fermion simulations

criteria for subsequent data analysis:

FV effects small by construction

 $Lm_{\pi} \ge 4.0$ 

data for chiral extrapolation uses

 $(250 \lesssim m_\pi \lesssim 400 - 450) \mathrm{MeV}$ 

Iattice spacings

 $(0.048, 0.065, 0.075 < 0.1) \rm{fm}$ 





+ 3 more by end of this year

★ 토⊁ ★ 토⊁ - 토

17



CLS



E

#### Large volume techniques

variance reduction through stochastic all-to-all props.

compute  $N \times N$  correlator matrices

$$C_{ij}^{\text{stat}}(t) = \sum_{x, \mathbf{y}} \left\langle O_i(x_0 + t, \mathbf{y}) O_j^*(x) \right\rangle_{\text{stat}}$$
$$C_{ij}^{\text{kin/spin}}(t) = \sum_{x, \mathbf{y}, \mathbf{z}} \left\langle O_i(x_0 + t, \mathbf{y}) O_j^*(x) O_{\text{kin/spin}}(z) \right\rangle_{\text{stat}}$$
$$C_{A^{(1)}, i}^{\text{stat}}(t) = \sum_{x, \mathbf{y}} \left\langle A_0^{(1)}(x_0 + t, \mathbf{y}) O_i^*(x) \right\rangle_{\text{stat}}$$

using interpolating fields

$$\begin{split} O_k &= \overline{\psi}_h \gamma_0 \gamma_5 \psi_l^{(k)} , \qquad \psi_h(x) \text{: static quark field} \\ O_k^* &= \overline{\psi}_l^{(k)} \gamma_0 \gamma_5 \psi_h , \qquad \psi_l^{(k)}(x) = \left(1 + \kappa_{\rm G} \, a^2 \, \Delta\right)^{R_k} \psi_l(x) \end{split}$$

N=3 with APE-smeared links for different levels of Gaussian smearing such that  $R_k\times(a/0.3{\rm fm})^2\in\{1,4,10\}$  kept fixed

《글⊁ 《글⊁ :

#### Large volume techniques

Generalised eigenvalue problem (GEVP)

for each  $C^{\text{stat}}$ ,  $C^{\text{kin/spin}}$ , and  $C^{\text{stat}}_{A^{(1)}}$ , we solve the GEVP

 $C(t)v_n(t,t_0) = \lambda_n(t,t_0)C(t_0)v_n(t,t_0),$ 

 $\lambda_n, v_n$ : eigenvalue & eigenvector of  $n^{\text{th}}$  state

 $\Rightarrow$  energies  $E_n$  and operators  $Q_n$  with largest overlap to  $n^{\text{th}}$  state:

$$aE_n^{\text{eff}}(t,t_0) = -\ln\left(\frac{\lambda_n(t+a,t_0)}{\lambda_n(t,t_0)}\right)$$
$$Q_n^{\text{eff}}(t,t_0) = \frac{O^i(t)v_n^i(t,t_0)}{\sqrt{v_n^i(t,t_0)C_{ij}(t)v_n^j(t,t_0)}} \left(\frac{\lambda_n(t_0+a,t_0)}{\lambda_n(t_0+2a,t_0)}\right)^{t/2a}$$



#### Large volume techniques, results

Results for *aE*<sub>stat</sub> from GEVP at finest lattice spacing



Example: static energy *aE*stat



with corrections (for N = 3)

for energies  $E_X$ :

$$\sim \mathrm{e}^{-t(E_4-E_1)}$$

and for matrix elements 
$$p^X$$
:  
 $p^{-t_0(E_4-E_1)}e^{-(t-t_0)(E_2-E_1)}$ 

∍





$$m_{\rm B} = m_{\rm bare} + E^{\rm stat} + \omega_{\rm kin} \cdot E^{\rm kin} + \omega_{\rm spin} \cdot E^{\rm spin} = m_{\rm B}(z, m_{\pi}, a)$$

