1.2. Photonen / Photo Effekt

Newton, Descartes: Korpuskeltheorie des Lichtes \rightarrow nicht erfolgreich Huygens, Fresnel, Hertz, Maxwell: Wellentheorie \rightarrow erfolgreich

Moderne Beobachtung: Das UV-Licht eines Lichbogens führt zur <u>sofortigen</u> Zündung einer anderen Funkenstrecke;

→ "Photonen" (Licht-Korpuskel) schlagen Elektronen aus Elektrode

Experiment von Hallwachs (1887):

Martin zur Nedden

VL 02: Quatenmechanik, Atome, Kerne (Physik IV)

Seite 4

1.2.1 Photo Effekt

<u>Hypothese (Einstein, 1905; Nobelpreis 1912)</u>: Licht ist in Photonen der Energie hv quantisiert. Diese Quantisierung ist fundamental und hängt nicht mit der Quantisierung harmonischer Oszillatoren zusammen, wie bei der Planckschen Erklärung der Hohlraumstrahlung.

<u>Beobachtung:</u> Neben der klassischen Streuung gibt es eine gestreute Komponente mit $\lambda_s > \lambda_0$. Diese nicht-klassische Komponente wird umso stärker, je härter (je kleiner λ) die einfallende Strahlung ist.

Martin zur Nedden

1.2.2 Compton Effekt

$$\Delta \lambda = \lambda_{\rm S} - \lambda_0 = 2 \lambda_{\rm C} \sin^2 \frac{\phi}{2}$$
, $\lambda_{\rm C} = \frac{h}{m_{\rm e} c}$

Bemerkungen:

- a) Stets λ_0 und λ_s gemischt. Grund: Kollektive Streuung am Atom, $M_{Atom} \gg m_e$.
- b) Compton-Formel experimentell bestätigt \Rightarrow noch eine unabhängige Messung von h.
- c) $\frac{\Delta\lambda}{\lambda_0} = 2 \frac{\lambda_C}{\lambda_0} \sin^2 \frac{\phi}{2}$ nur groß falls $\lambda_0 \leq O(\lambda_C)$ $\Rightarrow X - und \gamma$ -Strahlung: $E_{\gamma} = \hbar \omega_0 = \frac{hc}{\lambda_0} = \frac{\lambda_C}{\lambda_0} m_e c^2 = \frac{\lambda_C}{\lambda_0} \cdot 511 \text{ keV}$
- d) Ein Photon mit $\lambda_0 = \lambda_C$ hat relativistische Masse m_e . Beim klassischen zentralen elastischen Stoß würde das Photon stehenbleiben, $\lambda_S = \infty$. Hier:

$$\Delta \lambda = 2 \lambda_{\rm C} \sin^2 \frac{180^\circ}{2} = 2 \lambda_{\rm C} \implies \lambda_{\rm S} = 3 \lambda_{\rm C}$$

1.3.1 Bohr'sches Atommodell

Das Thomsonsche Atommodell

<u>Hypothese (Thomson)</u>: Ein Atom ist eine homogen geladene Kugel gleich vieler positiver (Protonen) und negativer (Elektronen) Elementarladungen.

1.3.1 Bohr'sches Atommodell

Das Rutherfordsche Atommodell

<u>Hypothese (Rutherford)</u>: Ein Atom besteht aus einem praktisch punkt-förmigen Kern der Ladung +Ze, der praktisch die gesamte Atommasse trägt. Der Kern ist umgeben von einer ausgedehnten Hülle von Z Elektronen (\rightarrow Atomgröße), die die Kernladung perfekt abschirmt.

Streuung von α -Teilchen: Streuung nur in unmittelbarer Kernnähe \Rightarrow Mehrfachstreuungen sehr selten \Rightarrow betrachte nur Einfachstreuungen!

