Simulated random surfaces and effective string models in 3d Z(2)gauge theory

BY ULLI WOLFF AND TOMASZ KORZEC, HU BERLIN

LAT13, Johannes Gutenberg U. Mainz, July 29, 2013

Background

Z(2) Wilson LGT on a $L_0 \times L \times L$ lattice:

$$Z = \sum_{\{\sigma_{\mu}(x) = \pm 1\}} e^{\beta \sum_{x, \mu < \nu} \sigma_{\mu\nu}(x)}$$

Polyakov line correlation:

$$G(\vec{x}) = \langle \pi(\vec{x}) \pi(\vec{0}) \rangle, \quad \pi(\vec{x}) = \prod_{x_0=0}^{L_0-1} \sigma_0(x_0, \vec{x})$$

Random surface simulation, line defects at \vec{u} and \vec{v} , wandering over the lattice (\rightarrow previous talk by Tomasz Korzec)

$$G(\vec{x}) = \rho(\vec{x}) \frac{\langle \langle \delta_{\vec{x},\vec{u}-\vec{v}} \rangle \rangle}{\langle \langle \delta_{\vec{u},\vec{v}} \rangle \rangle}$$

- confined phase, build suitable ρ such that $\langle \langle \delta_{\vec{x},\vec{u}-\vec{v}} \rangle \rangle$ varies little
- signal/noise ratio \approx independent of separation \vec{x}
- critical slowing down $z \approx 2$ [unfortunately]

Potential and string states

Polyakov correlation \sim partition function with static charges

$$G(\vec{x}) = \sum_{n \ge 0} w_n \mathrm{e}^{-V_n(\vec{x}) L_0} \simeq w_0 \, \mathrm{e}^{-V_0(\vec{x}) L_0} \quad (L_0 \longrightarrow \infty)$$

 $e^{-V_n(\vec{x})} \leftrightarrow$ transfer matrix in 0-direction with static charges, distance $\vec{x}, w_n \in \mathbb{N}$ alternative interpretation:

$$\sum_{x_2=0}^{L-1} G(x_1, x_2) = \sum_{n \ge 0} |v_n|^2 e^{-\tilde{E}_n x_1} \simeq |v_0|^2 e^{-\tilde{E}_0 x_1} \quad (x_1, L \longrightarrow \infty)$$

 $e^{-\tilde{E}_n} \leftrightarrow \text{transfer matrix in 1-direction, flux-state of length } L_0$, at zero momentum p_2 Lüscher, Weisz, 2004, have shown:

$$G(\vec{x}) = \sum_{n \ge 0} |v_n|^2 2r \left(\frac{\tilde{E}_n}{2\pi r}\right)^{\frac{1}{2}(D-1)} K_{\frac{1}{2}(D-3)}(\tilde{E}_n r) \quad (r = |\vec{x}|)$$

arbitrary D, continuum, K_{\dots} =Bessel function, key: Radon transform

Effective string theory

- effective degrees of freedom: 'vibrating' surface bounded by the two Polyakov lines \rightarrow displacement field
- terms in effective action organized by dimension, powers of ∂_{μ} (non-renorm.)
- constrained by symmetry and open/closed string duality

 \longrightarrow leads to asymptotic large L_0 -expansion:

$$\tilde{E}_0 = \sigma L_0 - \frac{\pi}{6L_0} - \frac{\pi^2}{72\sigma L_0^3} - \frac{\pi^3}{432\sigma^2 L_0^5} + \mathcal{O}(L_0^{-7})$$

- no free constants to this order (D=3, L"uscher, Weisz, Aharony, Karzbrun)
- dual to (equivalent) expansion of $V_0(r)$ for $r \to \infty$

all order formula from Nambu Goto action (= area of the surface):

$$z^2 = s^2 \left(1 - \frac{1}{3s}\right), \quad s = \frac{\sigma L_0^2}{\pi}, \quad z = \frac{\tilde{E}_0 L_0}{\pi}, \quad s, z \to \infty$$

- NG leads to above terms and beyond; ultimately deviations expected!
- We have precise data for \tilde{E}_0 at many L_0 and L/a = 64, 128

Data ... glance only ...

$\beta = 0.73107$			$\beta = 0.75146$		
L = 64	$\sigma \approx 0.044$		$L{=}128$	$\sigma \approx 0.011$	
L_0	\tilde{E}_0	$\frac{\text{stat}}{10^{6} \text{its}}$	L_0	$ ilde{E}_0$	$\frac{\text{stat}}{10^6 \text{its}}$
6	0.160286(15)	12	12	0.080998(6)	85
8	0.279241(21)	12	16	0.139831(9)	74
10	0.384096(28)	12	20	0.192035(20)	33
12	0.482528(36)	12	24	0.241174(30)	33
14	0.577660(47)	12	28	0.288694(43)	32
16	0.670782(60)	12	32	0.335173(39)	72
18	0.762774(77)	12	36	0.381209(55)	69
20	0.853968(98)	12	40	0.426695(82)	58
22	0.94450(12)	12	44	0.47173(11)	57
24	1.03480(14)	12	48	0.51682(14)	54
26	1.12416(16)	12	52	0.56187(18)	52
28	1.21429(19)	12	56	0.60661(24)	48

Data analysis

Nambu Goto fit:
$$\frac{\tilde{E}_0^2}{L_0^2} = \sigma^2 + c_1 \frac{1}{L_0^2}, \quad \text{NG} \iff r = \left(\frac{3c_1}{\pi\sigma}\right)^2 = 1$$

- NG behavior compatible with our data
- Are we also testing the (presumably) non-universal term $\propto 1/L_0^7$ here??

$$\frac{\text{error}}{\text{term}} = \frac{\delta \tilde{E}_0}{5\pi^4/(10368\sigma^3 L_0^7)} = \frac{2 \times 10^{-5}}{10^{-6}} \qquad (\text{at } L_0 = 20)$$

while $\pi^3/(432\sigma^2 L_0^5) = 1.8 \times 10^{-5}, \ \pi^2/(72\sigma L_0^3) = 3.8 \times 10^{-4}$

$$\tilde{E}_0 = \sigma L_0 - \frac{\pi}{6L_0} - \frac{\pi^2}{72\sigma L_0^3} - \frac{\pi^3}{432\sigma^2 L_0^5} + \mathcal{O}(L_0^{-7})$$

Conclusions

- all order strong coupling simulation of Z(2) gauge theory in D=3
- precise estimation of ground state energy of string state possible
 - easy isolation of ground state at large separation
- excellent agreement with effective string theory
 - earlier small mismatch = lattice artefact, gone as $a \rightarrow a/2$
- consistent with Nambu Goto action up to (incl.) L_0^{-5} term
 - these term are expected for all acceptable string actions
- terms L_0^{-7} and beyond still cannot be disentangled