
Instructions for the Z0 Praktikum 
M. zur Nedden, R D Parsons, U. Schwanke, F. Peri  

This experiment is dedicated to the analysis of a subset of data recorded with the L3 
experiment during 1992/1993, exploiting electron-positron collisions generated by LEP 
(Large Electron Positron Collider) at CERN. It allows to familiarise with the statistical 
methods employed by experimental physicists in the field of particle physics and to 
become acquainted with basic programming techniques useful inside and outside the 
field. 


The experiment takes place on a computer. The data will be analysed by using a program 
written in Python. A basic version of the program will be passed to the students that will 
need to modify it in order to perform various measurements. Familiarity with Python is an 
advantage. Some knowledge of elementary particle physics is assumed. 


Goal of the experiment 


Measurement of the cross section of the Z-resonance, determination of the mass and 
decay time of the Z boson (MZ,τZ), the electroweak mixing angle (sinθW), the number of 
quark colours. Improved knowledge in statistics, error handling and programming. 


1 Physics of the Z-resonance 


The following provides a short summary of the physics involving Z bosons and of the 
experimental apparatus used for the data taking. More details can be found in the 
literature suggested at: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/
z0resonance 


The Z resonance in electron-positron collisions 


The Standard Model of particle physics predicts that particles interact through the 
exchange of other particles, known as bosons. For example, the electromagnetic force is 
mediated by the exchange of photons, while the weak interactions, responsible for 
processes as the beta-decays, are mediated by the exchange of W and Z bosons. These 
two forces can be actually described by the same theory, known as the electroweak 
model. A very important parameter of such model is the electroweak mixing angle, or 
Weinberg angle sin θW, which gives information about how the two forces are mixed 
together. Unfortunately this angle cannot be predicted but must be measured 
experimentally. Similarly, parameters related to fundamental properties of the Z boson, as 
its mass, decay width, production cross section, cannot be predicted and need to be 
measured too. The Z boson can be easily produced by annihilating electrons and 
positrons at energies close to the mass of the boson itself, 91 GeV. Figure 1 shows the 
production cross section for the Z boson measured by the LEP experiments and some of 
the related parameters. The cross section increases rapidly as the energy gets closer to 
91 GeV, and decreases shortly after. This phenomenon is known as resonance. The 
production and decay of the Z boson is represented by the Feynman diagram of Figure 2. 
The Z boson is unstable and decays into fermions, either leptons or quarks. Due to the 
properties of the strong interaction, quarks quickly convert into other particles, producing 
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cones of hadrons called jets. In principle, the electrons could convert to photons but the 
cross section of such a process is very small at these energies. 


The decay width of the Z boson is inversely proportional to its lifetime and it can be 
determined by summing over the partial widths of the possible decays. 


  

Figure 1: Combined cross section of the Z boson production from the LEP experiments.  
Figure 2: Schematic representation of Z boson production and decay


The cross section can be described by using a probability density function known as 
Breit-Wigner distribution: 


where MZ is the mass of the Z boson (the position of the maximum), s is the center of 
mass energy of the interaction, ΓZ is the decay width and σ0 is the cross section at the 

maximum1. The cross section at the maximum is: 
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Figure 1: Combined cross section of the Z 
boson production from the LEP experiments. 

Figure 2: Schematic representation of the 
production and decay of the Z boson

ΓZ = ∑
f

ΓZ→f f = 1
τZ

( ∼ 2.5 GeV ) (1)
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where Γi and Γf are the initial and final state partial widths of the fermions. They are a 
measure of the coupling of the Z boson to the respective fermions and are a function of 
the electroweak mixing angle: 


where Qf is the charge of the fermion under consideration and GF = 1.166 ⋅ 10−5 GeV−2 

is the Fermi constant. The charge is 0 for the three neutrinos, ±1 for the charged leptons, 
+2/3 for the u ,c quarks, and −1/3 for the d, s and b quarks2. The total width for the 
hadronic decays can be obtained by multiplying the widths of the quark decays by a 
colour factor: 


The top quark is excluded by the equation because it is heavier than the Z boson and 
therefore it cannot be produced from its decay. Finally, the total width of the Z resonance 
is obtained by summing the hadronic width with the ones of the neutrinos and leptons: 


1 This PDF is derived from the matrix element that regulates the process and in particular 
from the propagator of the Z boson. The real shape of the peak is actually a little bit flatter 
due to QED effects, as the radiation of photons by fermions. 


