Aiming for a higher precision in the QCD $\Lambda\mbox{-}parameter$ using running couplings in the three-flavour theory

Patrick Fritzsch

Humboldt-Universität zu Berlin

Westfälische-Wilhelms Universität, Münster May 26th, 2014

Knowing α allows to test the consistency of the underlying theory und thus our understanding of the SM.

$$\alpha(\mu) = \bar{g}^2(\mu) / 4\pi$$

How to estimate α ?

- choose a suitable *experimental* observable $O(\mu)$
- having a decent perturbative behaviour $O(\mu) = c_1 \alpha(\mu) + c_2 \alpha^2(\mu) + \dots$
- determine $\alpha(\mu)$ by *matching* theory and experiment

E

Knowing α allows to test the consistency of the underlying theory und thus our understanding of the SM.

$$\alpha(\mu) = \bar{g}^2(\mu) \big/ 4\pi$$

How to estimate α ?

- choose a suitable *experimental* observable $O(\mu)$
- having a decent perturbative behaviour $O(\mu) = c_1 \alpha(\mu) + c_2 \alpha^2(\mu) + \dots$
- determine $\alpha(\mu)$ by *matching* theory and experiment

QED

 $(g_e - 2)_{exp}$: $\alpha_{em} = 7.2973525698(24) \times 10^{-3}$

recoil-velocity meas. : $\alpha_{\rm em} = 7.297352585(48) \times 10^{-3}$

Many factors limit its precision

- Nature (QEDCSM): additional contributions from muon, tau, the weak interactions and hadrons
- uncertainties and systematic errors from experiment & theory

However, very good relative agreement between experiment and theory: $O(10^{-10})$

- \Rightarrow strong limitations to
 - a possible structure of the electron, existence of new dark matter particles, ...

Knowing α allows to test the consistency of the underlying theory und thus our understanding of the SM.

$$\alpha(\mu) = \bar{g}^2(\mu) \big/ 4\pi$$

How to estimate α ?

- choose a suitable *experimental* observable $O(\mu)$
- having a decent perturbative behaviour $O(\mu) = c_1 \alpha(\mu) + c_2 \alpha^2(\mu) + \dots$
- determine α(μ) by matching theory and experiment

Non-Abelian structure leading to

- confinement at low energies
- asymptotic freedom at high energies

Problems: higher orders in PT, non-perturbative effects,

(where we live)

(where PT works)

Knowing α allows to test the consistency of the underlying theory und thus our understanding of the SM.

$$\alpha(\mu) = \bar{g}^2(\mu) \big/ 4\pi$$

How to estimate α ?

- choose a suitable *experimental* observable $O(\mu)$
- having a decent perturbative behaviour $O(\mu) = c_1 \alpha(\mu) + c_2 \alpha^2(\mu) + \dots$
- determine α(μ) by matching theory and experiment

and the landscape of QCD

0.0001

0.01

0.001

and the landscape of QCD

and the landscape of QCD

- RENORMALIZATION GROUP AND Λ -parameter
- FINITE-SIZE SCALING
- LATTICE REGULARISATION
- GRADIENT FLOW
- A NEW RUNNING COUPLING SCHEME

Renormalization Group and Λ -parameter

(mass-independent scheme)

RGE:

$$\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3(b_0 + b_1\bar{g}^2 + b_2\bar{g}^4 + \ldots)$$

 b_0, b_1 : universal coeff.

 $b_{i>1}$: scheme-dependent

E

Renormalization Group and Λ -parameter

(mass-independent scheme)

RGE:

$$\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3(b_0 + b_1\bar{g}^2 + b_2\bar{g}^4 + \ldots)$$

 b_0, b_1 : universal coeff.

 $b_{i>1}$: scheme-dependent

Our aim is to compute

$$\Lambda \equiv \mu \left[b_0 \bar{g}^2 \right]^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}^2)} \exp\left\{ -\int_0^{\bar{g}} dg \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

 $\alpha_s(M_Z) = 0.1183(7) \rightsquigarrow \Delta \Lambda / \Lambda \approx 4\%$

- exact equation for mass-independent scheme
- trivial scheme dependence:

$$\Lambda_X / \Lambda_Y = \exp(c_{X,Y} / [4\pi b_0]), \qquad \qquad \alpha_X = \alpha_Y + c_{X,Y} \alpha_Y^2 + \mathcal{O}(\alpha_Y^3)$$

use a suitable physical coupling (scheme) to compute Λ (defined $\forall \mu$, regularisation independent, usual PT behaviour at small α, \ldots)

 \bar{g}^2 different schemes

Renormalization Group and Λ -parameter

 μ/Λ

different schemes

(mass-independent scheme)

RGE:

$$\mu \frac{\partial \bar{g}}{\partial \mu} = \beta(\bar{g}) \quad \stackrel{\bar{g} \to 0}{\sim} \quad -\bar{g}^3(b_0 + b_1\bar{g}^2 + b_2\bar{g}^4 + \ldots)$$

 b_0, b_1 : universal coeff.

