Experimentelle Elementarteilchenphysik 2: Hausaufgaben

Humboldt-Universität zu Berlin, Sommersemester 2017 Prof. Dr. H. Lacker

Übungsblatt 9 (Besprechung: 04.07.2017)

Aufgabe 1: CP-Eigenzustände

Welchen CP-Eigenwert bzw. welche CP-Eigenwerte hat der Enzustand $\pi^+\pi^-$ im Zerfall neutraler B_d -Mesonen bzw. $\psi\phi$ im Zerfall neutraler B_s -Mesonen?

Aufgabe 2: Bestimmung des UT-Winkels γ

Der UT-Winkel γ kann aus einer zeitunabhängigen CP-Asymmetrie geladener B-Mesonenzerfälle in bestimmte Endzustände, also mit Hilfe von CP-Verletzung im Zerfall bestimmt werden. Welcher Endzustand könnte dafür gewählt werden?

- a) Erster Schritt: Mit Hilfe der Definition von γ bestimmen Sie diejenigen CKM-Elemente, die in den zwei miteinander interferierenden Zerfallsamplituden auftauchen müssen, um eine CP-Asymmetrie zwischen positiv und negativ geladenen B-Mesonen zu erzeugen.
- b) Zweiter Schritt: Für die beiden Amplituden für das positiv bzw. negativ geladenen B-Meson zeichnen die entsprechenden Quark-Diagramme. Welche Mesonen im Endzustand kommen für diese Zerfallsamplituden in Frage?
- c) Dritter Schritt: Die zwei Feynman-Diagramme führen zu unterschiedlichen Endzuständen, so dass die beiden Amplituden eigentlich nicht interferieren können. Wie kann man trotzdem Interferenz zwischen den beiden Zerfallsamplituden erzeugen? (Tipp: Suchen Sie nach einem analogen Beispiel aus der Vorlesung, in dem Sie den weiteren Zerfallsweg betrachten.)
- d) Berechnen Sie das Verhältnis beider Zerfallsamplituden unter Berücksichtigung aller auftretenden CKM-Elemente.

Abgabe: 02.07.2017 up to 14:45 in box in front of room 1'415