2 It is therefore obvious that there are only four distinct widths: the one of neutrinos, the 
one of leptons, the one of up-type quarks and the one of down-type quarks 


    

LEP and the L3 experiment 


The LEP accelerator produced electron-positron collisions which were then detected by 
one of the four detectors (OPAL, DELPHI, ALEPH and L3). The data analysed in this 
experiment correspond to the ones collected by the L3 detector. A schematic 
representation of the detector is shown in Figure 3.  
The detector is composed by multiple layers, able to detect various features of the 
particles produced in the collision: 


-  The vertex chamber (to measure the trajectory of the particles)


- The electromagnetic and hadronic calorimeters (to measure the energy of leptons and 
hadrons) 
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- The muon chamber (to gather further information about muons, that are minimum 
ionising particles and able to escape the previous layers of the detector) 


- Magnet (to bend the trajectory of the charged particles and measure their momentum)  

A typical event in which a Z resonance is produced is shown in Figure 4. The plot on the 
left correspond to a decay into muons, the one on the right to a decay into quarks. In the 
first case, two muons (green lines) are produced and detected by the muon chambers. 
Their trajectory is also bent by the magnetic field but their momentum is very large 
therefore the effect is not visible by eye. A small amount of energy is also deposited in the 
calorimeters. In the case of a decay into jets, two large groups of hadrons are produced in 
opposite directions. Their trajectory is measured by the inner part of L3, while their energy 
is measured by the calorimeters. 


 

Figure 3: Schematic of the L3 detector
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Figure 4: Production of a Z resonance decaying into muons (left) or jets (right) 


2. Technical details 


The test will be executed on a computer of the Experimental Particle Physics group. The 
account name to be used to access such computer is “fprakt”. The password will be 
given by the supervisor. It is also possible to run the program on a personal computer. In 
this case it is necessary to have a working installation Python and Jupyter. Full lists of the 
python modules required will be provided by the supervisor. Usually when installing 
python and its associated libraries it is easiest to use the anaconda package (https://
www.anaconda.com).


Setting up the software 


After logging in, open the terminal and create a directory to house your code and enter 
the folder: 

- mkdir z0 
- cd z0 

Download the needed code from https://www.physik.hu-berlin.de/de/eephys/teaching/
lab/ z0resonance and untar it with

 
- tar zxfv z0.tgz 

The resulting folder contains 2 files of simulated data at 91 GeV 
“hadrons.dat”,”muons.dat”, 3 real datasets collected at different energies “89GeV.dat”, 
“91GeV.dat”, “93GeV.dat” and a Python Jupyter notebook “praktikum.ipynb” which 
contains the code used for the test. An introduction on how to use it will be given by the 
supervisor. The code is however heavily commented and it should be mostly self-
explanatory. 


The datasets are organised as follows: one line with the number of particles produced for 
each event followed by one line for each of the particles in the event. Such lines contain 
the x,y,z components of the particle momenta and their mass.


 
The program is organised as follows: the first parts initialise some useful functions. In 
particular the “read_events” function is the one used to loop through all the input files and 
retrieve the information about the particles. The information inside the input files is only 
the px,py,pz,m of the particles, therefore another couple of variables are added. The 
information about the particles is then stored within the program to be used later.


The second part of the program uses such functions to loop through the particle 
information, create some histograms and compare them. You can create any kind of 
histogram, from distributions of particle properties to global event properties, and apply 
selection on the variables you want to save so as to see how the distributions change 
before and after such selection. 


By counting the number of events in the histogram without selection and in the ones on 
which the selection is applied you can obtain the efficiency of the selection and from 
there the cross section of the process.
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The following part allows you to fit the obtained cross sections with a Breit-Wigner PDF. 
The result of the fit can be used to compute the various properties of the Z boson, the 
Weinberg angle and the number of colours using the information and formulae mentioned 
in this document. 


3 Execution of the test 


The first part of the test is dedicated to the determination of the parameters of the Z-
resonance: its mass, cross section at peak and decay width. The available datasets 
correspond to three distinct center-of-mass energies (89.48, 91.33 and 93.02 GeV) and 
include all possible decay processes for the Z boson. The Monte-Carlo samples have 
been generated at 91 GeV and include the decay into hadrons or the one into muons. By 
comparing MC and data events it is possible to identify the cuts which are most adapt to 
separate hadronic and muonic decays from the others. It is then possible to compute the 
cross section of such decays at the three available energies and fit the Breit-Wigner PDF 
on them, extrapolating the parameters. By using this result it is possible to compute the 
hadronic and leptonic partial widths and finally the Weinberg angle and the number of 
colours parameter. 