 $b_{i>1}$: scheme-dependent

Our aim is to compute

$$\Lambda \equiv \mu \left[b_0 \bar{g}^2 \right]^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}^2)} \exp\left\{ -\int_0^{\bar{g}} \mathrm{d}g \left[\frac{1}{\beta(g)} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right] \right\}$$

 $\alpha_s(M_Z) = 0.1183(7) \rightsquigarrow \Delta \Lambda / \Lambda \approx 4\%$

 \overline{g}^2

- exact equation for mass-independent scheme
- trivial scheme dependence:

$$\Lambda_X/\Lambda_Y = \exp(c_{X,Y}/[4\pi b_0]), \qquad \qquad \alpha_X = \alpha_Y + c_{X,Y}\alpha_Y^2 + \mathcal{O}(\alpha_Y^3)$$

use a suitable physical coupling (scheme) to compute Λ (defined $\forall \mu$, regularisation independent, usual PT behaviour at small α, \ldots)

which requires non-perurbative knowledge of $\beta(\bar{g})$

→ finite-size scaling + lattice regularisation

P. Fritzsch

WWU Münster, May 2014

.

to bridge the gap between large scale separations

Finite-volume effects are part of the scheme / regularisation independent (e.g. lattice regulator)

one external scale only: system size Lfix renormalization scale appropriately $\mu L = \text{const}$ no FV corrections One condition: $L/a \gg 1 \ (\sim 10)$ phys. coupling: $\bar{g}^2 = \bar{g}^2(L)$

E

to bridge the gap between large scale separations

Finite-volume effects are part of the scheme / regularisation independent (e.g. lattice regulator)

WWU Münster, May 2014

 \bar{g}^2

E

to bridge the gap between large scale separations

P. Fritzsch

to bridge the gap between large scale separations

P. Fritzsch

to bridge the gap between large scale separations

 $\bar{q}^2(L) = u$ measure response due to scale change $L \rightarrow sL$: $\Sigma(s, u, a/L)$ repeat 1+2 for various L/a $\bar{q}^2(sL) = \sigma(s, u)$ continuum limit

 $\Sigma(s, u, a/L) = \sigma(s, u) + \mathcal{O}([a/L]^n)$

iterate 1-4 for different u k-times

$$L_{\max}/L_{\min} = s^k$$

 $\Sigma(1/10)$

 $a \rightarrow 0$ $\sigma(u)$

 $\sigma(u')$

Lattice methods in a jiffy

Path integral representation

$$\begin{split} \langle O \rangle &= \frac{1}{\mathcal{Z}} \int \! \mathcal{D}[U, \overline{\psi}, \psi] \, O(U, \overline{\psi}, \psi) \, \mathrm{e}^{-S_{\mathrm{G}}[U] - S_{\mathrm{F}}[U, \overline{\psi}, \psi]} \\ &= \frac{1}{\mathcal{Z}} \int \! \mathcal{D}[U] \left[O(U) \right]_{\mathrm{Wick}} \mathrm{e}^{-S_{\mathrm{G}}[U]} \det(D) \end{split}$$

- Evaluate integral numerically through *Monte Carlo* sampling of $e^{-S_G[U]} \det(D) \ge 0$.
- Observable computed by averaging over samples

$$\langle O \rangle = \frac{1}{N_{\rm cfg}} \sum_{i=1}^{N_{\rm cfg}} O(U_i) + \mathcal{O}(1/\sqrt{N_{\rm cfg}})$$

including a careful statistical error analysis!

$$S_{\rm G}[U] = \frac{\beta}{2N} \sum_p \operatorname{Tr}(1 - U_p - U_p^{\dagger}) \xrightarrow[a \to 0]{} -\frac{1}{2} \int \mathrm{d}^4 x \operatorname{Tr}(F_{\mu\nu}F_{\mu\nu}), \qquad a = a(\beta)$$

For one simulation choose:

