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INTRODUCTION

@ LHC is a QCD machine — hard to find interesting signals

o QCD perturbatively calculable in hard processes

o Need | models for soft physics (s <« 1) | to understand background

o Large background at LHC is Underlying Event (UE)

@ UE = everything except the hard scattering of interest

Have different models/generators: Herwig, Pythia, Phojet, Sherpa ...

LHC-predictions differ vastly

@ — need measurements to tune generators
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Incoming beams, parton density functions (pdfs) & primordial k|
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

The hard sub-process, the matrix element

;r;w
"
g
»
»/p

Holger Schulz Underlying Event measurements with first LHC data 2/13




HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Resonance decays — correlated with the hard sub-process
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Initial-state radiation (ISR), parton shower (backward evolution)
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Final-state radiation (FSR), parton shower (forward evolution)
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Multiple parton-parton interactions — soft, semi-hard or hard scatterings
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Formation of colour strings, outgoing partons & beam remnants
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Hadronisation
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HADRON COLLISIONS (BORROWED FROM LEIF LONNBLAD)

Decay of unstable particles, this is what hits the detector
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EXTRAPOLATIONS TO THE LHC

@ Drastically different predictions 10 7
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UE MEASUREMENTS AT THE TEVATRON

Z p, from qG —Z: as in ISR, primordial k|

Multiplicity distributions: number of particles produced

(p1) vs. Nch: number and p, of particles produced

Exploiting the event topology - p$'™, Nk VS. Pl leading jet iN jet

events: almost everything
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DISADVANTAGES OF FIRST LHC DATA
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ADVANTAGES OF FIRST LHC DATA

e Measurements at /s = 7 TeV give another energy point for
extrapolations to 10, 14 TeV

@ Lower luminosity means reduced pile-up

L =10% vcm_f?s_l
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MEASUREMENT STRATEGY WITH ATLAS
Use inner detector for track-p; measurements

+ electron-ID from ECAL

+ muon-ID from muon chambers
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MEASURING p; OF Z-BOSONS

@ Use only tracks from leptonic . Zpy (Inl <25 pL>10GeV)
-+ 0.6
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e Statistics might be too low for pL/GeV

a tuning
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LEADING TRACK

o Measure track-p| using only inner detector
o |dentify leading track = largest p; in event — defines ¢
@ Define “transverse” region, measure Ny acks, Scalar p-sum as

function of p , leading track

Direction of leading track
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o Plateau is a measure for Underlying Event activity

e Data will be taken with Minimum Bias trigger — no statistics problem
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DOES EARLY DATA IMPROVE GENERATOR TUNING?

Tool for systematic generator tuning: Professor (arXiv:0907.2973)

PROFESSOR IN THREE LINES
© Parameterisation of generator response to shifts in parameter space

@ Add experimental data — construct goodness of fit (g.o.f.)

© Minimise g.o.f. to get best parameter setting (tuning)

e Question: If we add data corresponding to 50, 60, 70 ...100 pb !

does this improve the tuning?

@ — need meaningful error-definition on tuned parameters — use

covariance matrix (work in progress) to get error-bands

@ — measurement worthwile, if error decreases
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ERRORBANDS FOR GENERATOR TUNING

e Sample points from contour of hyper (error) ellipsis
@ Run generator with these points, construct envelope

o Add fake Monte Carlo “data” — see if e.g. plateau is constrained
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SUMMARY AND OUTLOOK

e UE measurements at LHC essential for proper generator tuning

Need to identify reasonable observables for first data

e UE as function of leading track p, looks promising

Probably not enough statistics for Z-bosons

@ W-bosons might be an option

ATLAS CMS co-operation on Minimum Bias & UE
Include UA5 data at /s = 200 and 900 GeV

Thank you!
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TUNING PROCEDURE IN PROFESSOR

@ random sampling: N parameter points in n-dimensional space
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TUNING PROCEDURE IN PROFESSOR

@ random sampling: N parameter points in n-dimensional space
@ run generator and fill histograms

© for each bin: use N points to fit interpolation (2" or 3™ order

polynomial)
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TUNING PROCEDURE IN PROFESSOR

@ random sampling: N parameter points in n-dimensional space
@ run generator and fill histograms

© for each bin: use N points to fit interpolation (2" or 3™ order
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TUNING PROCEDURE IN PROFESSOR

@ random sampling: N parameter points in n-dimensional space
@ run generator and fill histograms

© for each bin: use N points to fit interpolation (2" or 3™ order

polynomial)

(interpolation—data)?

error?

© construct overall (now trivial) x% = Y ;.

© and numerically minimize  pyMinuit, SciPy
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2nd order polynomial includes lowest-order correlations between parameters

MGo(p) = F(B) = ag” + LB} i+ L3 ol pj
i i<j

Now use N generator runs, i.e. N different parameter sets x,y:

Xo
1 2 2
Vi X1 Y1 X3 X1 ,Bx
2 2
Vo L oo ya X3 xey2 Y5 By
: Vxx
VN XN YN Xy XNYN Yy Xy
Tyy
S~—— ~——
v (N values, i.e. N bin contents) P (N sampled parameter sets) ¢ (coeffs)

Therefore: | ¢, = Z[P]v | where 7 is the pseudoinverse operator.




¢, = I[PV

e Use Singular Value Decomposition (SVD), a general diagonalisation
for all normal matrices M:M = UL V*

@ Method available in SciPy.linalg

e Minimal number of runs = number of coefficients in ¢:
N =14 n4n(n+1)/2

min

Num params, P N(2P> (2nd order) N(3P) (3rd order)
1 4

2 10

4 15 35

6 28 84

8 45 165

9 55 220
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¢, = I[PV

e Use Singular Value Decomposition (SVD), a general diagonalisation
for all normal matrices M:M = UL V*

@ Method available in SciPy.linalg

e Minimal number of runs = number of coefficients in ¢:
N =14+ n4n(n+1)/24 (n+1)(n+2)/6

min

cubic only
@ Oversampling by a factor of three has proven to be much better
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