Extrapolation of the parameters from the hadronic decays 


The first thing to do is to identify the best criteria to distinguish between hadronic and 
non- hadronic decays. A set of useful cuts is included in the literature at https://
www.physik.hu- berlin.de/de/eephys/teaching/lab/z0resonance. You can apply those and 
compare the data and MC distributions to see if they are sufficient to exclude all other 
backgrounds or if you need to apply a stricter selection. It is important to select the 
maximum amount possible of good (hadronic) events, while excluding the maximum 
amount possible of non-hadronic events. 


The selection of the events is done in the “read_events” part of the Python notebook. 
Modify it accordingly to your preference. Then read in the datasets, apply your chosen 
events selection and calculate how many events of the hadronic MC are filled in the 
histograms passing the hadronic selection. The ratio between this number and the total 
number of events in the MC file gives you the efficiency of the selection. 


Now compare the distribution you obtain for some kinematic variable produced by MC 
events and by data events, for the three centre of mass energies3. Do you see any 
difference? Do you think part of this difference is coming from additional background 
events in the datasets? If yes, estimate how many background events are passing the 
cut. Finally the total number of hadronic events in data can be computed with the 
following formula: 
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where is the number of data events passing the cut, is the estimated number of 
background events and ε is the efficiency computed on the hadronic MC events. We are 
however interested in converting the number of events into a cross section. This is 
generally done with the following formula: 


where L is the “integrated luminosity”, a measure of the total number of events delivered 
by the accelerator and recorded by L3 during the data acquisition period. Details 
regarding its measurement can be found in literature. A is the acceptance of the detector. 
The integrated luminosity for the three datasets is: 


89.48 GeV : 179.3 nb−1 
91.33 GeV : 135.9 nb−1  
93.02 GeV : 151.1 nb−1 

 

All values have a relative uncertainty of 1%.    


However, we compute the efficiency and acceptance at the same time by extrapolating it 
from MC events, therefore the formula can be simplified as:


This allows you to compute three distinct values for the hadronic cross section, for each 
of the centre of mass energies. The next step is to fit these values to extrapolate the Z-
resonance parameters. As mentioned above, the Breit-Wigner PDF doesn’t take into 
account QED effects. The function used for the fit is therefore a convolution between the 
Breit-Wigner and a term that estimates the probability of a photon emission that reduces 
the centre of mass energy from s to s’. 


The “r” PDF is defined in the program as “radcorr” and it depends on the fine structure 
constant, on the mass of the electron and other QED properties. Figure 1 shows the effect 
of the QED corrections on the Breit-Wigner. The cross section at the maximum is reduced 
by approximately 30%. 


The parameters returned by the fit are the cross section at the maximum of the Breit-
Wigner (Born), the decay width of the Z boson and its mass. You can set within the code 
the initial values used in the fit. How does the fit behave? What is the Chi2 of the result 
and the number of degrees of freedom? Together with the cross sections at the three 
energies you also have to provide the errors. Compute the error propagation on the cross 
section formula in order to estimate the statistical error. What about systematical errors? 

However, we compute the efficiency and acceptance at the same time by extrapolating it from 
MC events, therefore the formula can be simplified as:


This allows you to compute three distinct values for the hadronic cross section, for each of the 
center-of-mass energies. The next step is to fit these values to extrapolate the Z-resonance 
parameters. As mentioned above, the Breit-Wigner PDF doesn’t take into account QED effects. 
The function used for the fit is therefore a convolution between the Breit-Wigner and a term that 
estimates the probability of a photon emission that reduces the center-of-mass energy from s to 
s’. 


The “r” PDF is defined in the program as “radcorr” and it depends on the fine structure constant, 
on the mass of the electron and other QED properties. Figure 1 shows the effect of the QED 
corrections on the Breit-Wigner. The cross section at the maximum is reduced of approximately 
30%. 

The parameters returned by the fit are the cross section at maximum of the Breit-Wigner (Born), 
the decay width of the Z boson and its mass. You can use the option SetParameters to initialise 
the values used by the fitting algorithm. How does the fit behave? What is the Chi2 of the result? 
and the number of degrees of freedom? Together with the cross sections at the three energies you 
also have to provide the errors. Compute the error propagation on the cross section formula in 
order to estimate the statistical error. What about systematical errors? You can obtain those by 
varying the cuts performed to select the hadronic decays. Estimate them and include them in the 
fit. 