 $(T/L,L/a,\beta,\{\kappa_i\})$ + boundary conditions of the fields

Lattice methods in a jiffy

Path integral representation

$$\begin{split} \langle O \rangle &= \frac{1}{\mathcal{Z}} \int \! \mathcal{D}[U, \overline{\psi}, \psi] \, O(U, \overline{\psi}, \psi) \, \mathrm{e}^{-S_{\mathrm{G}}[U] - S_{\mathrm{F}}[U, \overline{\psi}, \psi]} \\ &= \frac{1}{\mathcal{Z}} \int \! \mathcal{D}[U] \left[O(U) \right]_{\mathrm{Wick}} \mathrm{e}^{-S_{\mathrm{G}}[U]} \det(D) \end{split}$$

- Evaluate integral numerically through Monte Carlo sampling of $e^{-S_G[U]} \det(D) \ge 0$.
- Observable computed by averaging over samples

$$\langle O \rangle = \frac{1}{N_{\rm cfg}} \sum_{i=1}^{N_{\rm cfg}} O(U_i) + \mathcal{O}(1/\sqrt{N_{\rm cfg}})$$

including a careful statistical error analysis!

$$S_{\rm G}[U] = \frac{\beta}{2N} \sum_p \operatorname{Tr}(1 - U_p - U_p^{\dagger}) \xrightarrow[a \to 0]{} -\frac{1}{2} \int \mathrm{d}^4 x \operatorname{Tr}(F_{\mu\nu}F_{\mu\nu}), \qquad a = a(\beta)$$

 $(T/L,L/a,\beta,\{\kappa_i\})$ + boundary conditions of the fields

Q: But what observable $O(\mu)$ do we use to define the renormalised coupling?

For one simulation choose:

E

 $x = (x_0, \mathbf{x})$

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{split} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} = \partial_{\nu} + [B_{\nu},\star] \end{split}$$

Ē

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{split} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} = \partial_{\nu} + [B_{\nu},\star] \end{split}$$

Properties:

t = 0

臣

- continuous smoothing of gauge fields with flow time t [Lüscher:'10]
 - \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

P. Fritzsch

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu},\star] \end{aligned}$$

 $\sim 2\sqrt{8t}$

臣

Properties:

continuous smoothing of gauge fields with flow time t [Lüscher:'10]

 \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

 $x = (x_0, \mathbf{x})$

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu},\star] \end{aligned}$$

Properties:

continuous smoothing of gauge fields with flow time t [Lüscher:'10]

 \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

臣

P. Fritzsch

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu},\star] \end{aligned}$$

Properties:

continuous smoothing of gauge fields with flow time t [Lüscher:'10]

 \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

臣

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu},\star] \end{aligned}$$

Properties:

continuous smoothing of gauge fields with flow time t [Lüscher:'10]

 \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

Ξ

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu}, \star] \end{aligned}$$

Properties:

continuous smoothing of gauge fields with flow time t [Lüscher:'10]

 \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

Ξ

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + \left[B_{\mu}, B_{\nu} \right] , \quad D_{\nu} &= \partial_{\nu} + \left[B_{\nu}, \star \right] \end{aligned}$$

Properties:

continuous smoothing of gauge fields with flow time t [Lüscher:'10]

 \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution

E

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu},\star] \end{aligned}$$

Properties:

- continuous smoothing of gauge fields with flow time t [Lüscher:'10] \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution
- UV finite at t > 0, proven to all orders in PT for YM theory [Lüscher,Weisz:'11] $\Rightarrow \exists CL$ for correlation functions $G(x_1, x_2, ...) = \langle B(x_1, t)B(x_2, t) \cdots \rangle$

E

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu}, \star] \end{aligned}$$

Properties:

- continuous smoothing of gauge fields with flow time t [Lüscher:'10] \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution
- UV finite at t > 0, proven to all orders in PT for YM theory [Lüscher,Weisz:'11] $\Rightarrow \exists CL$ for correlation functions $G(x_1, x_2, ...) = \langle B(x_1, t)B(x_2, t) \cdots \rangle$
- excellent numerical precision, cheap, ...

