Studying the gradient flow coupling in the SF

Patrick Fritzsch
Institut fir Physik, Humboldt-Universitat zu Berlin

IN COLLABORATION WITH ALBERTO RAMOS

BASED ON [ARXIV:1301.4388]

A

315! Int'l Symposium on Lattice Field Theory,
July 29 — August 03, 2013, Mainz, Germany

LATTICE
13

it
v

v
it

1



Motivation

Determine the energy scale of asymptotically free theories:
Basic ingredients:

'l Non-perturbative definition of the running coupling

|21 Safely bridge the gap between non-perturbative and
perturbative energy scales via step-scaling method

[Z] High-precision computation of the renormalized
coupling in the continuum limit

A—parameter

lattice as regulator

Schrédinger functional

Wilson flow

a
it
v
a

Uy
v

it



Motivation

Determine the energy scale of asymptotically free theories:

A—parameter

Basic ingredients:

'l Non-perturbative definition of the running coupling lattice as regulator

|21 Safely bridge the gap between non-perturbative and

perturbative energy scales via step-scaling method Schrédinger functional

[Z] High-precision computation of the renormalized

coupling in the continuum limit Wilson flow

Basic obstacles:

= CONTINUUM EXTRAPOLATION

cutoff effects «— lattice action; scaling behaviour; ...
= CONNECTION TO PT AT HIGH ENERGIES

knowledge of PT coeff.s depends on chosen scheme
= COMPUTATIONAL EFFORT

scaling of algorithm (HMC, ...) & autocorrelations; tuning +— L, a, mg, . . ., run parameters
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The gradient flow

(or Wilson flow)

flow By, (z, t) of SU(N) gauge fields driven by (¢ > 0):

= (z0,x)
) B
dBu(z,t) _ DG (a,t) | o _95vm(B]
dt 6B,
B, (z,t)|t=0 = Au(z), initial condition
Guv(z,t) = 8By, — OuByu + [By, B,
Properties:

D, =08, + [Bu, *]

= continuous smoothing of gauge fields with flow time ¢

= UV finite for t > 0, proven to all orders in PT for YM theory

= 3 continuum limit for purely gluonic observables since B, are renormalized fields
= excellent numerical precision
...

[Lischer,Weisz:'11]
e future applications, M.Lischer (plenary talk; tomorrow)

e A.Ramos, The gradient flow in a twisted box (Parallels 6E)
~ PFitzseh  affce20t3



The energy density

as most exploited quantity so far

[Lischer:'10]

for SU(N), D =4,V = oo

(B()= 1 (Guv (DG (1))

2
- 3(21(\;7#)21) x s ({1 +ergdis + 0(alis) }
u

8t is effective smoothing radius of Wilson flow
= automatic renormalized at ¢ > 0

and p=1/V/8¢
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The energy density

as most exploited quantity so far

(B()= 1 (Guv (DG (1))

[Lischer:'10]

for SU(N),D =4,V = oo
_ 3(N%Z-1)

2(8nt)?

X ng(N){l + c19is + O(gl%/ls)}
= V8t is effective smoothing radius of Wilson flow
= automatic renormalized at ¢ > 0

and pp = 1/V/8¢
= provides non-perturbative definition of a 'gradient flow’ coupling in finite-volume L3xT

tHE®)=N-3°(k), p'=V8t=cL, VNN ]
o N normalization factor such that g2 = g& + O(gg)

o ¢ = /8t/L effective smoothing range of Wilson flow

» in finite volume boundary conditions become important



The energy density

as most exploited quantity so far

[Lischer:'10]

for SU(N), D =4,V = 00
2 _

(EO)= 4 (G 06y 1) = o) x ghs {1+ eaghis + Olates) }

u

8t is effective smoothing radius of Wilson flow
= automatic renormalized at ¢ > 0

and p=1/V/8¢

= provides non-perturbative definition of a 'gradient flow’ coupling in finite-volume L3xT

tHE@t) =N -g*(u), p'=+V8t=cL, VNN ]

o N normalization factor such that g2 = g& + O(gg)

o ¢ = /8t/L effective smoothing range of Wilson flow

» in finite volume boundary conditions become important
lst

computation by [FodorEtAl:'12] using periodic boundary conditions
= PT in powers of gg, NOT gg: no universal 2-loop coeff. in S—function

absent by using Schrédinger functional boundary conditions
~ PFitzseh  affce20t3
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The Schrddinger fun

as finite-volume renormalization schel

m Euclidean partition function
Z= [ DU, ] e S0 = (0]~ TH pl0)

