Übungsblatt 2 zur Vorlesung "Elektrodynamik und Wellenoptik"

Humboldt–Universität zu Berlin, WS 2008/2009, Prof. Dr. T. Lohse, Prof. Dr. M. Müller-Preußker

Ausgabe: Montag, den 20. Oktober 2008, in der Vorlesung Rückgabe: Donnerstag, den 30. Oktober 2008, in der Vorlesung

Aufgabe 1: Elektromagnetische Potentiale (25 %)

Gegeben seien elektromagnetische Potentiale der Form

$$\varphi(t, \vec{x}) = \frac{\partial}{\partial t} \eta(t, \vec{x}) , \qquad \vec{A}(t, \vec{x}) = -\nabla \eta(t, \vec{x})$$

mit einer beliebigen, differenzierbaren Funktion $\eta(t, \vec{x})$.

- a) Zeigen Sie, dass die Potentiale durch Umeichen zum Verschwinden gebracht werden können. Wie lautet die dafür erforderliche Eichfunktion?
- b) Berechnen Sie die elektrische Feldstärke \vec{E} und die magnetische Flußdichte \vec{B} .
- c) Welche Ladungsdichte ρ und Stromdichte \vec{j} resultieren aus der Gültigkeit der inhomogenen Maxwell-Gleichungen?
- d) Welche Bedingung muss die Funktion η erfüllen, sollen φ und \vec{A} der Lorentz-Bedingung genügen?

Aufgabe 2: Lorentz-Eichung (25 %)

Weisen Sie nach, dass die retardierten bzw. avancierten elektromagnetischen Potentiale die Lorentz-Eichung erfüllen.

Aufgabe 3: Eichtransformationen (25 %)

Man begründe, dass im Falle verschwindender Ladungsdichte $\rho = 0$ und Stromdichte $\vec{j} = 0$ eine Eichtransformation gefunden werden kann, für die das skalare Potential $\phi = 0$ und das Vektorpotential $\nabla \vec{A} = 0$ erfüllen. Man zeige dann, dass sich die Maxwell-Gleichungen auf die Gleichung $\Box \vec{A} = 0$ reduzieren.

Aufgabe 4: Anwendung der Telegraphengleichung (25 %)

a) Leiten Sie die Telegraphengleichung

$$\frac{\partial^2 U}{\partial x^2} = \hat{L}\hat{C}\frac{\partial^2 U}{\partial t^2} + \hat{R}\hat{C}\frac{\partial U}{\partial t}$$

für ein in x-Richtung verlaufendes Koxialkabel mit Induktivität \hat{L} , Kapazität \hat{C} und Widerstand \hat{R} , jeweils gerechnet pro Längeneinheit, her.

- b) Berechnen Sie \hat{L} und \hat{C} für ein Koaxialkabel mit Innenradius $r_{\rm I}$ und Außenradius $r_{\rm A}$. Machen Sie bei der Berechnung von \hat{L} die Näherung $r_{\rm A} \gg r_{\rm I}$, so dass Effekte durch Magnetfelder innerhalb des Innenleiters vernachlässigt werden.
- c) Berechnen Sie \hat{L} , \hat{C} sowie den Wellenwiderstand und die Phasengeschwindigkeit unter Vernachlässigung des Ohmschen Widerstands \hat{R} für ein Kabel mit $r_{\rm I} = 0.45$ mm und $r_{\rm A} = 1.475$ mm. Das Isolatormaterial (Polyethylen) ist nicht ferromagnetisch ($\mu = 1$) und die Dielektrizitätskonstante ist $\epsilon = 2.2$.