An automatized tool for
multileg NLO computations

Benedikt Biedermann
September, 29" 2009



Content:

1. NLO Computations for the LHC
2. Unitarity Methods

3. Tree-level recursion

4. Outlook



NLO Computations for the LHC

LHC = QCD-Machine:

*Data analysis requires precise knowledge of the standard model signal
— relevant for signals of new physics

High energy pp-scattering gives rise to
multi-leg parton ampliudes!

 Various automatized tools for tree-level amplitudes exist
(e.g. MadGraph, HELAC)

» Often recursive techniques encountered in the packages
(e.g. Berends-Giele recursion)



Why NLO amplitudes?

QCD is an asymptotically free theory:
Necessary to consider the running of the coupling

Tree-level approximation is _
. . . Q

the classical approximation &
l.e. N0 quantum corrections &
&

"

Cross section cannot
—* depend on renormalization
scale

360 -
330 | .
300 |

270 |
240 |
210 |

180
1.2

T8 |
0.8
0.6 L

80

160 200 240
Tl
Inclusive W*+3 jet cross-section at the LHC

and the K-factor defined as K = 0, /0o

120



Feynman-Diagrams

Diagrammatic traditional approach
to handle perturbation theory

Recipe:

e compute the Feynman diagrams
e sum up all the diagrams in order to get the amplitude

Example: Tree-level gluon scattering

A = MP&KK



Disadvantages of Diagrams

 Number of diagrams grows rapidly with number of external legs
» Most of the parts in the calculation cancel each other

# external gluons | # diagrams Very simple analytic result for MHV amplitudes:
4 4 MHV = Maximally Helicity Violating
5 25
tree MHV _ 4t — —

6 220 AL© = Arec(1t, ..., kT, nT)
7 ~ 2'500 4

_ 35 ) k
8 35000 = 1 k) (Parke-Taylor formula)
9 ~ 500°000 (12)---(n1)
10 ~10'000‘000

Spinor Products:  (j k) = u_(p;)u+(pk)



Unitarity based Methods

Traditional way: Passarino-Veltman Reduction [Passarino,Veltman1979]

Different ansatz:

» Work directly with the amplitude instead of diagrams [Bern,Dixon,

 Write amplitude in terms of a basis of integrals J; Kosower1995]
A=) ¢J;
jEB Example: scalar box integral
Difficulty: 7. — [ vz 1
Determination of the coefficients C; j = q§1§253§4

New deal: Unitarity, OPP [Ossola,Papadopoulos,
Pittau2007]



Unitarity based Methods

Different types of Feynman integrals:

< { <

» Use “artificial” tree-amplitudes to glue together one-loop ampliudes
* Lines connecting different tree amplitudes are on-shell

8 1

e CC | 4R
Ay = AN + Ay
7—@ i Q@
-1 1y One loop amplitudes as sum of cut-
! | ’ constructible and rational parts:
s —@ | Q-
Ls



Present Aim

Use these techniques in order to
compute LHC relevant processes in a
rather automatized way.



Berends-Giele recursion relation

[Berends,Giele1987]

Recursion relation to compute color-ordered tree-level amplitudes:

A(l,...,n) = g"? Z Trlayas...a,]A°(1,2,...,n)

P(2,3,...,n)
2
1. Compute (n+1)-gluon current J(1, ..., n)with
« nexternal legs on-shell K
e (n+1)th external leg off-shell
2. Extract the (n+1)-gluon amplitude from J (1, ..., n) Il

Vertices of pure Yang-Mills gauge theory: }QNW E
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Berends-Giele recursion relation

Momentum sum:  x(1,n) =p1 +p2+ ... + Pn
Color orderd amplitude:

AL, .on+1)=Jn+1)- J(1,...,n)i6(1,1n)*] 1t 1)=0
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First Implementation

direct recursion— function calls itself again until a termination
condition is reached (i.e. J is a one-point current).

Program works correctly:

e comparison with MHV amplitudes
* gauge test: J, k" =0

Disadvantage: Most currents are
computed several times

——  Cpu-time ~ 4" 18 gluons ~ 4100 seconds
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Implementation with cache

Store all the currents that one has used once and recycle them.

|ldea: Start with the 1-pt currents and construct successively
all higher i-pt currents.

~ » Every dot represents one current
'  diagonal dots = I-pt currents

J(2,3,4): k=2,1=4

BN @ & O

n

"y Hcurrents = E 1=

n(n+ 1)
2
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Performance

polynomial scaling: PF | R et acanenbe 385
cpu-time ~ n? E
1 =
Checks: S 2 E
« MHV amplitudes _
e gauge test 001 s

100

Number of gluons
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void Amplitude::direct_recursion(){
for (int i=1; i<N_max; i++){

int block_0 = block(i-1);

int block_1 = block(i);

int block_2 = block(i+1l);

int count = 0;

int p = block_0+1;

for (int kl=block_1; kl<block_2; kl++){
for (int s=0; s<4; s++){
K[k1] [s] = K[count][s] + K[pl[s];

}

count++;

pt+;

int k = k1 - block_1;
int 1 = k + i;

for (int m=k; m<l; m++){
bracket (pos(k,m), pos(m+1,1), k1);
}

for (int m=k; m<1-1; m++){
for (int n=m+1; n<l; n++){

curly_bracket (pos(k,m), pos(m+l,n), pos(n+l,1), kl);

}
}

if (k1 '= (N_max-1)*(N_max+2)/2){
for (int s=0; s<4; s++){
J[k1] [s] = J[k1] [s]/1prod(K[k1],K[k1]);
}
}
}
+
}
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Outlook

So far reached:

» Tree-level machinery works as building blocks for
the unitarity methods

Work in progress:

* Implementation of the one-loop unitarity method

Future perspectives:

* Inclusion of quarks
 Phenomenological calculations
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] -\\.\“:‘\ A T-decays (LEP)
Tree-level approximation is 0,353 ‘\g ofall
the classical approximation . s T
l.e. no quantum corrections 0 12 _
0.25 ——  QCD: &y (My)=0, 1150+/-0.0009 [
— —  QCD: a,(My)=0,1191+/-0.0027
First quantum corrections " <M ;'
(and scale dependence) at NLO o] g :
: B e =8 3 :
0.10 i{“qﬁj@
10 I?(I)‘ 102 )

For the discovering machine the focus lies on NLO, while NNLO is for precision

measurements Present experimental status of the QCD running coupling. Shown are RG solutions 17
with as(MT ) extracted from T—decays and the one with as(MZ) measured at LEP as start values.
The corresponding central values agree at the 1 o level.



Optical Theorem

Based on the unitarity of the S-Matrix:

S=1+iT > —i(T—TT):TTT

—i(Typ — T};) = Z T Thi

seti=f

v

ImA ~ O tot

Relates imaginary part of the amplitude with the total cross section.
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Unitarity based Methods

Master Integral Basis Unitarity
Al-loop _ chfj Im (Al—loop) -~ /dH |Atree|2
j /
\ o
D ¢ Im(Ij)N/dH AT —@—1—@—2
J fr-=- —=-1s
s —@ i Q—:

5£54
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