Taking worm algorithms from
spin models to Abelian lattice
gauge theory

BY ULLI WOLFF

Humboldt University (Berlin), 15/01/2013



Subjects touched upon:
e Ising model = prototype model for

o almost all concepts in statistical physics, e.g.
phase transitions, universality....

o simplest lattice quantum field theory (imaginary time),
scalar particles, spontaneous symmetry breaking,
CCHiggS77

e Monte Carlo simulation, standard and worm
o 1in principle exact up to statistical errors, alternatives:
o exact solution in D <2 only (Onsager)

o systematic weak/strong coupling (= low/high tempera-
ture) expansion series (truncated!)

e Ising spin model — Ising lattice gauge theory
(gauge theory<particle physics, standard model)
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Ising model, our notation

e hypercubic torus, DD dimensions

e sites x, directions u

e spin configurations s={s(x)==+1}

Euclidean action/Hamiltonian:

=53 (oo
partition function:

Zoy= Z 1 C) N Zo(u,v) = Z S(u)s(v)e—S(s)

S

fundamental correlation:




Monte Carlo method
<O>:Z P(s) O(s) | example: O(s) = s(u)s(v)]
~—

S e—S(s)/ZO
o draw s s . s each with probability P(s)
e estimate (O) ~ %VZ;N:l O(s%)
e error x1/vVN

problem:

e 1o practicable method to independently draw with P(s) for
large lattices at 0~ Beritical

o generate s — sUTY in a Markov chain, disadvantage:
e autocorrelations, error has large (diverging) prefactor (CSD)
in addition:

(s(u)s(v)) ocexp [—|u—v|/€&], ([s(u)s(v)]?) =1, bad signal/noise
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All order strong coupling reformulation

20, 2 (, Z4...) have expansions in 3
convergent for all § in a finite volume

this includes S~ 3., &>1

but: contributions ~ 3" will be important!

[normal (truncated) s.c.: V — oo term by term in Z5/Z))

expand for each link independently:

o k
efr(a)o(a+) % o(2)o(z+ i) [below: k— k(z, 1) = ku(2)]

k=0

alternative form: e?7(®)7@+4) = cosh 3 > o, (tanhB)ro(x)fo(z+ )"

—> use expansion on each link 4+ sum over original spins
[trivial: even power of each s(x) required — constraints on {k(x, u)}
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The break-through of Prokof’ev and Svistunov

® Zp has been simulated as } ,_ in ancient history

|Berg & Forster, 1981]

Gy "

o k(x,u)—k(x,un)£1 on small (plaquette) loops
o additional steps
o not efficient, critical slowing down
P&S: enlarge the ensemble
2= Zo(u,v) =Y B TIWR] Ga=Uy.0a,,

geGo

e PS ‘worm’ algorithm works on Gs:

o k(u,p)— k(u,n)£1 combined with u— u+
lor k(u—fi,pu) > k(u—g,pn) 1 u—u— [

o a defect moves, constraint preserved

o (practically) no critical slowing down
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e more efficient moves Gy> g— g’ € Gy by cutting through G

e the intermediate configurations are extremely useful:

Gla)= (@) = =02 =1 O

<‘>96Q2

e all-z 2-point function = histogram u — v of sampled graphs



A very simple generalization [p >0, p(0)=1]:

Z= ZZguv (u—v) Z BRIk p~Hu — o)

gelo

e use a guess p(z)=~(o(x)o(0))
e then (0, ,_v), guess —exact answer

® (0,4-v)g~const =all bins u — v get~same statistics =
signal /noise z-independent!



