UNDERLYING EVENT MEASUREMENTS WITH FIRST LHC DATA

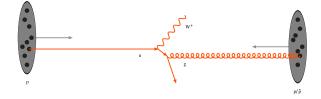
Holger Schulz

Graduiertenkolleg Masse, Spektrum, Symmetrie Berlin, September 29, 2009

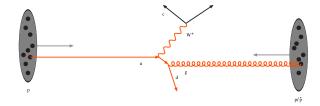
- $\bullet\,$ LHC is a QCD machine \rightarrow hard to find interesting signals
- QCD perturbatively calculable in hard processes
- Need models for soft physics ($\alpha_s \ll 1$) to understand background
- Large background at LHC is Underlying Event (UE)
- $\bullet~{\rm UE}$ \approx everything except the hard scattering of interest
- Have different models/generators: Herwig, Pythia, Phojet, Sherpa ...
- LHC-predictions differ vastly
- $\bullet \ \rightarrow$ need measurements to tune generators

Incoming beams, parton density functions (pdfs) & primordial k_{\perp}

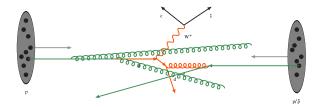
The hard sub-process, the matrix element



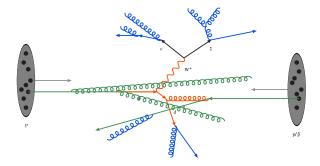
Resonance decays \rightarrow correlated with the hard sub-process



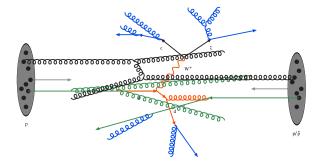
Initial-state radiation (ISR), parton shower (backward evolution)



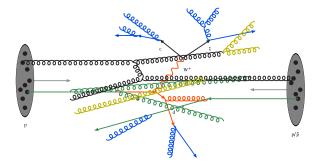
Final-state radiation (FSR), parton shower (forward evolution)



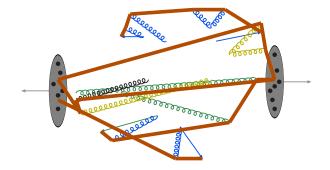
Multiple parton-parton interactions \rightarrow soft, semi-hard or hard scatterings



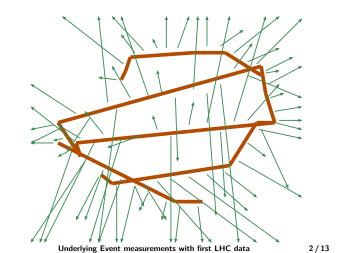
Initial-/Final state showers of ISR-particles



Formation of colour strings, outgoing partons & beam remnants

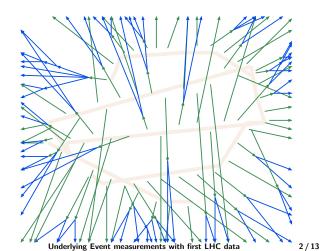


Hadronisation



Holger Schulz

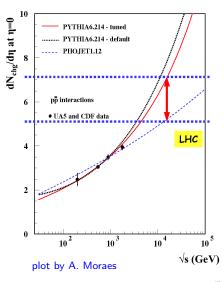
Decay of unstable particles, this is what hits the detector



Holger Schulz

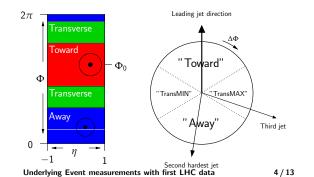
EXTRAPOLATIONS TO THE LHC

- Drastically different predictions for LHC
- Different UE energy-scaling: Phojet $\sim \ln s$ Pythia $\sim \ln^2 s$
- Generators were tuned to data at different \sqrt{s}
- → Will need retuning of UE-parameters to LHC data



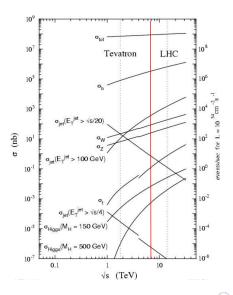
UE MEASUREMENTS AT THE TEVATRON

- Z p_{\perp} from $q\bar{q} \rightarrow$ Z: α_{S} in ISR, primordial k_{\perp}
- Multiplicity distributions: number of particles produced
- $\langle p_{\perp}
 angle$ vs. N_{ch} : number and p_{\perp} of particles produced
- Exploiting the event topology p^{sum}_⊥, N_{ch} vs. p_{⊥,leading jet} in jet events: almost everything