Extrapolation of the parameters from the muonic decays 

Repeat the experiment with the muonic decays. Again the appropriate cuts can be found in 
literature bu you can add more if you like. Compute the cross section, mass and width of the Z 
resonance with the muon selection. How do the values compare to the hadronic ones? Try to fix 
the gamma and mass parameters of the fit to the ones obtained from the hadronic decay and fit 
only the cross section. Does the result change? why?


Determination of the partial width of the electron decay and of the Weinberg angle 

By using the equations above compute the partial width of the electron decay in two ways:

1. by using the parameters extrapolated with the muonic decay and Equation 3


σ =
Ncut

tot − Ncut
bkg

ϵ ⋅ L
(11)

σ(s)QED = ∫
s

0
σ(s) ⋅ r(s, s′ �) ds′� (12)

However, we compute the efficiency and acceptance at the same time by extrapolating it from 
MC events, therefore the formula can be simplified as:


This allows you to compute three distinct values for the hadronic cross section, for each of the 
center-of-mass energies. The next step is to fit these values to extrapolate the Z-resonance 
parameters. As mentioned above, the Breit-Wigner PDF doesn’t take into account QED effects. 
The function used for the fit is therefore a convolution between the Breit-Wigner and a term that 
estimates the probability of a photon emission that reduces the center-of-mass energy from s to 
s’. 


The “r” PDF is defined in the program as “radcorr” and it depends on the fine structure constant, 
on the mass of the electron and other QED properties. Figure 1 shows the effect of the QED 
corrections on the Breit-Wigner. The cross section at the maximum is reduced of approximately 
30%. 

The parameters returned by the fit are the cross section at maximum of the Breit-Wigner (Born), 
the decay width of the Z boson and its mass. You can use the option SetParameters to initialise 
the values used by the fitting algorithm. How does the fit behave? What is the Chi2 of the result? 
and the number of degrees of freedom? Together with the cross sections at the three energies you 
also have to provide the errors. Compute the error propagation on the cross section formula in 
order to estimate the statistical error. What about systematical errors? You can obtain those by 
varying the cuts performed to select the hadronic decays. Estimate them and include them in the 
fit. 


Extrapolation of the parameters from the muonic decays 

Repeat the experiment with the muonic decays. Again the appropriate cuts can be found in 
literature bu you can add more if you like. Compute the cross section, mass and width of the Z 
resonance with the muon selection. How do the values compare to the hadronic ones? Try to fix 
the gamma and mass parameters of the fit to the ones obtained from the hadronic decay and fit 
only the cross section. Does the result change? why?


Determination of the partial width of the electron decay and of the Weinberg angle 

By using the equations above compute the partial width of the electron decay in two ways:

1. by using the parameters extrapolated with the muonic decay and Equation 3


σ =
Ncut

tot − Ncut
bkg

ϵ ⋅ L
(11)

σ(s)QED = ∫
s

0
σ(s) ⋅ r(s, s′�) ds′ � (12)

Page  of 7 9

The selection of the events is done in the “read_events” part of the Python notebook. Modify it 
accordingly to your preference. Then convert the input files into root files and calculate how many 
events of the hadronic MC are filled in the histograms passing the hadronic selection. The ratio 
between this number and the total number of events in the MC file gives you the efficiency of the 
selection. 


Now compare the distribution you obtain for some kinematic variable produced by MC events and 
by data events, for the three center-of-mass energies . Do you see any difference? Do you think 3

part of this difference is coming from additional background events in the datasets? If yes, 
estimate how many background events are passing the cut. Finally the total number of hadronic 
events in data can be computed with the following formula:


where �  is the number of data events passing the cut, �  is the estimated number of 

background events and �  is the efficiency computed on the hadronic MC events. We are however 
interested in converting the number of events into a cross section. This is generally done with the 
following formula:


where L is the “integrated luminosity”, a measure of the total number of events delivered by the 
accelerator and recorded by L3 during the data acquisition period. Details regarding its 
measurement can be found in literature. A is the acceptance of the detector. The integrated 
luminosity for the three datasets is:


All values have a relative error of 1%.


Ncut
tot Ncut

bkg

ϵ

 The MC samples are all created at 91 GeV, while the datasets correspond to three different 3

center-of-mass energies. Despite this difference, the efficiency computed on the MC events is still 
approximating with a decent accuracy the efficiency of data for all energies around the peak. 

