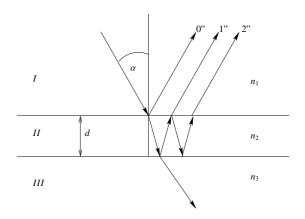
Übungsblatt 6 zur Vorlesung 'Elektrodynamik und Wellenoptik'


Humboldt–Universität zu Berlin, WS 2008/2009, Prof. Dr. T. Lohse, Prof. Dr. M. Müller-Preußker

Ausgabe: Montag, den 17. November 2008, in der Vorlesung Rückgabe: Donnerstag, den 27. November 2008, in der Vorlesung

Aufgabe 1: Reflexion und Brechung an planparallen Grenzflächen (35 %)

Betrachten Sie die Reflexion und Brechung an den zwei planparallen Grenzflächen I–II und II–III. Die drei Medien I, II und III haben (relle) Brechzahlen $n_1 < n_2 < n_3$ und identische magnetische Permeabilitäten $\mu_1 = \mu_2 = \mu_3 = 1$. Das Medium II habe die Dicke d.

Eine elektromagnetische Welle mit Wellenlänge λ treffe senkrecht ($\alpha=0$) auf die Grenzfläche I-II. Bestimmen Sie Dicke d und Brechzahl n_2 für Medium II so, dass an der Grenzfläche I-II keine Reflexion auftritt.

Hinweis:

Zur Vergütung von Objektiven wird eine dünne Schicht der Dicke d auf die Objektive aufgedampft. Brechzahl und Dicke können dann so gewählt werden, dass für eine elektromagnetische Welle mit Wellenlänge λ keine Reflexion stattfindet. Eine ganz ähnliche Anordnung wird in der Interferometrie verwendet: Beim sogenannten Fabry-Pérot Interferometer ist allerdings $n_1 = n_3$.

Aufgabe 2: Zylindrischer Hohlleiter (30 %)

Gegeben sei ein zylindrischer Hohlleiter mit Radius R und ideal leitenden Wänden. Es wird eine elektromagnetische Welle der Frequenz $v = \omega/2\pi$ eingespeist.

- a) Wie lauten die Abschneidefrequenzen für die verschiedenen Moden (Herleitung!)
- b) Für R = 5 cm soll nur die einfachste Mode TM_{01} (p = 0, n = 1) angeregt werden. Welcher Bereich von Einspeisefrequenzen ν ist zu wählen? Wie variieren in diesem Bereich die Phasen- bzw. Gruppengeschwindigkeit der sich entlang des Hohlleiters bewegenden Welle?

Hinweis: Nullstellen ξ_{pn} der Besselfunktion J_p

n	p=0	p=1	p=2
1	2,405	3,832	5,135
2	5,520	7,016	8,417
3	8,654	10,173	11,620

Aufgabe 3: TEM-Moden in Koaxialkabeln (35 %)

In Koaxialkabeln (und anderen Doppelleitern) gibt es Moden der Wellenausbreitung entlang des Kabels (z-Richtung), in denen das \vec{E} -Feld und das \vec{B} -Feld beide überall senkrecht auf der z-Richtung stehen, sogenannte TEM-Moden (transversal-elektromagnetische Moden).

Berechnen Sie die \vec{E} -Felder und \vec{B} -Felder dieser Moden in einem zylindrischen Hohlleiter mit konzentrischem Innenleiter.

- a) Welche Randbedingungen gelten für \vec{E} -Felder und \vec{B} -Felder auf den Leiteroberflächen?
- b) Finden Sie Lösungen der Maxwell-Gleichungen, welche transversalen ebenen Wellen entsprechen, die sich entlang des (nichtmagnetischen) Leiters ausbreiten. Verwenden Sie dazu den Ansatz $\vec{E}_{\text{TEM}} = E_r \ \vec{e}_r$ und $\vec{B}_{\text{TEM}} = \sqrt{\mu \epsilon} \ B_{\varphi} \ \vec{e}_{\varphi}$.
- c) Existieren auch TEM-Moden, wenn man den Innenleiter weglässt?
- d) Was sind die wesentlichen Unterschiede zwischen sich in Koaxialkabeln ausbreitenden TEM-Moden und elektromagnetischen Wellen in Hohlleitern (TE- bzw. TM-Moden)? Diskutieren Sie dabei zulässige Frequenzen sowie die Richtungen der \vec{E} und \vec{B} -Felder.