M_b and $f_{\rm B}$ from non-perturbatively renormalized HQET with $N_{\rm f}=2$ light quarks

Patrick Fritzsch

Institut für Physik, Humboldt-Universität zu Berlin, Germany

on behalf of the ALPHA Collaboration

Lattice 2011, 11 - 16 June Squaw Valley, Lake Tahoe, USA

Problem A										
hum and an exting in relativistic transmust of her work evolutions on the lattice										
huge scale separations in relativistic treatment of b-quark systems on the lattice										
$m_{\rm b}$ vs. a vs. L vs. predictability (#input par.)										

E

_	Problem A									
(
	nuge scale separations in relativistic treatment of b-quark systems on the lattice									
	$m_{\rm b}$	VS.	а	VS.	L	VS.	predictability (#input par.)			
1	U						,			

_	Problem A								
(hune coole concretions in relativistic tractment of however, evolutions on the lattice								
	nuge scale separations in relativistic treatment of b-quark systems on the lattice								
	$m_{\rm b}$	VS.	а	VS.	L	VS.	predictability (#input par.)		
	U						, , , ,		

Problems in simulating heavy-light systems

Benefits of our approach

- power divergences subtracted non-perturbatively
 > NP parameters of effective theory guarantee renormalizability
- applied step-scaling technique allows to reach large volumes to make contact to real physics
- matching requires only one input parameter, the B-meson mass m^{exp}_B (except for scale setting in large volume simulations)
- in HQET to order $1/m_{\rm b}$, truncation errors are O($\Lambda^2/m_{\rm b}^2$)
- approach can be extended to other quantities with modest effort

Heavy Quark Effective Theory

effective theory of QCD, expansion in powers of $1/m_b$ HQET on the latticeProblem B:ops. of different dim. in \mathcal{L}_{HQET} mix and induce power divergences in a^{-1} \Rightarrow subtractions need to be performed NP'ly [Maiani,Martinelli,Sachrajda:'92]Solution B:NP matching of HQET and QCD in small physical volume [Heitger,Sommer:'01]

Heavy Quark Effective Theory

to first order in $1/m_Q$

time component of the heavy-light axial current A_0 ($\mathbf{p} = 0$):

$$A_{0,R}^{\text{HQET}} = Z_{A}^{\text{HQET}} \left[A_{0}^{\text{stat}} + c_{A}^{(1)} A_{0}^{(1)} \right], \qquad A_{0}^{\text{stat}} = \overline{\psi}_{1} \gamma_{0} \gamma_{5} \psi_{h},$$
$$A_{0}^{(1)} = \overline{\psi}_{1} \gamma_{5} \gamma_{i} \frac{1}{2} (\nabla_{i}^{\text{S}} - \overleftarrow{\nabla}_{i}^{\text{S}}) \psi_{h}$$

Parameters to match NP'ly:

$$\omega_i \in \left\{ m_{\text{bare}}, Z_A^{\text{HQET}}, c_A^{(1)}, \omega_{\text{kin}}, \omega_{\text{spin}} \right\}$$

General Strategy

NP'ly determined HQET parameters

(std. matching conditions)

heavy (valence) quark masses NP'ly fixed to

$$z = L_1 M_Q = L_1 Z_M m_Q \in \{4, 6, 7, 9, 11, 13, 15, 18, 21\}$$

β	LM _Q	am _{bare}	$\ln(Z_{\rm A}^{\rm HQET})$	$\frac{c_{\rm A}^{(1)}}{a}$	$\frac{\omega_{\rm kin}}{a}$	$\frac{\omega_{\rm spin}}{a}$
5.2	13	1.13(2)	-0.13(3)	-0.52(7)	0.470(6)	0.85(4)
	$z_{\mathbf{b}}$	*	*	*	*	*
	15	1.38(3)	-0.12(3)	-0.43(7)	0.429(5)	0.76(3)
5.3	13	0.90(2)	-0.13(3)	-0.54(8)	0.522(7)	0.94(4)
	z_{b}	*	*	*	*	*
	15	1.13(2)	-0.12(3)	-0.45(8)	0.476(6)	0.84(4)
5.5	13	0.48(2)	-0.14(3)	-0.64(10)	0.656(8)	1.16(4)
	z_{b}	*	*	*	*	*
	15	0.66(2)	-0.13(3)	-0.53(9)	0.599(8)	1.04(4)

CLS emsembles for large volume computations

subset used in this analysis

criterion on CLS ensembles (
$$T = 2L$$
): $m_{\pi}L \gtrsim 2.1$ and $a \lesssim 0.08 \text{ fm}$

β	<i>a</i> (fm)	L/a	Lm_{π}	<i>m</i> _π (MeV)	no. of cnfg.s	separ. (MD u.)	label	code
5.2	0.075	32 32 ⁴⁸	2.4	386 331	800 200	8 4	A40 A50 B6	DD MP
5.3	0.065	32 48 48 ₆₄	2.1 3.1 ^{4.2}	438 312 267	1000 500 600	16 8 8	E5□ F6□ F7□ _{G8}	DD DD DD MP
5.5	0.048	48 64	2.3 3.1	442 268	400 700	$\frac{8}{4}$	N5 ◊ O7 ◊	DD MP

full Jackknife analysis (100 bins) from small to large volume

scale setting through f_K

see M.Marinkovic's talk [today 6:30pm]