E

 $x = (x_0, \mathbf{x})$

flow $B_{\mu}(x,t)$ of SU(N) gauge fields driven by $(t \ge 0)$:

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} &= D_{\nu}G_{\nu\mu}(x,t) , \qquad \qquad \left(\propto -\frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}} \right) \\ B_{\mu}(x,t)|_{t=0} &= A_{\mu}(x) , \qquad \qquad : \text{initial condition} \\ G_{\mu\nu}(x,t) &= \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu},B_{\nu}] , \quad D_{\nu} &= \partial_{\nu} + [B_{\nu},\star] \end{aligned}$$

Properties:

- continuous smoothing of gauge fields with flow time t [Lüscher:'10] \Rightarrow UV fluctuations get suppressed as B_{μ} flows towards classical solution
- UV finite at t > 0, proven to all orders in PT for YM theory [Lüscher,Weisz:'11] $\Rightarrow \exists CL$ for correlation functions $G(x_1, x_2, ...) = \langle B(x_1, t)B(x_2, t) \cdots \rangle$
- excellent numerical precision, cheap, ...
- E.g.: Energy density in pure YM

$$\langle E(x,t)\rangle = \frac{1}{4} \langle G^a_{\mu\nu}(x,t)G^a_{\mu\nu}(x,t)\rangle$$

is finite (for t > 0) after the usual coupling renormalization.

Ξ

The gradient flow coupling

- $r = \sqrt{8t}$ is effective smoothing radius of Wilson flow
- automatic renormalized at t > 0

Ξ

The gradient flow coupling

[Lüscher:'10]

$$\begin{aligned} &\text{for } SU(N), D = 4, V = \infty \\ \langle E(t) \rangle &\equiv \frac{1}{4} \left\langle G^a_{\mu\nu}(t) G^a_{\mu\nu}(t) \right\rangle = \frac{3(N^2 - 1)}{2(8\pi t)^2} \times \bar{g}^2_{\text{MS}}(\mu) \Big\{ 1 + c_2 \bar{g}^2_{\text{MS}} + \mathcal{O}(\bar{g}^4_{\text{MS}}) \Big\} \\ &\text{and } \mu = 1/\sqrt{8t} \end{aligned}$$

- $r = \sqrt{8t}$ is effective smoothing radius of Wilson flow
- automatic renormalized at t > 0
- provides non-perturbative definition of a 'gradient flow' coupling in finite-volume $L^3 imes T$

$$t^2 \langle E(t) \rangle = \mathcal{N} \cdot \bar{g}^2(\mu) , \qquad \mu^{-1} = \sqrt{8t} = cL , \qquad \forall N, N_{\rm f}$$

- ${\cal N}$ normalization factor such that $ar{g}^2=g_0^2+{
 m O}ig(g_0^4)$
- $c = \sqrt{8t}/L$ effective smoothing range of Wilson flow

The gradient flow coupling

- r = $\sqrt{8t}$ is effective smoothing radius of Wilson flow
- automatic renormalized at t > 0
- provides non-perturbative definition of a 'gradient flow' coupling in finite-volume $L^3 imes T$

$$t^2 \langle E(t) \rangle = \mathcal{N} \cdot \bar{g}^2(\mu) \;, \qquad \mu^{-1} = \sqrt{8t} = cL \;, \qquad \forall N, N_{\rm f}$$

- $\,\,{\cal N}$ normalization factor such that $ar{g}^2=g_0^2+{
 m O}ig(g_0^4)$
- $c = \sqrt{8t}/L$ effective smoothing range of Wilson flow
- in finite volume boundary conditions become important:
 - ${\cal N}$ for periodic boundary conditions [Fodor et al.'12]
 - N for Schrödinger functional boundary conditions [Fritzsch,Ramos:1301.4388]
 - N for twisted boundary conditions [Ramos:PosLattice'13]

Normalization factor $\mathcal N$

computed with SF boundary conditions

[PF,Ramos:JHEP1310(2013)008]

rescaling & expanding the gauge fields at $t>0\,$

$$B_{\mu} = \sum_{n=1}^{\infty} B_{\mu,n} g_0^n , \qquad \langle E(t,x_0) \rangle = \sum_{n=0}^{\infty} \mathcal{E}_n(t,x_0) , \text{ with } \mathcal{E}_n = \mathcal{O}(g_0^{2+n})$$

$$\mathsf{LO:} \quad \mathcal{E}_0(t,x_0) = \frac{g_0^2}{2} \langle \partial_{\mu} B_{\nu,1}^a \partial_{\mu} B_{\nu,1}^a - \partial_{\mu} B_{\nu,1}^a \partial_{\nu} B_{\mu,1}^a \rangle$$

