Physik 2: Elektrodynamik

Humboldt-Universität zu Berlin, Sommersemester 2012, Dr. M. zur Nedden (VL), Dr. A. Nikiforov, R. Schlichte und L. Heinrich (UE)

Übungsblatt 10

Ausgabe: 19. Juni 2012 in der Vorlesung Rückgabe: 26. Juni 2012 nach der Vorlesung

Aufgabe 1: Maxwell-Gleichungen und Wellengleichung (40 %)

Zeigen Sie, daß mit den Ansätzen

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

und

$$\vec{E} = -\frac{1}{c}\frac{\partial \vec{A}}{\partial t} - \vec{\nabla}\Phi$$

die Maxwell-Gleichungen erfüllt sind. Dabei seien $\vec{A}(x,y,z,t)$ ein beliebiges Vektorpotential und $\Phi(x,y,z,t)$ ein beliebiges skalares Potential. Es gelte die Lorentzeichung:

$$\vec{\nabla} \vec{A} = -\frac{1}{c} \frac{\partial \Phi}{\partial t}.$$

Zeigen Sie in einem zweiten Schritt mit Hilfe der Maxwellschen Gleichungen, daß das Vektorpotential \vec{A} sowie das skalare Potential Φ eine Wellengleichung der Form

$$\Delta \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\frac{4\pi}{c} \vec{j}$$

und

$$\Delta \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -4\pi \rho$$


erfüllen

Aufgabe 2: Paralellkreis mit Spule (30 %)

Ein Widerstand R und eine Spule L seien parallelgeschaltet und mit einer sinunsförmigen Wechselspannung $U(t) = U_0 \cdot \cos(\omega t)$ verbunden (Siehe Abbildung). Zeigen Sie, daß

- a) die Stromstärke im Widerstand durch $I_R = (U_0/R)\cos(\omega t)$ gegeben ist,
- b) die Stromstärke in der Spule durch $I_L = (U_0/|R_L|)\cos(\omega t 90^\circ)$ gegeben ist ($|R_L|$ induktiver Widerstand);
- c) der Gesamtstrom $I=I_R+I_L=I_0\cos(\omega t-\delta)$ ist, wobei gilt: $\tan\delta=R/|R_L|$ und $I_0=U_0/Z$ mit $Z^{-2}=R^{-2}+|R_L|^{-2}$.

zu Aufgaben 2 und 3

Aufgabe 3: Paralellkreis mit Kondensator (30 %)

Ein ohmscher Widerstand R und ein Kondensator C seien parallelgeschaltet und mit einer sinunsförmigen Wechselspannungsquelle $U(t) = U_0 \cdot \cos(\omega t)$ verbunden (Siehe Abbildung). Zeigen Sie, daß

- a) die Stromstärke im Widerstand durch $I_R = (U_0/R)\cos(\omega t)$ gegeben ist;
- b) die Sromtärke im Zweig des Kondensators durch $I_C = (U_0/|R_C|)\cos(\omega t + 90^\circ)$ gegeben ist ($|R_C|$ kapazitiver Widerstand);
- c) der Gesamtstrom $I=I_R+I_C=I_0\cos(\omega t+\delta)$ ist, wobei gilt: $\tan\delta=R/|R_C|$ und $I_0=U_0/Z$ mit $Z^{-2}=R^{-2}+|R_C|^{-2}$.