# Worm algorithms: from loops to surfaces, from spin models to gauge theories

#### Sign2014 Darmstadt, Feb. 18, 2014

BY ULLI WOLFF

Humboldt Universität, Berlin

### Spin models as loop gases

 $\Rightarrow$ Principle demonstrated here for Ising on a D dimensional lattice

general correlation:

$$\langle \prod_{x} \sigma(x)^{q(x)} \rangle = \frac{Z[q]}{Z[0]}, \quad \sigma: \text{Ising spin} \pm 1, \qquad q(x) \in \{0, 1\}$$

example:

$$\langle \sigma(u)\sigma(v)\rangle \qquad \leftrightarrow \qquad q = q_{u,v}, \quad q_{u,v}(x) = \delta_{x,u} + \delta_{x,v}$$

'partition function with charges (point defects)':

$$Z[q] = \sum_{\sigma} e^{\beta \sum_{x, \mu} \sigma(x) \sigma(x+\hat{\mu})} \prod_{x} \sigma(x)^{q(x)}$$

• global Z(2) symmetry  $\Rightarrow Z[q] = 0$  unless  $\sum_{x} q(x) = \text{even (constraint)}$ 

• use: 
$$e^{\beta\sigma(x)\sigma(x+\hat{\mu})} = c \sum_{k=0,1} t^k [\sigma(x)\sigma(x+\hat{\mu})]^k$$
,  $c = \cosh\beta, t = \tanh\beta$ 

• insert on each link  $\Rightarrow \{k(x, \mu) \equiv k_{\mu}(x) = 0, 1\}$ , then sum-out  $\sigma$ 

(dropping factor  $c^{\# \text{links}}$ ):

$$Z[q] = \sum_{k} t^{\sum_{x,\mu} k(x,\mu)} \delta[\partial^*_{\mu} k_{\mu} - q]$$

• constraint  $\delta[\ldots]$ :  $\sum_{\mu} (k(x,\mu) - k(x - \hat{\mu}, \mu)) \equiv q(x) \pmod{2}$ 

 $\rightarrow$ loop graphs, example with  $q_{u,v}$ :



defect ensemble:

$$\mathcal{Z} = \sum_{q} R[q] Z[q] = \sum_{k,q} R[q] t^{\sum_{x,\mu} k(x,\mu)} \delta[\partial_{\mu}^{*} k_{\mu} - q]$$

- a priori free choice of  $R[q] \ge 0$  to define  $\mathcal{Z}$  ensemble  $\rightarrow \langle \langle ... \rangle \rangle$
- only even q appear ( $\leftrightarrow$  original symmetry)

observables now by counting:

$$\langle \sigma(u)\sigma(v)\rangle = \frac{\langle\langle \delta[\partial_{\mu}^{*}k_{\mu} - q_{u,v}]\rangle\rangle}{\langle\langle \delta[\partial_{\mu}^{*}k_{\mu}]\rangle\rangle} \times \frac{R[0]}{R[q_{u,v}]}$$

or

$$\frac{\left\langle \left\langle \delta[\partial_{\mu}^{*}k_{\mu}]\sum_{x,\mu}k(x,\mu)\right\rangle \right\rangle}{\left\langle \left\langle \delta[\partial_{\mu}^{*}k_{\mu}]\right\rangle \right\rangle} \leftrightarrow \text{internal energy}$$

side-remark: duality transformation  $\leftrightarrow$ solve constraint  $\partial_{\mu}^* k_{\mu} = 0$ :  $k_{\mu} = \varepsilon_{\mu\nu\lambda_1...\lambda_{D-2}} \partial_{\nu}^* \sigma_{\lambda_1...\lambda_{D-2}}$  with 'free'  $\sigma$  $\sigma$ : spin in D = 2 (self-dual), gauge in D = 3,...This step is missing for the loop ensemble....

- disjoint classes of q,  $\sum_{x} q(x) = 0, 2, 4, 6, ...$
- A: restrict (R > 0) to class 0:
  - $\circ$  'vacuum' graphs only
  - $\circ$  -local updates (flip  $k(x,\mu))$  around plaquettes
  - critical slowing down, few observables accessible
- B: allow 0 and 2  $(q \equiv q_{u,v} \text{ with arbitrary } u, v; 0 \text{ for } u = v)$ 
  - $\circ$  local moves of u or v (k 'follows' due to constraint)
  - almost no csd  $\leftarrow$  excursion to large phase space advantageous! →Prokof'ev and Svistunov, 2001
  - 2-point function naturally accessible
  - **'perfect' estimator** with  $R[q_{u,v}] = \rho^{-1}(u-v)$ favoring large separations

generalizations proven: Potts, XY,  $\mathcal{O}(N)$  nonlinear  $\sigma\text{-models},~\mathcal{CP}(N)$  models

not yet: SU(N) spins  $(SU(N) \times SU(N)$  invariant principle chiral models)

#### Gauge models as surface gases

 $\Rightarrow$ Principle demo here for Z(2) gauge model on a *D* dimensional lattice [expect  $\rightarrow$  U(1) obvious, non-Abelian, SU(3): another story...] general correlation of gauge field  $\sigma(x, \mu) = \pm 1$ :

$$\langle \prod_{x\mu} \sigma(x,\mu)^{j(x,\mu)} \rangle = \frac{Z[j]}{Z[0]}, \quad \sigma(x,\mu): \text{Ising gauge} \pm 1, \qquad \text{flux } j(x,\mu) \in \{0,1\}$$

example, Wilson loop

$$\langle \sigma[\gamma] \rangle \qquad \leftrightarrow \qquad j = j^{(\gamma)}, \quad j^{(\gamma)}(x,\mu) = \sum_{y\nu \in \gamma} \delta_{x\mu,y\nu}$$