ϵ = Ncut
MC

NMC
(7)

Nhad =
Ncut

tot − Ncut
bkg

ϵ
(8)

σ = Nobs

ϵ ⋅ A ⋅ L
(9)

89.48 GeV : 179.3 nb−1

91.33 GeV : 135.9 nb−1 (10)

93.02 GeV : 151.1 nb−1However, we compute the efficiency and acceptance at the same time by extrapolating it from 
MC events, therefore the formula can be simplified as:


This allows you to compute three distinct values for the hadronic cross section, for each of the 
center-of-mass energies. The next step is to fit these values to extrapolate the Z-resonance 
parameters. As mentioned above, the Breit-Wigner PDF doesn’t take into account QED effects. 
The function used for the fit is therefore a convolution between the Breit-Wigner and a term that 
estimates the probability of a photon emission that reduces the center-of-mass energy from s to 
s’. 


The “r” PDF is defined in the program as “radcorr” and it depends on the fine structure constant, 
on the mass of the electron and other QED properties. Figure 1 shows the effect of the QED 
corrections on the Breit-Wigner. The cross section at the maximum is reduced of approximately 
30%. 

The parameters returned by the fit are the cross section at maximum of the Breit-Wigner (Born), 
the decay width of the Z boson and its mass. You can use the option SetParameters to initialise 
the values used by the fitting algorithm. How does the fit behave? What is the Chi2 of the result? 
and the number of degrees of freedom? Together with the cross sections at the three energies you 
also have to provide the errors. Compute the error propagation on the cross section formula in 
order to estimate the statistical error. What about systematical errors? You can obtain those by 
varying the cuts performed to select the hadronic decays. Estimate them and include them in the 
fit. 


Extrapolation of the parameters from the muonic decays 

Repeat the experiment with the muonic decays. Again the appropriate cuts can be found in 
literature bu you can add more if you like. Compute the cross section, mass and width of the Z 
resonance with the muon selection. How do the values compare to the hadronic ones? Try to fix 
the gamma and mass parameters of the fit to the ones obtained from the hadronic decay and fit 
only the cross section. Does the result change? why?


Determination of the partial width of the electron decay and of the Weinberg angle 

By using the equations above compute the partial width of the electron decay in two ways:

1. by using the parameters extrapolated with the muonic decay and Equation 3


σ =
Ncut

tot − Ncut
bkg

ϵ ⋅ L
(11)

σ(s)QED = ∫
s

0
σ(s) ⋅ r(s, s′ �) ds′� (12)

However, we compute the efficiency and acceptance at the same time by extrapolating it from 
MC events, therefore the formula can be simplified as:


This allows you to compute three distinct values for the hadronic cross section, for each of the 
center-of-mass energies. The next step is to fit these values to extrapolate the Z-resonance 
parameters. As mentioned above, the Breit-Wigner PDF doesn’t take into account QED effects. 
The function used for the fit is therefore a convolution between the Breit-Wigner and a term that 
estimates the probability of a photon emission that reduces the center-of-mass energy from s to 
s’. 


The “r” PDF is defined in the program as “radcorr” and it depends on the fine structure constant, 
on the mass of the electron and other QED properties. Figure 1 shows the effect of the QED 
corrections on the Breit-Wigner. The cross section at the maximum is reduced of approximately 
30%. 

The parameters returned by the fit are the cross section at maximum of the Breit-Wigner (Born), 
the decay width of the Z boson and its mass. You can use the option SetParameters to initialise 
the values used by the fitting algorithm. How does the fit behave? What is the Chi2 of the result? 
and the number of degrees of freedom? Together with the cross sections at the three energies you 
also have to provide the errors. Compute the error propagation on the cross section formula in 
order to estimate the statistical error. What about systematical errors? You can obtain those by 
varying the cuts performed to select the hadronic decays. Estimate them and include them in the 
fit. 


Extrapolation of the parameters from the muonic decays 

Repeat the experiment with the muonic decays. Again the appropriate cuts can be found in 
literature bu you can add more if you like. Compute the cross section, mass and width of the Z 
resonance with the muon selection. How do the values compare to the hadronic ones? Try to fix 
the gamma and mass parameters of the fit to the ones obtained from the hadronic decay and fit 
only the cross section. Does the result change? why?


Determination of the partial width of the electron decay and of the Weinberg angle 

By using the equations above compute the partial width of the electron decay in two ways:

1. by using the parameters extrapolated with the muonic decay and Equation 3


σ =
Ncut

tot − Ncut
bkg

ϵ ⋅ L
(11)

σ(s)QED = ∫
s

0
σ(s) ⋅ r(s, s′�) ds′� (12)



You can obtain those by varying the cuts performed to select the hadronic decays. 
Estimate them and include them in the fit. 