■ parameters  $\{m_{\text{bare}}, \omega_{\text{kin}}, \omega_{\text{spin}}\}(z, a)$  & LV energies  $\{E^{\text{stat}}, E^{\text{kin}}, E^{\text{spin}}\}(m_{\pi}, a)$ 

Ē





P. Fritzsch

Beautiful Mesons and Baryons, ECT\*

∍





P. Fritzsch

Beautiful Mesons and Baryons, ECT\*

(▲ 문) (▲ 문) (

∍

we invert

$$m_{\rm B}(z_{\rm b}, m_{\pi}^{\rm exp}) = m_{\rm B}^{\rm exp}$$

for  $m_{\rm b}(m_{\rm b})$  in MSbar scheme

#### ₩

 $\overline{m}_{\mathrm{b}}(\overline{m}_{\mathrm{b}}) = 4.288(76)_{\mathrm{stat}}(43)_{z}(14)_{a}\mathrm{GeV}$ 

₩

parameters at physical b-quark mass

$$\omega_i \equiv \omega_i(m_{\rm b},a)$$

from now on

PDG: 4.19<sup>+0.18</sup><sub>-0.06</sub> GeV

E



we invert

$$m_{\rm B}(z_{\rm b}, m_{\pi}^{\rm exp}) = m_{\rm B}^{\rm exp}$$

for  $m_{\rm b}(m_{\rm b})$  in MSbar scheme

#### ∜

 $\overline{m}_{\rm b}(\overline{m}_{\rm b}) = 4.288(76)_{\rm stat}(43)_z(14)_a {\rm GeV}$ 

₽

parameters at physical b-quark mass

 $\omega_i \equiv \omega_i(m_{\rm b}, a)$ 

from now on

PDG:  $4.19^{+0.18}_{-0.06}\,\mathrm{GeV}$ 

э

in static approximation:

 $\overline{m}_{b}(\overline{m}_{b}) = 4.302(78)_{stat}(43)_{z}(14)_{a}$ GeV





$$\ln(a^{3/2} f_B \sqrt{m_B/2}) = \ln(Z_A^{\text{HQET}}) + \ln(a^{3/2} p^{\text{stat}}) + b_A^{\text{stat}} a m_q$$
$$+ \omega_{\text{kin}} p^{\text{kin}} + \omega_{\text{spin}} p^{\text{spin}} + c_A^{(1)} p^{A^{(1)}}$$

 $p^X$ : plateau values of eff. matrix elements from GEVP analysis

Ē

### The B-meson decay constant $f_{\rm B}(z)|_{z=z_{\rm b}}$





### The B-meson decay constant $f_{\rm B}(z)|_{z=z_{\rm b}}$





## The B-meson decay constant $f_{\rm B}(z)|_{z=z_{\rm b}}$



we extrapolate to physical point 
$$f_{\rm B} \equiv \lim_{(m_{\pi},a) \to (m_{\pi}^{\exp},0)} f_{\rm B}(m_{\pi},a)$$
 using fit ansatz  

$$\begin{aligned} f_{\rm B}(m_{\pi},a) &= b + cm_{\pi}^{2} + da^{2} \qquad (LO) \\ f_{\rm B}(m_{\pi},a) &= b' \left[ 1 - \frac{3}{4} \frac{1 + 3\tilde{g}^{2}}{(4\pi f_{\pi})^{2}} m_{\pi}^{2} \ln(m_{\pi}^{2}) \right] + c'm_{\pi}^{2} + d'a^{2} \qquad (HM\chi PT) \end{aligned}$$

$$= no term in (am_{\pi})^{2} \lesssim 0.02$$

$$= f_{\rm B} = 176(11)(5)_{a} \qquad LO$$

$$= \int_{B} = 172(11)(5)_{a} \qquad HM\chi PT \\ f_{\pi} &= f_{\pi}^{\exp}, \ \hat{g} = 0.51(2) \\ [PoS-Lat'10:BulavaETAL] \\ = static theory \\ f_{\rm B} &= 194(11)(5)_{a} \qquad LO \\ f_{\rm B} &= 194(11)(5)_{a} \qquad LO \\ = f_{\rm B} = 194(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad HM\chi PT \\ = f_{\rm B} = 189(11)(5)_{a} \qquad$$