Eor = log-deriv.
t = separation

Ising model on
L? = 64>
£=0.42
£=11.88...
(exact)

|details:
time-slices,
exp —cosh |
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Triviality of ¢*
A ‘QFT central limit theorem’....
e Aizenman’s rigorous proofs (bounds) for D >4 use
o our g€ G, representation for Ising

o plus: replica and percolation ideas

e Translate into MC estimators for any D (incl. D =4)

e Result
9r= _%(mR)D =227(X)(g.90eqx6: X €101}, z=mpL

(R+<> renormalized, X =1 <> 4 defects connected in a bond percolation cluster defined by k£ + k’ >0
e no numerical cancellation for connected yj4

e [cbowitz inequality manifest
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Wegner /Wilson lattice gauge theory
e lattice as before

e 7(2)spin field s(z) =41 — Z(2)-link field o(z, p) =0, (z) ==£1

e gradient coupling %(8us)2 =1—s(z)s(x+p4) —
curvature coupling [like Maxwell (9,4, — 9,A,)7:

parallel transport: e o o o o o

%[right o up —up o right]*=1— . I:I e o o o
o(z, po(x+f,v)o(z,v)o(x+0, p) o
=:1—o,(x, u,v) ‘plaquette’

X+u

O(X, 1)

_S(U) — 5 Z O-p(xa :LLaV)

T, uw<v
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local gauge invariance (group Z(2)# ©'si*s) [analog: A, — A, + 0,q/:

S(o)=8S(c"), o'(z,pu)=s(x)o(x,pu)s(z+ 1), s(x)==%1
Zy=3 ¢S, (0) = 3 Ofo)e S

e only invariant O(c) =O(o’) have (O) #£0 and are physical

o example: O(o)=[]. o(x;, ;) where links {(z;, i1;) } are a closed
curve on the lattice (Wilson loop)

e special case: straight line closing by periodicity (Polyakov line)

we split: = (20, %) (Z: D — 1 dimensional), «(z):=[[, oo(z),

(m(z)) =0 (by symmetry), (7(z)m(y))=G(Z —¥)

e confined (disordered phase): ‘area law’: G(Z) oc e K LolZ|

e K generalizes 1/&, mass gap
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Worm — jellyfish (Irukandji?)

Zy=7) ... — all order graph expansion strictly analogous to spin case

expand: e”7? =cosh 33" tanhBo,)", n—n(x, p,v)=n,.(x)

n=0,1 (

for each plaquette config. {n(z, u,v)=0,1} we sum over o(x, i)
= constraint on n(x, u,v), in words:
at each link an even # of n(x, u,v) =1 must touch

subset of n =1 plaquettes which form a closed surface
|generalized: even branchings, disconnected components...|

Zo= Z (tanhﬁ)zfc,u<V”W(m)5[8;nw]

n

a;,kbn,ul/ H 58*nuy,even

updates preserving constraint, cube flip (CF): n — 1 — n on
plaquettes forming a 3-cube (in D dim). — works, but CSD
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Attempts to generalize PS idea
e — allow surfaces with defects

e which kind”? smallest possible?

Zi=> e 5N oz, p)™m,  j(x,pn)e{0,1}
o T

e symmetries = Z;# 0 only if:
o 0;ju(x)=0mod 2 [like k(x, ) for Gy graphs|
o 4 has zero winding number in all dirs

o Wilson loops, pairs of Pol. lines, or very irregular net-
works

e c.f. spin model: global Z(2) symm. = even number of defects

o discrete, two = smallest nontrivial set
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2= ZiR(j,) =y (tanhB) =" R }m,)
7 n

e correct algos, but we could not find an R that keeps defect set
'small” and yields efficient dynamics; one (of many) attempt

RI(j) = "Enien

e — concentrate on improving (7(Z)mw(0)) (Polyakov)
e Ju. current corresponding to two Polyakov lines

o shift of lines + flip ‘ladder’ of n(x, u,v)

o plus CF for ergodicity (done around defect lines)
o take Roce ®l®=7 with expected area law

same improvement of the correlator as in the Ising model
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Conclusions

PS: very simple clever idea, could have been done long ago

not covered here: successful generalizations to O(N) sigma
models (N-vector model), CP(/N) models and 2D fermions

not just a new algorithm, but simulation of nontrivially trans-
formed model (‘partial duality transformation’)

merits may depend on observables of interest
generalization to gauge models very nontrivial (as with clusters)
reason different geometry:

o configs: loops — surfaces

o defects: points — loops [much ‘larger’ manifold|

not covered here: the high precision estimates of the string ten-
sion allow for interesting checks of the low energy effective string
model description of gauge theories (Symanzik, Liischer)

did you see the jellyfish?
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