'partition function with currents (line defects)':

$$Z[j] = \sum_{\sigma} e^{\beta \sum_{p} \sigma_{p}(x)} \prod_{x\mu} \sigma(x,\mu)^{j(x,\mu)} \qquad p \leftrightarrow \text{plaquettes}$$

- local Z(2) symmetry  $\Rightarrow Z[j] = 0$  unless  $\partial^*_{\mu} j_{\mu}(x) = 0 \pmod{2}$
- center symm. on torus  $\Rightarrow Z[j] = 0$  unless  $\sum_{x, x_{\mu} \text{ fixed }} j_{\mu}(x) = \text{even}$
- use:  $e^{\beta\sigma_p} = c \sum_{k=0,1} t^k [\sigma(l_1)\sigma(l_2)\sigma(l_3)\sigma(l_4)]^k$ ,  $c = \cosh\beta, t = \tanh\beta$
- insert on each plaq.  $\Rightarrow \{k(x; \mu, \nu) \equiv k_{\mu\nu}(x) = 0, 1\}$ , then sum-out  $\sigma$

(dropping factor  $c^{\# plaqs}$ ):

$$Z[j] = \sum_{k} t^{\sum_{x,\mu} k(x;\mu,\nu)} \delta[\partial_{\mu}^{*} k_{\mu\nu} - j_{\nu}]$$

• constraint  $\delta[\ldots]$ :  $\sum_{\mu} (k(x;\mu,\nu) - k(x-\hat{\mu};\mu,\nu)) \equiv j(x,\nu) \pmod{2}$ 

 $\rightarrow$ surface graphs, 3D example with  $j \leftrightarrow 2$  Polyakov lines:



defect ensemble:

$$\mathcal{Z} = \sum_{j} R[j] Z[j] = \sum_{k,j} R[j] t^{\sum_{x,\mu,\nu} k(x;\mu,\nu)} \delta[\partial_{\mu}^{*} k_{\mu\nu} - j_{\nu}]$$

now the analogy fades a bit.... which j do we want to allow (choice of R)??

- allowed:  $j(x, \mu)$  divergence free (e.g. closed loop) + center symmetry (no odd winding number)
- !: include small defect networks, returning to vacuum sometimes unsuccessful experiments with regard to csd in D = 3 at  $\beta_c$ :
  - $R[j] \propto e^{-\alpha \sum_{x,\mu} j(x,\mu)} \leftrightarrow \text{chemical potential to control defects}$
  - either: single (self-avoiding) closed loop, or: arbitrary allowed j
  - legal algos, correct,  $\alpha$  does the job, but NOT FAST at  $\beta_c$
  - there are a lot more loop than point defects

moreover:

- ensemble of irregular fuzzy loop(s): can they be connected to 'useful' observables?
- e.g. string tension from fluctuating Wilson loops (not rectangular)?

### **Perfect Polyakov line correlation**

- csd cannot be overcome at the moment  $(z \approx 2)$
- but improved observables available in

$$\mathcal{Z} = \sum_{\vec{u}\,,\vec{v}\,,k} R(\vec{u} - \vec{v}\,) t^{\sum_{x,\mu,\nu} k(x;\mu,\nu)} \delta \Big[ \partial^*_{\mu} k_{\mu\nu} - j^{(\vec{u}\,,\vec{v}\,)}_{\nu} \Big]$$

•  $j^{(\vec{u},\vec{v})}$  defect  $\leftrightarrow 2$  lines in 0-direction at  $\vec{u}$  and  $\vec{v}$  in (D-1)-space

$$\langle \pi(\vec{x}) \pi(\vec{0}) \rangle = R^{-1}(\vec{x}) \frac{\langle \langle \delta_{\vec{x},\vec{u}-\vec{v}} \rangle \rangle}{\langle \langle \delta_{\vec{u},\vec{v}} \rangle \rangle}$$

- update steps amalgam of:
  - $\circ \quad \text{flip } k(x;\mu,\nu) \to 1-k(x;\mu,\nu) \text{ around 3-cubes, good acceptance}$
  - $\circ$  shift lines: propose  $\vec{u} \rightarrow \vec{u} \pm \hat{i}$  & flip 'ladder' of plaquettes
  - ok acceptance up to  $64^3$  ( $\beta_c$ ) and  $48 \times 64^2$  ( $\beta < \beta_c$ )
  - $\circ \quad \text{non-rejecting shifts: different ensemble } \mathcal{Z}' \neq \mathcal{Z}$  weight of vacuum graphs unchanged
- line-shift step can change wrapping number of surfaces  $\leftrightarrow Z_{\text{twisted bc}}/Z = \langle \langle .... \rangle \rangle$  well measurable



- $\rightarrow$  opportunity to precision match gauge theory  $\leftrightarrow$  effective string model
- details: see my lat13 talk

## A few conclusions

- worm or strong coupling graph simulation method
  - $\circ$  straight-forward to generalize spins  $\rightarrow$  abelian gauge model
  - $\circ$  not so efficient for CSD (do we miss the essential trick?)
  - $\circ$  line defects different story from point defects....
- taylor ensemble to observables
  - this does generalize successfully
  - Polyakov loop correlation decay traced over many oders
- fermions: no news, see sign 2012