Large volume techniques

variance reduction through stochastic all-to-all props.

compute $N \times N$ correlator matrices

$$C_{ij}^{\text{stat}}(t) = \sum_{x,y} \left\langle O_i(x_0 + t, \mathbf{y}) O_j^*(x) \right\rangle_{\text{stat}}$$
$$C_{ij}^{\text{kin/spin}}(t) = \sum_{x,y,z} \left\langle O_i(x_0 + t, \mathbf{y}) O_j^*(x) O_{\text{kin/spin}}(z) \right\rangle_{\text{stat}}$$
$$C_{A^{(1)},i}^{\text{stat}}(t) = \sum_{x,y} \left\langle A_0^{(1)}(x_0 + t, \mathbf{y}) O_i^*(x) \right\rangle_{\text{stat}}$$

using interpolating fields

$$\begin{split} O_k &= \overline{\psi}_h \gamma_0 \gamma_5 \psi_l^{(k)} , \qquad \psi_h(x) \text{: static quark field} \\ O_k^* &= \overline{\psi}_l^{(k)} \gamma_0 \gamma_5 \psi_h , \qquad \psi_l^{(k)}(x) = \left(1 + \kappa_{\rm G} \, a^2 \, \Delta\right)^{R_k} \psi_l(x) \end{split}$$

N=3 with APE-smeared links for different levels $R_k\in\{1,4,7\}$ of Gaussian smearing, $r_{\rm phys}\approx 2a\sqrt{\kappa_{\rm G}R_k}\sim 0.6{\rm fm}$ kept fixed

P. Fritzsch

Large volume techniques

Generalised eigenvalue problem (GEVP)

for each C^{stat} , $C^{\text{kin/spin}}$, and $C^{\text{stat}}_{A^{(1)}}$, we solve the GEVP

 $C(t)v_n(t,t_0) = \lambda_n(t,t_0)C(t_0)v_n(t,t_0),$

 λ_n, v_n : eigenvalue & eigenvector of n^{th} state

 \Rightarrow energies E_n and operators Q_n with largest overlap to n^{th} state:

$$aE_n^{\text{eff}}(t,t_0) = -\ln\left(\frac{\lambda_n(t+a,t_0)}{\lambda_n(t,t_0)}\right)$$
$$Q_n^{\text{eff}}(t,t_0) = \frac{O^i(t)v_n^i(t,t_0)}{\sqrt{v_n^i(t,t_0)C_{ij}(t)v_n^j(t,t_0)}} \left(\frac{\lambda_n(t_0+a,t_0)}{\lambda_n(t_0+2a,t_0)}\right)^{t/2a}$$

Large volume techniques, results

Results for *aE*_{stat} from GEVP at finest lattice spacing

Example: static energy *aE*stat

with corrections

for energies E_X :

$$\sim \mathrm{e}^{-t(E_4-E_1)}$$

and for matrix elements
$$p^X$$
:

$$\sim e^{-t_0(E_4-E_1)}e^{-(t-t_0)(E_2-E_1)}$$

∍

$$m_{\rm B} = m_{\rm bare} + E^{\rm stat} + \omega_{\rm kin} \cdot E^{\rm kin} + \omega_{\rm spin} \cdot E^{\rm spin} = m_{\rm B}(z, m_{\pi}, a)$$

■ parameters $\{m_{\text{bare}}, \omega_{\text{kin}}, \omega_{\text{spin}}\}(z, a)$ & LV energies $\{E^{\text{stat}}, E^{\text{kin}}, E^{\text{spin}}\}(m_{\pi}, a)$

Ē

The *b*-quark mass

P. Fritzsch

- 《문》 《문》

∍

The *b*-quark mass

P. Fritzsch

- ▲ 문 ► - ▲ 문 ►

∍

The *b*-quark mass & spin splitting

we invert

$$m_{\rm B}(z_{\rm b},m_{\pi}^{\rm exp})=m_{\rm B}^{\rm exp}$$

for $m_{\rm b}(m_{\rm b})$ in MSbar scheme

₩

 $m_{\rm b}(m_{\rm b}) = 4.234(76)_{\rm stat}(56)_z(14)_a {\rm GeV}$

₩

parameters at physical b-quark mass

$$\omega_i \equiv \omega_i(m_{\rm b}, a)$$

from now on

PDG: $4.19^{+0.18}_{-0.06}$

P. Fritzsch

Ē

The *b*-quark mass & spin splitting

we invert

$$m_{\rm B}(z_{\rm b},m_{\pi}^{\rm exp})=m_{\rm B}^{\rm exp}$$

for $m_{\rm b}(m_{\rm b})$ in MSbar scheme

∜

 $m_{\rm b}(m_{\rm b}) = 4.234(76)_{\rm stat}(56)_z(14)_a {\rm GeV}$

∜

parameters at physical b-quark mass

$$\omega_i \equiv \omega_i(m_{\rm b}, a)$$

from now on

PDG: 4.19^{+0.18}_{-0.06}

spin splitting at phys. b-guark mass

$$m_{\mathrm{B}^*} - m_{\mathrm{B}} = -\frac{3}{4}\omega_{\mathrm{spin}} \cdot E^{\mathrm{spin}}$$