TxL3

with periodic BC in L?

and Dirichlet BC in T' (breaking translational inv. in time)

m renormalization scale p o< L=t (for step-scaling)
H ...

We have chosen vanishing boundary field: Cy, = C}, = 0
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The Schrédinger func

as finite-volume renormalization schem:

m Euclidean partition function
Z= [ DU, ] e S0 = (0]~ TH pl0)
TxL3
with periodic BC in L?

and Dirichlet BC in T' (breaking translational inv. in time)

m renormalization scale p o< L=t (for step-scaling)
H ...

We have chosen vanishing boundary field: Cy, = C}, = 0
for spatially Fourier transformed flow field the boundary conditions read
Vp:

Bk(pa xo’t)|20:0,T =0 5

pP#0:

while behaviour of time component, Bo, emerges through gauge fixing,
aOBO(pz Zo, t) |mo:0,T =0,
p=0:

By (0,20, )]

vo=0 = 0, 8oBo(O,mo,t)|wO:T =0.
~ PFitzseh  affce20t3

=)



Computing the norm

The energy density in perturbation the:

rescaling & expanding the gauge fields at ¢ > 0

oo
BH = Z Buangg P

n=1

(E(t, z0)) =

8

n

LO: &o(t,x0) = 2
expanding flow equation — tower of equations

vl

En(t,zo) , with &, = O(
0

70

9t
2

(0uBy10uBy 1 — 0uB10v By 1)



Computing the norm

The energy density in perturbation th

rescaling & expanding the gauge fields at ¢ > 0

oo
BH = Z angg P

n=1

(E(t, z0)) =

8

n

LO: &o(t,xo) = 2
expanding flow equation — tower of equations

vl

En(t,zo) , with &, = O(
0

70

9t
2

d -~
—B
dt

(0uBJ10uBy 1 — 0uBy10u By 1)
LO: Flow equation = Heat equation

B,,,1 = 0,0, By, 1 + gauge terms
11 (P, 0, t) = (—p? + 83) Bu,1(p, %0,1) |

Bu,1(p, 0, t)|,_o = Au(p, 70)

= heat kernels need to comply with boundary conditions — KD, KN7 KND, .




Computing the norm

The energy density in perturbation the:

rescaling & expanding the gauge fields at ¢ > 0

oo
BH = Z angg P

n=1

(E(t, z0)) =

8

n

LO: &o(t,xo) = 2
expanding flow equation — tower of equations

vl

En(t, o) , with &, = O(g2™)
0

20
2

d -~
—B
dt

(0uBJ10uBy 1 — 0uBy10u By 1)
LO: Flow equation = Heat equation

B,,,1 = 0,0, By, 1 + gauge terms
11 (P, 0, t) = (—p? + 83) Bu,1(p, %0,1) |

By (p, o, t)|,_o = Au(ps20)
= heat kernels need to comply with boundary conditions — KD, KN7 KND, oo
3
B, 1(x,z0,t) = /dx' /d:06 H KP(zi, 2}, ) KPN (x, 2}, ) A (x, zh, t)
i=1
1 LO

(E(t)) =&o(t) = 88/[heat kernel stuff|(AA)

= N(c¢,T/L,z0/T)



Computing the normali

The energy density in perturbation theory:

rescaling & expanding the gauge fields at ¢ > 0

oo
By = Z Buangg ’

(oo}
(E(t,0)) = > Enlt,x0) , with &, = O(gg™™)
n=1 n=0
2
LO: &o(t,w0) = (0B 10uBYy — 0uB 10, B 1)
expanding flow equation — tower of equations
LO: Flow equation = Heat equation '
d -
—B
dt