Extrapolation of the parameters from the muonic decays 


Repeat the experiment with the muonic decays. Again the appropriate cuts can be found 
in literature bu you can add more if you like. Compute the cross section, mass and width 
of the Z resonance with the muon selection. How do the values compare to the hadronic 
ones? Try to fix the gamma and mass parameters of the fit to the ones obtained from the 
hadronic decay and fit only the cross section. Does the result change? Why? 


Determination of the partial width of the electron decay and of the Weinberg angle 


By using the equations above compute the partial width of the electron decay in two 
ways: 


1. By using the parameters extrapolated with the muonic decay and Equation 3 


2. By using the parameters extrapolated with the hadronic decay and Equations 3, 4 and 
6 


Which result is better? Proceed computing the Weinberg angle from equation 4. Any 
problem here? 


Determination of the partial width of the hadronic decay and the number of colours 


Compute the partial width of the hadronic decay and then the number of colours from:


The factor kqcd = 1 + αs = 1.04 takes into account gluon emissions from quarks.


 4 Additional notes 


The events generated by simulation do not represent an exact description of the 
measured data. This is partly due to the not perfect calibration of data, to defective 
detector components and to imperfections in the simulation. 
For each result, give statistical and systematic uncertainties estimate separately. Which 
error is dominant? How is the statistical error defined? Please make reasonable 
simplifications and approximations in the error propagation. Correlations can be 
neglected in many cases. You can estimate the contribution to the systematic uncertainty 
that results from your selection cuts by varying them in a reasonable range, and 
recalculating the cross-section. Also take into account the uncertainty of the luminosity 
measurement. Is this a systematic or statistical error? Compare your results with 
published results. 


5 Presenting the results 


Return the results not later than 2 weeks to the supervisor. The discussion of the work 
has to be presented in a PDF file accompanied by a zip file including the code. It is 
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2. by using the parameters extrapolated with the hadronic decay and Equations 3, 4 and 6

Which result is better? Proceed computing the Weinberg angle from equation 4. Any problem 
here?


Determination of the partial width of the hadronic decay and the number of colours 

Compute the partial width of the hadronic decay and then the number of colours from:


The factor �  takes into account gluon emissions from quarks. 


4 Additional notes 
The events generated by simulation do not represent an exact description of the measured data. 
This is partly due to the not perfect calibration of data, to defective detector components and to 
imperfections in the simulation. 

For each result, give statistical and systematic uncertainties estimate separately. Which error is 
dominant? How is the statistical error defined? Please make reasonable simplifications and 
approximations in the error propagation. Correlations can be neglected in many cases. You can 
estimate the contribution to the systematic uncertainty that results from your selection cuts by 
varying them in a reasonable range, and recalculating the cross-section. Also take into account 
the uncertainty of luminosity measurement. Is this a systematic or statistical error? Compare your 
results with published results. 


5 Presenting the results 
Return the results not later than 2 weeks to the supervisor. The discussion of the work has to be 
presented in a PDF file accompanied by a zip file including the code. It is important to comment 
the code properly so that other people (and the supervisor) are able to reproduce your result. The 
PDF should be organised as follows:

1. theory: briefly explain the reason of the experiment, what you are measuring, and the physics 

behind it 

2. detector: summarise the features of the L3 experiment 

3. analysis: explain how you implemented your cuts, which efficiencies and cross section you 

obtained, the results of the fits and all the parameters you extrapolated. Always include 
statistical and systematical errors and eventually plots to explain the reason behind a given 
choice. 


4. comparison with literature: justify deviations from literature. The most recent measurements of 
the fundamental constants can be found in http://pdg.lbl.gov/ 

kqcd = 1 + αs = 1.04

ΓSM
had = NCkQCD(2Γu + 3Γd) (13)



important to comment the code properly so that other people (and the supervisor) are 
able to reproduce your result. The PDF should be organised as follows: 


1. Theory: briefly explain the reason of the experiment, what you are measuring, and 
the physics behind it 


2. Detector: summarise the features of the L3 experiment 


3. Analysis: explain how you implemented your cuts, which efficiencies and cross 
section you obtained, the results of the fits and all the parameters you 
extrapolated. Always include statistical and systematical errors and eventually 
plots to explain the reason behind a given choice. 


4. Comparison with literature: justify deviations from literature. The most recent 
measurements of the fundamental constants can be found in http://pdg.lbl.gov/  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