expanding flow equation \longrightarrow tower of equations

臣

Normalization factor ${\cal N}$

computed with SF boundary conditions

rescaling & expanding the gauge fields at $t > 0 \label{eq:constraint}$

$$B_{\mu} = \sum_{n=1}^{\infty} B_{\mu,n} g_0^n , \qquad \langle E(t,x_0) \rangle = \sum_{n=0}^{\infty} \mathcal{E}_n(t,x_0) , \text{ with } \mathcal{E}_n = \mathcal{O}(g_0^{2+n})$$

$$\mathsf{LO:} \quad \mathcal{E}_0(t,x_0) = \frac{g_0^2}{2} \langle \partial_{\mu} B_{\nu,1}^a \partial_{\mu} B_{\nu,1}^a - \partial_{\mu} B_{\nu,1}^a \partial_{\nu} B_{\mu,1}^a \rangle$$

expanding flow equation \longrightarrow tower of equations

LO: Flow equation = Heat equation $\dot{B}_{\mu,1} = \partial_{\nu}\partial_{\nu}B_{\mu,1}$ + gauge terms $\frac{d}{dt}\tilde{B}_{\mu,1}(\mathbf{p},x_0,t) = (-\mathbf{p}^2 + \partial_0^2)\tilde{B}_{\mu,1}(\mathbf{p},x_0,t), \qquad \tilde{B}_{\mu,1}(\mathbf{p},x_0,t)\Big|_{t=0} = \tilde{A}_{\mu}(\mathbf{p},x_0)$ = heat kernels need to comply with boundary conditions $\rightarrow K^D, K^N, K^{ND}, \dots$

Normalization factor $\mathcal N$

computed with SF boundary conditions

rescaling & expanding the gauge fields at $t > 0 \label{eq:constraint}$

$$B_{\mu} = \sum_{n=1}^{\infty} B_{\mu,n} g_0^n , \qquad \langle E(t,x_0) \rangle = \sum_{n=0}^{\infty} \mathcal{E}_n(t,x_0) , \text{ with } \mathcal{E}_n = \mathcal{O}(g_0^{2+n})$$

$$\mathsf{LO:} \quad \mathcal{E}_0(t,x_0) = \frac{g_0^2}{2} \langle \partial_{\mu} B_{\nu,1}^a \partial_{\mu} B_{\nu,1}^a - \partial_{\mu} B_{\nu,1}^a \partial_{\nu} B_{\mu,1}^a \rangle$$

expanding flow equation \longrightarrow tower of equations

LO: Flow equation = Heat equation
$$\dot{B}_{\mu,1} = \partial_{\nu}\partial_{\nu}B_{\mu,1} + \text{gauge terms}$$

 $\frac{d}{dt}\tilde{B}_{\mu,1}(\mathbf{p}, x_0, t) = (-\mathbf{p}^2 + \partial_0^2)\tilde{B}_{\mu,1}(\mathbf{p}, x_0, t), \qquad \tilde{B}_{\mu,1}(\mathbf{p}, x_0, t)\Big|_{t=0} = \tilde{A}_{\mu}(\mathbf{p}, x_0)$
heat kernels need to comply with boundary conditions $\rightarrow K^D, K^N, K^{ND}, \dots$

$$\begin{split} B_{\mu,1}(\mathbf{x}, x_0, t) &= \int \mathrm{d}\mathbf{x}' \int \mathrm{d}x'_0 \prod_{i=1}^3 K^P(x_i, x'_i, t) K^{D,N}(x_0, x'_0, t) A_\mu(\mathbf{x}', x'_0, t) \\ &\downarrow \mathsf{LO} \\ \langle E(t) \rangle &= \mathcal{E}_0(t) = \partial \partial \int [\mathsf{heat \, kernel \, stuff}] \langle AA \rangle \qquad \Rightarrow \mathcal{N}(c, T/L, x_0/T) \end{split}$$

Normalization factor ${\cal N}$

computed with SF boundary conditions

[PF,Ramos:JHEP1310(2013)008]

rescaling & expanding the gauge fields at $t>0\,$

$$B_{\mu} = \sum_{n=1}^{\infty} B_{\mu,n} g_0^n , \qquad \langle E(t,x_0) \rangle = \sum_{n=0}^{\infty} \mathcal{E}_n(t,x_0) , \text{ with } \mathcal{E}_n = \mathcal{O}(g_0^{2+n})$$

$$\mathsf{LO:} \quad \mathcal{E}_0(t,x_0) = \frac{g_0^2}{2} \langle \partial_{\mu} B_{\nu,1}^a \partial_{\mu} B_{\nu,1}^a - \partial_{\mu} B_{\nu,1}^a \partial_{\nu} B_{\mu,1}^a \rangle$$

expanding flow equation \longrightarrow tower of equations

LO: Flow equation = Heat equation
$$\dot{B}_{\mu,1} = \partial_{\nu}\partial_{\nu}B_{\mu,1} + \text{gauge terms}$$