#### Summary & outlook



- HQET obs. to next-to-leading order in  $1/m_{\rm b}$  renormalized NP'ly  $\checkmark$
- systematic errors included  $\checkmark$
- for the first time in  $N_{\rm f}=2$ : power divergencies canceled NP'ly and continuum limit of certain observables has been taken in large volume  $\checkmark$

$$m_{\rm b} = 4.288(76)(43)_z(14)_a {\rm GeV}$$
,  $f_{\rm B} = 176(11)(5)_a(4)_\chi {\rm MeV}$ 

still room to improve these results

- only truncation error  $O((\Lambda/m_b)^2)$  remains (but usually negligible)
- work in progress:
  - full analysis to be completed
  - measurements for  $f_{B_s}$ ,  $m_{B_s}$
  - $B \to \pi \ell \nu$  form factor  $f_+(q^2)$
  - heavy baryons

Thanks go to: A.Athenodorou, B.Blossier, J.Bulava, M.Della Morte, M.Donnellan, N.Garron, J.Heitger, D.Hesse, G.von Hippel, M.Marinkovic, A.Ramos, S.Schaefer, H.Simma, R.Sommer, F.Virotta, ...

э



### NP matching of HQET and QCD in a finite volume





#### NP matching of HQET and QCD in a finite volume





### Scale dependence of QCD parameters



Running coupling and mass,



Renormalization group (RG) equations 1 coupling  $\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \stackrel{\bar{g} \to 0}{\sim} - \bar{g}^3(b_0 + b_1 \bar{g}^2 + \ldots)$ 2 mass

$$\frac{\frac{\mu}{\bar{m}}}{\frac{\partial\bar{m}}{\partial\mu}} = \tau(\bar{g}) \stackrel{\bar{g}\to 0}{\sim} -\bar{g}^2(d_0+d_1\bar{g}^2+\ldots)$$

in a massless scheme,  $b_0, b_1, d_0$  universal Solution leads to *exact* equations in mass-independent scheme

₹ Ξ + < Ξ +</li>

∍

### Scale dependence of QCD parameters



Running coupling and mass, Renormalization Group Invariants (RGI)



### Generic strategy

... to connect low- & high-energy regime NP'ly

#### one more important ingredient:





< ⊒



### Generic strategy

... to connect low- & high-energy regime NP'ly

#### one more important ingredient:







э

#### Results without any perturbative uncertainty



mass-dependence in the continuum,  $z \in \{4, 6, 7, 9, 11, 13, 15, 18, 21\}$ 

in QCD: 
$$f_1 = \mathcal{Z}^{-1} \langle B(L) | B(L) \rangle \qquad k_1 = \mathcal{Z}^{-1} \langle B^*(L) | B^*(L)$$
$$R_1 = \frac{1}{4} \ln \left( \frac{f_1(\theta_1) k_1^3(\theta_1)}{f_1(\theta_2) k_1^3(\theta_2)} \right), \qquad \widetilde{R_1} = \frac{3}{4} \ln \left( \frac{f_1(\theta)}{k_1(\theta)} \right) \sim \omega_{\text{spin}}$$

their HQET expansion contains no conversion functions at LO



free quadratic fits in 1/z (static limit at 1/z = 0) computations in HQET & QCD absolutely independent and purely NP!

P. Fritzsch

Beautiful Mesons and Baryons, ECT\*

▲ 문 ▶ ▲ 문 ▶ ……

# OLDT-UNIA BERLIN

# QCD-Results converted to HQET, decay constant

mass-dependence in the continuum,  $z \in \{4, 6, 7, 9, 11, 13, 15, 18, 21\}, \theta \in \{0.5\}$ 

impact of conversion function C<sub>PS</sub> with 2- or 3-loop anomalous dimension



- barely agrees with our result at static order in HQET
- Missmatch a result of perturbative C<sub>PS</sub>?
- NP matching removes this perturbative uncertainty!

[DellaMorte, P.F., Heitger'05]

4-loops, ...?