Präsenzübungen 7 zur Vorlesung "Kern- und Teilchenphysik"

Humboldt-Universität zu Berlin, WS 2009/2010, Prof. Th. Lohse, U. Schwanke, O. M. Kind Bearbeitung: 2. bzw. 4. Dezember 2009

Aufgabe 1: Wechselwirkungen

a) Kreuzen Sie in der Tabelle an, welche der angegebenen Teilchen an welcher Wechselwirkung teilnehmen. Diskutieren Sie auch den Fall, dass ein Teilchen an mehreren Wechselwirkungen teilnehmen kann.

Wechselwirkung	p	ν	e	n	π^{\pm}	π^0	μ
elektro-magnetisch stark schwach Gravitation							

b) Welche der angegebenen Quantenzahlen sind bei welcher Wechselwirkung erhalten?

Wechselwirkung	Q	В	$L_{\rm e}$	L_{μ}	$L_{ au}$	$ ilde{U}$	$ ilde{D}$	Ŝ
elektro-magnetisch stark schwach								
Wechselwirkung	Õ	\tilde{B}	$ ilde{T}$	P	С	CP	CPT	
elektro-magnetisch stark schwach								

Aufgabe 2: Clebsch-Gordan-Koeffizienten

- a) Betrachten Sie Drehimpulseigenzustände des Positroniums bei Abwesenheit eines relativen Bahndrehimpulses. Drücken Sie alle möglichen Eigenzustände des Gesamtdrehimpulses $|JM\rangle$ in der Basis der Drehimpulseigenzustände $|j_1m_1\rangle$ bzw. $|j_2m_2\rangle$ für die beiden Teilchen aus.
- b) Geben Sie auch die Darstellung für den umgekehrten Fall an, d. h. entwickeln Sie die Produktzustände $|j_1 m_1\rangle|j_2 m_2\rangle$ in der Basis der $|JM\rangle$.
- c) Das Elektron in einem Wasserstoffatom habe den Eigenzustand $|2-1\rangle$ für den Bahndrehimpuls und den Spin-Zustand $|\frac{1}{2}\frac{1}{2}\rangle$. Welche Werte misst man für das Betragsquadrat des Gesamtdrehimpulses J^2 , und mit welcher Wahrscheinlichkeit treten diese jeweils auf? Korrekturen höherer Ordnung (z. B. Feinstruktur) sind hierbei zu vernachlässigen.