 $\frac{\mathrm{d}}{\mathrm{d}t}\tilde{B}_{\mu,1}(\mathbf{p},x_0,t) = (-\mathbf{p}^2 + \partial_0^2)\tilde{B}_{\mu,1}(\mathbf{p},x_0,t), \qquad \tilde{B}_{\mu,1}(\mathbf{p},x_0,t)\big|_{t=0} = \tilde{A}_{\mu}(\mathbf{p},x_0)$
heat kernels need to comply with boundary conditions $\rightarrow K^D, K^N, K^{ND}, \dots$

$$B_{\mu,1}(\mathbf{x}, x_0, t) = \int d\mathbf{x}' \int dx'_0 \prod_{i=1}^3 K^P(x_i, x'_i, t) K^{D,N}(x_0, x'_0, t) A_\mu(\mathbf{x}', x'_0, t)$$

$$\downarrow \mathsf{LO}$$

$$\langle E(t) \rangle = \mathcal{E}_0(t) = \partial \partial \int [\text{heat kernel stuff}] \langle AA \rangle \qquad \Rightarrow \mathcal{N}(c, T/L, x_0/T)$$

computation of lattice norm along the same lines:

P. Fritzsch

 $\Rightarrow \widehat{\mathcal{N}}(c, T/L, x_0/T, a/L)$

Continuum extrapolations

SF with plaq. action and flow & clover def. of $E(t, x_0)$

$$(N_{\rm f} = 2, m_{\rm sea} = 0, \theta = 0.5, \text{BF=0})$$

 $\bar{g}_{\rm GF}^2(L) = \lim_{a/L \to 0} \Omega(u, c, a/L)$

General properties of GF coupling:

- very easy to compute, negligible computational costs
- rather large cutoff effects
- optimal window: $0.25 \le c = \sqrt{8t}/L \le 0.5$
- scaling for L/a > 8

can & will be improved

E

cutoff effects vs. statistical error

What does that mean for our goal to compute Λ more accurately?

Đ.

So far, so good

What does that mean for our goal to compute Λ more accurately?

Renormalization group:	$\beta(\bar{g}) \stackrel{\bar{g} \to 0}{\sim} -\bar{g}^3 \left(b_0 + b_1 \bar{g}^2 + \ldots \right)$
with each step one accumulates an error:	$\frac{\Delta L}{L} = -\frac{\Delta \bar{g}^2}{2\bar{g}\beta(\bar{g})} \sim \frac{\Delta \bar{g}^2}{2b_0\bar{g}^4} \sim \frac{1}{\bar{g}^2} \left[\frac{\Delta \bar{g}^2}{\bar{g}^2}\right]$

Relative variance of O

$$\mathcal{V}_O = \frac{\langle O^2 \rangle - \langle O \rangle^2}{\langle O \rangle^2}$$

Ę

So far, so good

What does that mean for our goal to compute Λ more accurately?

- Bad for ΔΛ with 10 finite-size scaling steps!
- more expensive due to larger L/a

So far, so good

What does that mean for our goal to compute Λ more accurately?

- Bad for ΔΛ with 10 finite-size scaling steps!
- more expensive due to larger L/a

$$\begin{array}{c} \text{there is a solution} \\ \\ \frac{\Delta \bar{g}^2}{\bar{g}^2} \sim \bar{g}^2 \quad \Rightarrow \quad \frac{\Delta L}{L} \sim \text{const} \\ \\ \times @ \text{ large } \bar{g}^2, \qquad \checkmark @ \text{ small } \bar{g}^2 \end{array}$$

[LüscherEtAl:'92,...]

Euclidean partition function

$$\mathcal{Z} \equiv \int_{T \times L^3} \mathcal{D}[U, \overline{\psi}, \psi] e^{-S[U, \overline{\psi}, \psi]} = \langle 0| e^{-TH} P |0\rangle$$

with periodic BC in L^3 and Dirichlet BC in T (breaking translational inv. in time)

- renormalization scale $\mu \propto L^{-1}$ (for step-scaling)
- mass-independent scheme, ...