∍

$$\ln(a^{3/2} f_{\rm B} \sqrt{m_{\rm B}/2}) = \ln(Z_{\rm A}^{\rm HQET}) + \ln(a^{3/2} p^{\rm stat}) + b_{\rm A}^{\rm stat} a m_{\rm q}$$
$$+ \omega_{\rm kin} p^{\rm kin} + \omega_{\rm spin} p^{\rm spin} + c_{\rm A}^{(1)} p^{\rm A^{(1)}}$$

E

The B-meson decay constant $f_{\rm B}(z)|_{z=z_{\rm b}}$

The B-meson decay constant $f_{\rm B}(z)|_{z=z_{\rm b}}$

we extrapolate to physical point
$$f_{\rm B} \equiv \lim_{(m_{\pi},a) \to (m_{\pi}^{\exp},0)} f_{\rm B}(m_{\pi},a)$$
 using fit ansatz

$$\begin{aligned} f_{\rm B}(m_{\pi},a) &= b + cm_{\pi}^{2} + da^{2} \qquad (LO) \\ f_{\rm B}(m_{\pi},a) &= b' \left[1 - \frac{3}{4} \frac{1 + 3\hat{g}^{2}}{(4\pi f_{\pi})^{2}} m_{\pi}^{2} \ln(m_{\pi}^{2}) \right] + c'm_{\pi}^{2} + d'a^{2} \qquad (HM\chi PT) \end{aligned}$$

$$= no term in (am_{\pi})^{2} \lesssim 0.02 \\ = f_{\rm B} = 176(11)(5)_{a} \qquad LO \\ = \int_{\rm B} = 172(11)(5)_{a} \qquad HM\chi PT \\ f_{\pi} &= f_{\pi}^{\exp}, \ \hat{g} = 0.51(2) \\ [PoS-Lat'10:BulavaETAL] \\ = f_{\pi}^{2}/GeV^{2} \end{aligned}$$

The B-meson decay constant $f_{\rm B}(z)|_{z=z_{\rm b}}$

we extrapolate to physical point
$$f_{\rm B} \equiv \lim_{(m_{\pi},a) \to (m_{\pi}^{\exp},0)} f_{\rm B}(m_{\pi},a)$$
 using fit ansatz

$$\begin{aligned} f_{\rm B}(m_{\pi},a) &= b + cm_{\pi}^2 + da^2 \qquad (LO) \\ f_{\rm B}(m_{\pi},a) &= b' \left[1 - \frac{3}{4} \frac{1 + 3g^2}{(4\pi f_{\pi})^2} m_{\pi}^2 \ln(m_{\pi}^2) \right] + c'm_{\pi}^2 + d'a^2 \qquad (HM\chi PT) \end{aligned}$$

$$= no term in (am_{\pi})^2 \lesssim 0.02$$

$$= f_{\rm B} = 176(11)(5)_a \qquad LO$$

$$= f_{\rm B} = 176(11)(5)_a \qquad HM\chi PT \\ f_{\pi} &= f_{\pi}^{\exp}, \ \hat{g} = 0.51(2) \\ [PoS-Lat'10:BulavaETAL] \\ estatic theory \\ f_{\rm B} &= 194(11)(5)_a \qquad LO \\ f_{\rm B} &= 194(11)(5)_a \qquad HM\chi PT \\ f_{\rm B$$

$$m_{\rm b} = 4.234(76)(56)_z(14)_a {\rm GeV}$$
, $f_{\rm B} = 172(11)(5)_a {\rm MeV}$

- HQET obs. to first order in $1/m_{\rm b}$ renormalized NP'ly \checkmark
- all systematic errors included \checkmark
- for the first time in $N_{\rm f}=2$: power divergencies canceled NP'ly and continuum limit of certain observables has been taken in large volume \checkmark
- there are more observables to come
- only truncation error $O((\Lambda/m_b)^2)$ remain (but usually negligible)
- whole analysis still needs to be finalized
 - choose optimal set of kinematical parameters (in SF)
 - joint continuum extrapolation of HYP1 & HYP2 results (in LV)

...

Thanks go to:

B.Blossier, J.Bulava, M.Della Morte, M.Donnellan, N.Garron, J.Heitger, G.von Hippel, B.Leder, M.Marinkovic, S.Schäfer, H.Simma, R.Sommer, F.Virotta

P. Fritzsch

Lattice 2011, Lake Tahoe

▲ 돌 ▶ - ▲ 돌 ▶ -