DISADVANTAGES OF FIRST LHC DATA

- Jet-energy calibration not very precise in the beginning
- \rightarrow rather use tracks and lepton-ID
- Cross-section at $\sqrt{s} = 7$ TeV smaller than at 10 or 14 TeV
- Expect integrated luminosity of $\mathcal{O}(100 \text{ pb}^{-1})$



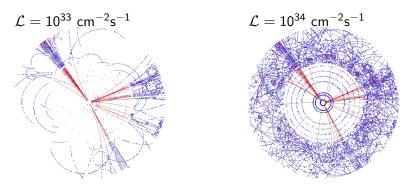
Holger Schulz

Underlying Event measurements with first LHC data

5/13

Advantages of first LHC data

- Measurements at $\sqrt{s} = 7$ TeV give another energy point for extrapolations to 10, 14 TeV
- Lower luminosity means reduced pile-up

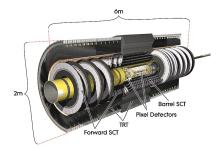


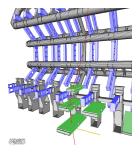
MEASUREMENT STRATEGY WITH ATLAS

Use inner detector for track- p_{\perp} measurements

+ electron-ID from ECAL

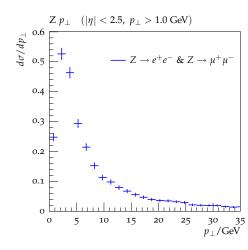
+ muon-ID from muon chambers





Measuring p_{\perp} of Z-Bosons

- Use only tracks from leptonic Z-decays
- Clean signal, look for two leptons of opposite sign within a Z-mass window
- 100 pb⁻¹ after detector cuts: 14990 events remain on generator level
- Statistics might be too low for a tuning



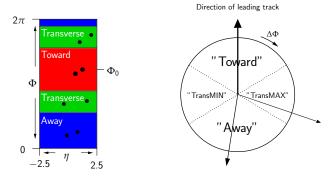
Holger Schulz

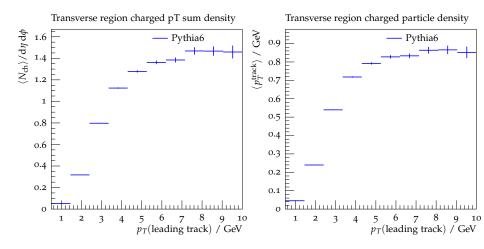
Underlying Event measurements with first LHC data

8/13

۲

- Measure track- p_{\perp} using only inner detector
- Identify leading track = largest p_{\perp} in event ightarrow defines ϕ_0
- Define "transverse" region, measure $N_{\rm tracks}$, scalar p_{\perp} -sum as function of p_{\perp} , leading track





- Plateau is a measure for Underlying Event activity
- Data will be taken with Minimum Bias trigger \rightarrow no statistics problem

Holger Schulz

Underlying Event measurements with first LHC data

Tool for systematic generator tuning: Professor (arXiv:0907.2973)

PROFESSOR IN THREE LINES

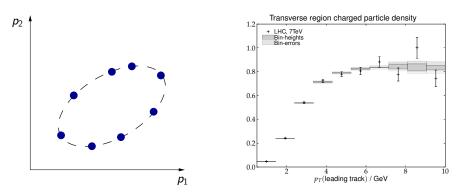
- **1** Parameterisation of generator response to shifts in parameter space
- **2** Add experimental data \rightarrow construct goodness of fit (g.o.f.)
- Minimise g.o.f. to get best parameter setting (tuning)
- Question: If we add data corresponding to 50, 60, 70 ... 100 pb⁻¹ does this improve the tuning?
- → need meaningful error-definition on tuned parameters → use covariance matrix (work in progress) to get error-bands
- $\bullet \ \rightarrow \ measurement$ worthwile, if error decreases

Holger Schulz

Underlying Event measurements with first LHC data

ERRORBANDS FOR GENERATOR TUNING

- Sample points from contour of hyper (error) ellipsis
- Run generator with these points, construct envelope
- Add fake Monte Carlo "data" \rightarrow see if e.g. plateau is constrained



SUMMARY AND OUTLOOK

- UE measurements at LHC essential for proper generator tuning
- Need to identify reasonable observables for first data
- UE as function of leading track p_{\perp} looks promising
- Probably not enough statistics for Z-bosons
- W-bosons might be an option
- ATLAS CMS co-operation on Minimum Bias & UE
- Include UA5 data at $\sqrt{s} = 200$ and 900 GeV

Thank you!