Abelian boundary fields: $C_k = \begin{pmatrix} \phi_1 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 \\ \phi_2 & 0 \\ 0 & \phi_3 \end{pmatrix}; C'_k = \begin{pmatrix} \phi'_1 & 0 & 0 \\ 0 & \phi'_2 & 0 \\ 0 & 0 & \phi'_3 \end{pmatrix}$$

SF coupling

defined as variation of effective action $\Gamma = -\ln \mathcal{Z}[C, C']$,

$$\left. \frac{\partial \Gamma}{\partial \eta} \right|_{\eta=0} = \frac{\text{const}}{\bar{g}_{\text{SF}}^2(L)}$$

for non-vanishing boundary gauge fields $C_k \neq 0 \neq C'_k$

Ē

physical scale $L_{\rm max}$ from LV (CLS) runs 1 [LW action, $m_{\pi} \neq 0, m_{\rm K} \neq 0$] $\bar{g}_{\rm GF}^2(L_{\rm max},c,\varphi)$ (maybe massive scheme?) 2 step scaling $L_{\max} \rightarrow L_{\max}/2 \rightarrow \ldots$ (change to massless scheme?) $\bar{a}_{CE}^2(L_{max}/4, c, 0)$ 3 step scaling $L_{\rm max}/4 \rightarrow L_{\rm max}/8 \rightarrow \ldots$ precision alert at some scale L_{switch} 5 match \bar{g}_{SF}^2 & \bar{g}_{GF}^2 NP'ly, fix $u = \bar{g}_{GF}^2(L_{swi})$ $\bar{g}_{\rm SF}^2(L_{\rm swi}) = \lim_{a/L \to 0} \Psi(u, a/L)$ or vice versa

physical scale $L_{\rm max}$ from LV (CLS) runs 1 [LW action, $m_{\pi} \neq 0, m_{\rm K} \neq 0$] $\bar{g}_{\rm GF}^2(L_{\rm max},c,\varphi)$ (maybe massive scheme?) 2 step scaling $L_{\max} \rightarrow L_{\max}/2 \rightarrow \ldots$ (change to massless scheme?) $\bar{a}_{CE}^2(L_{max}/4, c, 0)$ 3 step scaling $L_{\rm max}/4 \rightarrow L_{\rm max}/8 \rightarrow \ldots$ precision alert at some scale L_{switch} 5 match \bar{g}_{SF}^2 & \bar{g}_{GF}^2 NP'ly, fix $u = \bar{g}_{GF}^2(L_{swi})$ $\bar{g}_{\rm SF}^2(L_{\rm swi}) = \lim_{a/L \to 0} \Psi(u, a/L)$ or vice versa step scaling with SF coupling

physical scale $L_{\rm max}$ from LV (CLS) runs 1 [LW action, $m_{\pi} \neq 0, m_{\rm K} \neq 0$] $\bar{g}_{\rm GF}^2(L_{\rm max},c,\varphi)$ (maybe massive scheme?) 2 step scaling $L_{\max} \rightarrow L_{\max}/2 \rightarrow \ldots$ (change to massless scheme?) $\bar{a}_{CE}^2(L_{max}/4, c, 0)$ 3 step scaling $L_{\rm max}/4 \rightarrow L_{\rm max}/8 \rightarrow \ldots$ precision alert at some scale L_{switch} 5 match \bar{g}_{SF}^2 & \bar{g}_{GF}^2 NP'ly, fix $u = \bar{g}_{GF}^2(L_{swi})$ $\bar{g}_{\rm SF}^2(L_{\rm swi}) = \lim_{a/L \to 0} \Psi(u, a/L)$ or vice versa step scaling with SF coupling

physical scale $L_{\rm max}$ from LV (CLS) runs 1 [LW action, $m_{\pi} \neq 0, m_{\rm K} \neq 0$] $\bar{g}_{\rm GF}^2(L_{\rm max},c,\varphi)$ (maybe massive scheme?) 2 step scaling $L_{\max} \rightarrow L_{\max}/2 \rightarrow \ldots$ (change to massless scheme?) $\bar{a}_{CE}^2(L_{max}/4, c, 0)$ 3 step scaling $L_{\rm max}/4 \rightarrow L_{\rm max}/8 \rightarrow \ldots$ precision alert at some scale L_{switch} 5 match \bar{g}_{SF}^2 & \bar{g}_{GF}^2 NP'ly, fix $u = \bar{g}_{GF}^2(L_{swi})$ $\bar{g}_{\rm SF}^2(L_{\rm swi}) = \lim_{a/L \to 0} \Psi(u, a/L)$ or vice versa step scaling with SF coupling