By,1 = 0,0, By,1 + gauge terms
11 (P w0, ) = (—p? 4 93) Bu1(p, 70, 1)

B;/,,l (pv xo, t) |t=0 = Au(pz $0)
= heat kernels need to comply with boundary conditions — KD, KN

ND
7K 9o

3
B, 1(x,z0,t) = /dx’ /d:06 H KP(zi, 2}, ) KPN (x, 2}, ) A (x, zh, t)
i=1

} LO

(E(t)) =&o(t) = 88/[heat kernel stuff|(AA)

computation of lattice norm along the same lines:

= N(c¢,T/L,z0/T)
= A(c
~ PFitzeh  affce20t3 «
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Non-perturbative te

|
1
defined by traditional SF coupling

Line of Constant Physics (LCP)

|

I

G2p(L1) =u=4484 and
for lattice sizes L/a = 6,8,10,12,16 with T = L

(Ng =2, Ly ~ 0.4fm)
m(Li1) =0,
Our observable, defined at o /T = 1/2, T/L = 1, thus reads

[ Q(u;c,a/L):[N—I(C,T/L,xo/T,a/L).t2<E(t,T/2))]'t‘iF;2L2/8 ]




Non-perturbative test

I Line of Constant Physics (LCP)

defined by traditional SF coupling (N =2, Ly ~ 0.41fm)

Gip(L1) =u=4484 and m(L1) =0,
for lattice sizes L/a = 6,8,10,12,16 with T = L

Our observable, defined at o /T = 1/2, T/L = 1, thus reads

[ Q(u;c,a/L):[N—l(c,T/L,xO/T,a/L).t2<E(t,T/2)>]tipcm/s ]
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The SF gradient flow

Results [arXiv:1301.4388]

Taking the continuum limit (c fixed) after including uncertainty from §§F
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The SF gradient flo

Cost figure, Variance

4 Relative variance of observable O |\

rel. variance of F
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The SF gradient flow

Cost figure, Variance

4 Relative variance of observable O |-,
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comparison Vg vs. Vasjan

rel. variance of F
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quenched SU (2) study [deDiviitisEtAI'95]:

Vas,an of traditional SF coupling
diverges
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The SF gradient flow

Cost figure, Autocorrelations [arXiv:1301.4388]
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The SF gradient flow

Cost figure, WF integrator

gain by using adaptive step-size integrator:

100,000 s —

x std. RK3
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Summary and outlo

= combination Lattice + SF + Wilson flow —

new NP definition of a running coupling in asymptotically free theories
— potentially smaller error on Age
= dependence on sea quark mass seems to be smaller than for ggF —
tuning to vanishing quark mass get'’s easier ?
m improved signal-to-noise ratio —» more useful in beyond the SM theories ?
= full setup should be chosen carefully: many things to investigate
e lattice action < csw, ct, Ct, ... / accuracy of conversion functions, . ..
° gél, with non-vanishing boundary fields /



= combination Lattice + SF + Wilson flow —

new NP definition of a running coupling in asymptotically free theories
— potentially smaller error on Age

= dependence on sea quark mass seems to be smaller than for ggF —

= improved signal-to-noise ratio —»

= full setup should be chosen carefully:

tuning to vanishing quark mass get'’s easier ?
more useful in beyond the SM theories ?
many things to investigate
e lattice action < csw, ct, Ct, ... / accuracy of conversion functions, ...
° g/él, with non-vanishing boundary fields /

Preparations for Ny = 3 simulations:

= investigating ¢t & ¢ dependence of géF

my sincere appologies for not talking about our
m step-scaling function in N¢ = 0 QCD at

Gap ~1.0,2.9
using both Wilson plaquette and tree-level improved Liischer-Weisz gauge action
Thanks go to:

for L/a = 8,10, 12, 16, 20,24, 32

A.Ramos, R.Sommer, U.Wolff, M.Lischer and many colleagues @DESY,HU
...and you for listening
~ PFitzseh  affce20t3



