Hausübungen 7 zur Vorlesung "Kern- und Teilchenphysik"

Humboldt-Universität zu Berlin, WS 2009/2010,

Prof. Th. Lohse, U. Schwanke, O. M. Kind

Ausgabe: 23. November 2009 Abgabe: 30. November 2009

Aufgabe 1: Quantenzahlen (50%)

Schreiben Sie die Wellenfunktion eines q\(\bar{q}\)-Zustandes in der Form

$$\psi(1,2) = \psi_{\text{Ort}}(1,2) \cdot \psi_{\text{Spin}}(1,2) \cdot \psi_{q\bar{q}}(1,2)$$
,

wobei $\psi_{q\bar{q}}$ die Zuordnung von q bzw. \bar{q} zu den Positionen 1 und 2 verkörpert. In diesem Bild sind q und \bar{q} identische Teilchen und unterliegen dem verallgemeinerten Pauli-Prinzip. Beweisen Sie:

$$\begin{split} \hat{P}\psi(1,2) &= (-1)^{(L+1)}\psi(1,2)\,,\\ \hat{C}\psi(1,2) &= (-1)^{(L+S)}\psi(1,2)\,. \end{split}$$

Welche Kombinationen der Quantenzahlen J^{PC} können bei einem gebundenen $q\bar{q}$ -System mit den Bahndrehimpulsen L=0,1,2 auftreten? Welche Quantenzahlkombinationen würden somit im Falle ihrer Beobachtung auf "exotische" Zustände schließen lassen? Vergleichen Sie mit den Angaben für Mesonen im PDG.

Hinweis: Gehen Sie nach derselben Methode vor wie bei der Behandlung des Zerfalls von Positronium in der Vorlesung.

Aufgabe 2: Paritätsverletzung (50%)

Das Pion π^- zerfällt gemäß $\pi^- \to \mu^- \bar{\nu}_\mu$. Der Spinoperator des μ^- sei mit \vec{s} und der Impulsoperator des μ^- sei mit \vec{p} bezeichnet. Die Wellenfunktion des zerfallenden π^- sei $|\pi^-\rangle$, und $|f\rangle$ sei die Wellenfunktion des $\mu^- \bar{\nu}_\mu$ -Systems. Es werden für viele solcher Zerfälle Impuls und Polarisation des Myons im Endzustand vermessen und anschließend durch Mittelung der Erwartungswert $\langle \vec{p} \vec{s} \rangle = \langle f | \vec{p} \vec{s} | f \rangle$ berechnet. Es ergibt sich ein von Null verschiedener Wert. Zeigen Sie, dass hieraus folgt, dass die Wechselwirkung, die den Zerfall bewirkt, die Parität nicht erhält.

Anleitung:

a) Sei P der Paritätsoperator. Zeigen Sie, dass ein beliebiger Operator \hat{O} unter Paritätstransformation gemäß

$$\hat{O} \xrightarrow{P} \hat{O}^P = P\hat{O}P$$

transformiert.

b) Begründen Sie: $(\vec{p}\vec{s})^P = -\vec{p}\vec{s}$.

c) Nehmen Sie an, die Parität sei erhalten. Zeigen Sie, dass

$$P|f\rangle = \eta_P|f\rangle$$

gilt, und bestimmen Sie den Erwartungswert η_P .

d) Zeigen Sie damit, dass durch Paritätstransformation folgt:

$$\langle \mathbf{f} | \vec{p} \vec{s} | \mathbf{f} \rangle = - \langle \mathbf{f} | \vec{p} \vec{s} | \mathbf{f} \rangle.$$