physical scale $L_{\rm max}$ from LV (CLS) runs 1 [LW action, $m_{\pi} \neq 0, m_{\rm K} \neq 0$] $\bar{g}_{\rm GF}^2(L_{\rm max},c,\varphi)$ (maybe massive scheme?) step scaling $L_{\max} \rightarrow L_{\max}/2 \rightarrow \ldots$ 2 (change to massless scheme?) $\bar{a}_{CE}^2(L_{max}/4, c, 0)$ 3 step scaling $L_{\rm max}/4 \rightarrow L_{\rm max}/8 \rightarrow \ldots$ precision alert at some scale L_{switch} 5 match \bar{g}_{SF}^2 & \bar{g}_{GF}^2 NP'ly, fix $u = \bar{g}_{GF}^2(L_{swi})$ $\bar{g}_{\rm SF}^2(L_{\rm swi}) = \lim_{a/L \to 0} \Psi(u, a/L)$ or vice versa step scaling with SF coupling

6+7 finished soon

physical scale $L_{\rm max}$ from LV (CLS) runs 1 [LW action, $m_{\pi} \neq 0, m_{\rm K} \neq 0$] $\bar{g}_{\rm GF}^2(L_{\rm max},c,\varphi)$ (maybe massive scheme?) 2 step scaling $L_{\max} \rightarrow L_{\max}/2 \rightarrow \ldots$ (change to massless scheme?) $\bar{a}_{CE}^2(L_{max}/4, c, 0)$ 3 step scaling $L_{\max}/4 \rightarrow L_{\max}/8 \rightarrow \ldots$ precision alert at some scale L_{switch} 5 match $\bar{g}_{\rm SF}^2$ & $\bar{g}_{\rm GF}^2$ NP'ly, fix $u = \bar{g}_{\rm GF}^2(L_{\rm swi})$ $\bar{g}_{\rm SF}^2(L_{\rm swi}) = \lim_{a/L \to 0} \Psi(u, a/L)$ or vice versa 6 step scaling with SF coupling connect \bar{g}_{SF}^2 to PT at high energies 7

Setting up a line of constant physics

for $N_{\rm f}=3$ degenerate flavours of massless quarks

Choose input parameters $(T/L, L/a, \beta, \{\kappa_i\})$ + boundary conditions of the fields:

- $L/a \in \{4, 6, 8, 10, 12\}, T/L = 1, \beta = 6/g_0^2$ + non-vanishing SF b.c.
- $\kappa_{1,2,3} = \kappa \iff$ bare current quark mass am

Ξ

Setting up a line of constant physics

for $N_{\rm f}=3$ degenerate flavours of massless quarks

Choose input parameters $(T/L, L/a, \beta, \{\kappa_i\})$ + boundary conditions of the fields:

- $\label{eq:Lastrong} \ \ \, {L/a} \in \{4,6,8,10,12\}, \ T/L=1, \ \beta=6/g_0^2 \ \, {\rm + \ \, non-vanishing \ SF \ b.c.}$
- $\kappa_{1,2,3} = \kappa \iff$ bare current quark mass am

tune to vanishing mass Lm=0 \Leftrightarrow 'critical' quark mass $m_0=m_c$

Step-scaling function for $ar{g}_{ m SF}^2$

preliminary

20

Summary

increase knowledge of $\alpha_{\rm s}(\mu) \leftrightarrow \Lambda$

- \blacksquare connect hadronic low-energy and high-energy regime \rightsquigarrow tests of QCD on scale separations of order $\gtrsim 10^3$
- systematic uncertainties well under control using lattice simulations + finite-size scaling + physical running couplings
- PT invoked at very high energies only $\gtrsim 100 \, {
 m GeV}$
- best to combine running of $ar{g}^2_{
 m SF}$ and $ar{g}^2_{
 m GF}$ non-perturbatively

Gradient flow

new tool to probe non-perturbative aspects of strongly coupled gauge theories

- solid theoretical understanding
- GF coupling advantageous to reach even lower scales
- wide range of applications
 - simplified renormalization
 - fermion flow [Lüscher:'13]: no operator mixing on the lattice
 - conformal field theories, walking technicolor, ...

we are in a good position to achieve $\Delta\Lambda/\Lambda\sim 2\%$

E

Thank you for your attention!

And many thanks to my collaborators:

M. Dalla Brida T. Korzec A. Ramos S. Sint R. Sommer U. Wolff