Übungsblatt 5 zur Vorlesung 'Elektrodynamik und Wellenoptik'

Humboldt-Universität zu Berlin, WS 2008/2009, Prof. Dr. T. Lohse, Prof. Dr. M. Müller-Preußker

Ausgabe: Montag, den 10. November 2008, in der Vorlesung Rückgabe: Donnerstag, den 20. November 2008, in der Vorlesung

Aufgabe 1: Ausbreitung elektromagnetischer Wellen im Leiter: (30 %)

Ausgehend von den Maxwell-Gleichungen für ein Medium mit der Leitfähigkeit σ , zeige man, dass es Lösungen ebener Wellen gibt, für die \vec{E} und \vec{B} orthogonal zur Ausbreitungsrichtung sind, die aber exponentiell gedämpft werden.

- a) Zeigen Sie, dass der Dämpfungskoeffizient für die Amplitude einer Welle mit der Kreisfrequenz ω genähert $\sigma/2\epsilon_0 c$ ergibt, wenn $\omega \gg \sigma/\epsilon_0$ gilt.
- b) Wie dick muss eine Aluminiumschicht sein, damit die Amplitude einer elektromagnetischen Welle der Wellenlänge $\lambda=3$ cm in ihr auf 1 Promille abnimmt? **Hinweis:** Für einen guten elektrischen Leiter kann $\epsilon_0\epsilon\ll\sigma/\omega$ angenommen werden ($\sigma_{\rm Al}=4.2\cdot10^7\,\Omega^{-1}{\rm m}^{-1}$).

Aufgabe 2: Reflexion an Metalloberfläche: (35 %)

Eine ebene elektromagnetische Welle mit $E=E_0e^{i(kz-\omega t)}$ und der Frequenz $\nu=5\cdot 10^9\,\mathrm{Hz}$ wird an einer ebenen Metallwand bei $z=z_0$ vollkommen reflektiert. Berechnen Sie für einen Punkt $z=z_0-0.9075\,\mathrm{m}$

- a) den Gangunterschied der einfallenden und reflektierten Welle,
- b) die Amplitude der resultierenden Welle und
- c) die Intensität im Vergleich zu Stellen maximaler Intensität.

Aufgabe 3: Trommel (35 %)

Eine kreisförmige Trommelmembran sei mit der Spannung S eingespannt. Die Membran habe die Flächendichte ρ und den Radius R.

- a) Formulieren Sie die Wellengleichung in für die Symmetrie des Problems geeigneten Koordinaten.
- b) Lösen Sie die Wellengleichung und berechnen Sie die Eigenmoden und Eigenfrequenzen. Hinweis: Benutzen Sie ggf. die in Aufg. 1 auf Blatt 4 angegebenen Formeln.
- c) Diskutieren Sie qualitativ den Grund für den Klangunterschied beim Anschlagen in der Membranmitte und einem Ort außerhalb der Mitte.