
Experimentelle Elementarteilchenphysik I: Hausaufgaben 2

Humboldt-Universität zu Berlin, Sommersemester 2019, Prof. Dr. H. Lacker

Übungsblatt 2 (Besprechung: 24.04.2017)

Aufgabe 1: Messung der Z-Produktion am LHC mit ATLAS

- a) Wiederholung: Wie werden Elektronen/Positronen bzw. Myonen prinzipiell identifziert?
- b) Im ATLAS-Detektor am LHC wurde in einem Proton-Proton-Kollisionsereignis ein Positron und ein Elektron mit folgenden Viererimpulsen $p = (E; \vec{p})$ rekonstruiert: $p_{e^-} = (48, 946; -9, 820; 43, 789; -19, 541) \text{GeV}, p_{e^+} = (47, 143; 7, 385; -44, 356; 14, 160) \text{GeV}.$
 - (a) Handelt es sich um einen Kandidaten für die Reaktion $p + p \to Z(\to e^+e^-) + X$?
 - (b) Die beiden im LHC kollidierenden Protonen hatten jeweils eine Energie von 3,5 TeV. Welche Impulsbruchteile x_1 und x_2 trugen das Quark und das Antiquark, die in der vorliegenden Kollision das Positron und Elektron produziert haben?
- c) Betrachten Sie die in der Abb. gezeigte invariante $\mu^+\mu^-$ -Massenverteilung für registrierte $p+p\to Z(\to \mu^+\mu^-)+X$ Kandidaten. Die integrierte Luminosität des Datensatzes betrug 33 pb $^{-1}$. Die geometrische Detektorakzeptanz für diese Ereignisse betrug 48,7%. Die Myonrekonstruktionseffizienz führt dazu, dass nur 78,2% dieser Ereignisse rekonstruiert werden. Untergrundereignisse spielen keine Rolle. Schätzen Sie aus diesen Angaben und mit Hilfe des Particle Data Booklets den Wirkungsquerschnitt der Reaktion $p+p\to Z+X$ ab.

Bitte wenden!

Aufgabe 2:

Gegeben sei ein Objekt (Teilchen, Zerfallsprodukte, Jet etc.) mit invarianter Masse m und eine Vorzugsrichtung \vec{n} (Strahlrichtung, Flugrichtung des Mutterteilchens, Jetachse etc.). Die Rapidität des Objekts bezgl. \vec{n} ist durch

 $y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} \tag{1}$

definiert, wobei E die Energie und p_L der (vorzeichenbehaftete) Longitudinalimpuls bezgl. \vec{n} ist. Ferner bezeichne p_T des Betrag des Transversalimpulses des Objekts bezgl. \vec{n} und $m_T = \sqrt{m^2 + p_T^2}$ seine transversale trans

- a) Um welchen Betrag δy verschiebt sich die Rapidität, wenn man in ein System wechselt, das sich mit der (vorzeichenbehafteten) Geschwindigkeit β entlang \vec{n} bewegt? Ist die Rapidität lorentzinvariant?
- b) Betrachten Sie die Rapiditätsdifferenz $\Delta y = y_2 y_1$ zweier Objekte mit Rapidität y_1 und y_2 bezgl. \vec{n} . Ist Δy lorentzinvariant?
- c) Zeigen Sie

$$y = \ln \frac{m_T}{E - p_L} = \ln \frac{E + p_L}{m_T} = \tanh^{-1} \frac{p_L}{E}$$
 (2)

d) Zeigen Sie

$$E = m_T \cosh y, p_L = m_T \sinh y \tag{3}$$

e) Zeigen Sie für ein Objekt mit m=0

$$E = p_T / \sin \theta, p_L = p_T \cot \theta \tag{4}$$

und leiten Sie durch Vergleich mit d) für masselose Objekte die Beziehung

$$y = -\ln \tan \frac{\theta}{2} \tag{5}$$

ab. (Bemerkung: Für massive Objekte wird deswegen die Größe $\eta=-\ln\tan\frac{\theta}{2}$ als Pseudorapidität bezeichnet.)

Abgabe: 23.04.2019 up to 09:00 in box in front of room 1'415