Holger Schulz

Underlying Event measurements with first LHC data

13/13

Backup

- **1** random sampling: *N* parameter points in *n*-dimensional space
- In the second second
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- In and numerically minimize pyMinuit, SciPy

- **1** random sampling: *N* parameter points in *n*-dimensional space
- run generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- and numerically minimize pyMinuit, SciPy

1 random sampling: *N* parameter points in *n*-dimensional space

- In the second second
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- and numerically minimize pyMinuit, SciPy

1 random sampling: *N* parameter points in *n*-dimensional space

- In the second second
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- **)** construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- and numerically minimize pyMinuit, SciPy

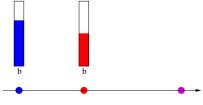
1 random sampling: *N* parameter points in *n*-dimensional space

- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- **)** construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- and numerically minimize pyMinuit, SciPy

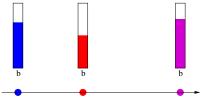
- **1** random sampling: *N* parameter points in *n*-dimensional space
- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- **)** construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- and numerically minimize pyMinuit, SciPy



- **1** random sampling: *N* parameter points in *n*-dimensional space
- In generator and fill histograms
- If or each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- ${f 0}$ construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- and numerically minimize pyMinuit, SciPy

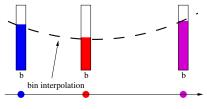


- **1** random sampling: *N* parameter points in *n*-dimensional space
- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} rac{(interpolation-data)^2}{error^2}$
- In and numerically minimize pyMinuit, SciPy



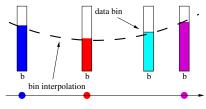
- **1** random sampling: *N* parameter points in *n*-dimensional space
- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- (a) construct overall (now trivial) $\chi^2 = \sum_{bins} \frac{(interpolation-data)^2}{error^2}$

In and numerically minimize pyMinuit, SciPy

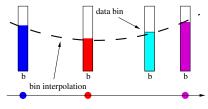


- random sampling: N parameter points in n-dimensional space
- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} \frac{(interpolation-data)^2}{error^2}$

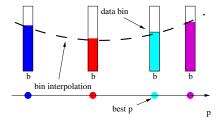
In and numerically minimize pyMinuit, SciPy



- random sampling: N parameter points in n-dimensional space
- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} \frac{(interpolation-data)^2}{error^2}$
- o and numerically minimize pyMinuit, SciPy



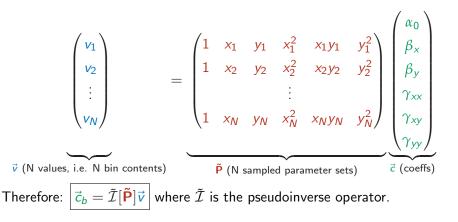
- random sampling: N parameter points in n-dimensional space
- In generator and fill histograms
- for each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- construct overall (now trivial) $\chi^2 = \sum_{bins} \frac{(interpolation-data)^2}{error^2}$
- In and numerically minimize pyMinuit, SciPy



2nd order polynomial includes lowest-order correlations between parameters

$$MC_{b}(\vec{p}) \approx f^{(b)}(\vec{p}) = \alpha_{0}^{(b)} + \sum_{i} \beta_{i}^{(b)} p_{i}' + \sum_{i \leq i} \gamma_{ij}^{(b)} p_{i}' p_{j}'$$

Now use N generator runs, i.e. N different parameter sets x,y:



 $\vec{c}_b = \tilde{\mathcal{I}}[\tilde{\mathbf{P}}]\vec{v}$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M:M = U\Sigma V^*$
- Method available in SciPy.linalg
- Minimal number of runs = number of coefficients in \vec{c}_b : $N_{\min}^{(n)} = 1 + n + n(n+1)/2 + (n+1)(n+2)/6$

cubic only

• Oversampling by a factor of three has proven to be much better

Num params, P	$N_2^{(P)}$ (2nd order)	$N_3^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220

$$\vec{c}_b = \tilde{\mathcal{I}}[\mathbf{\tilde{P}}]\vec{v}$$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M:M = U\Sigma V^*$
- Method available in SciPy.linalg
- Minimal number of runs = number of coefficients in \vec{c}_b : $N_{\min}^{(n)} = 1 + n + n(n+1)/2 + \underbrace{(n+1)(n+2)/6}_{\text{cubic only}}$
- Oversampling by a factor of three has proven to be much better

Num params, P	$N_2^{(P)}$ (2nd order)	$N_3^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220

 $ec{c}_b = ilde{\mathcal{I}}[ilde{\mathsf{P}}]ec{v}$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M:M = U\Sigma V^*$
- Method available in SciPy.linalg
- Minimal number of runs = number of coefficients in \vec{c}_b : $N_{\min}^{(n)} = 1 + n + n(n+1)/2 + \underbrace{(n+1)(n+2)/6}_{\text{cubic only}}$
- Oversampling by a factor of three has proven to be much better

Num params, P	$N_2^{(P)}$ (2nd order)	$N_3^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220