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Introduction

LHC is a QCD machine → hard to find interesting signals

QCD perturbatively calculable in hard processes

Need models for soft physics (αs 6� 1) to understand background

Large background at LHC is Underlying Event (UE)

UE ≈ everything except the hard scattering of interest

Have different models/generators: Herwig, Pythia, Phojet, Sherpa . . .

LHC-predictions differ vastly

→ need measurements to tune generators
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Hadron collisions (borrowed from Leif Lönnblad)

Incoming beams, parton density functions (pdfs) & primordial k⊥

Holger Schulz Underlying Event measurements with first LHC data 2 / 13



Hadron collisions (borrowed from Leif Lönnblad)

The hard sub-process, the matrix element
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Hadron collisions (borrowed from Leif Lönnblad)

Resonance decays → correlated with the hard sub-process
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Hadron collisions (borrowed from Leif Lönnblad)

Initial-state radiation (ISR), parton shower (backward evolution)
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Hadron collisions (borrowed from Leif Lönnblad)

Final-state radiation (FSR), parton shower (forward evolution)
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Hadron collisions (borrowed from Leif Lönnblad)

Multiple parton-parton interactions→ soft, semi-hard or hard scatterings
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Hadron collisions (borrowed from Leif Lönnblad)

Initial-/Final state showers of ISR-particles
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Hadron collisions (borrowed from Leif Lönnblad)

Formation of colour strings, outgoing partons & beam remnants
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Hadron collisions (borrowed from Leif Lönnblad)

Hadronisation
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Hadron collisions (borrowed from Leif Lönnblad)

Decay of unstable particles, this is what hits the detector

Holger Schulz Underlying Event measurements with first LHC data 2 / 13



Extrapolations to the LHC

Drastically different predictions

for LHC

Different UE energy-scaling:

Phojet ∼ ln s

Pythia ∼ ln2 s

Generators were tuned to data

at different
√

s

→ Will need retuning of

UE-parameters to LHC data plot by A. Moraes
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UE measurements at the Tevatron

Z p⊥ from qq̄ →Z: αS in ISR, primordial k⊥
Multiplicity distributions: number of particles produced

〈p⊥〉 vs. Nch: number and p⊥ of particles produced

Exploiting the event topology - psum
⊥ , Nch vs. p⊥,leading jet in jet

events: almost everything
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Disadvantages of first LHC data

Jet-energy calibration not very

precise in the beginning

→ rather use tracks and

lepton-ID

Cross-section at
√

s = 7 TeV

smaller than at 10 or 14 TeV

Expect integrated luminosity of

O(100 pb− 1)
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Advantages of first LHC data

Measurements at
√

s = 7 TeV give another energy point for

extrapolations to 10, 14 TeV

Lower luminosity means reduced pile-up

L = 1033 cm−2s−1 L = 1034 cm−2s−1
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Measurement strategy with ATLAS

Use inner detector for track-p⊥ measurements

+ electron-ID from ECAL

+ muon-ID from muon chambers
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Measuring p⊥ of Z-Bosons

Use only tracks from leptonic

Z-decays

Clean signal, look for two

leptons of opposite sign within

a Z-mass window

100 pb−1 after detector cuts:

14990 events remain on

generator level

Statistics might be too low for

a tuning

Z → e+e− & Z→ µ+µ−
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Leading track

Measure track-p⊥ using only inner detector

Identify leading track = largest p⊥ in event → defines φ0

Define “transverse“ region, measure Ntracks, scalar p⊥-sum as

function of p⊥ , leading track
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Pythia6
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Plateau is a measure for Underlying Event activity

Data will be taken with Minimum Bias trigger→ no statistics problem
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Does early data improve generator tuning?

Tool for systematic generator tuning: Professor (arXiv:0907.2973)

Professor in three lines
1 Parameterisation of generator response to shifts in parameter space

2 Add experimental data → construct goodness of fit (g.o.f.)

3 Minimise g.o.f. to get best parameter setting (tuning)

Question: If we add data corresponding to 50, 60, 70 . . . 100 pb−1

does this improve the tuning?

→ need meaningful error-definition on tuned parameters → use

covariance matrix (work in progress) to get error-bands

→ measurement worthwile, if error decreases
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Errorbands for generator tuning

Sample points from contour of hyper (error) ellipsis

Run generator with these points, construct envelope

Add fake Monte Carlo “data” → see if e.g. plateau is constrained
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Summary and Outlook

UE measurements at LHC essential for proper generator tuning

Need to identify reasonable observables for first data

UE as function of leading track p⊥ looks promising

Probably not enough statistics for Z-bosons

W-bosons might be an option

ATLAS CMS co-operation on Minimum Bias & UE

Include UA5 data at
√

s = 200 and 900 GeV

Thank you!
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Tuning procedure in Professor

1 random sampling: N parameter points in n-dimensional space

2 run generator and fill histograms

3 for each bin: use N points to fit interpolation (2nd or 3rd order

polynomial)

4 construct overall (now trivial) χ2 = ∑bins
(interpolation−data)2

error2

5 and numerically minimize pyMinuit, SciPy
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2nd order polynomial includes lowest-order correlations between parameters

MCb(~p ) ≈ f (b)(~p ) = α
(b)
0 + ∑

i

β
(b)
i p′i + ∑

i≤j

γ
(b)
ij p′i p

′
j

Now use N generator runs, i.e. N different parameter sets x,y:


v1

v2

...

vN


︸ ︷︷ ︸

~v (N values, i.e. N bin contents)

=


1 x1 y1 x2

1 x1y1 y2
1

1 x2 y2 x2
2 x2y2 y2

2
...

1 xN yN x2
N xNyN y2

N


︸ ︷︷ ︸

P̃ (N sampled parameter sets)
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γxx
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︸ ︷︷ ︸
~c (coeffs)

Therefore: ~cb = Ĩ [P̃]~v where Ĩ is the pseudoinverse operator.



~cb = Ĩ [P̃]~v

Use Singular Value Decomposition (SVD), a general diagonalisation

for all normal matrices M:M = UΣV ∗

Method available in SciPy.linalg

Minimal number of runs = number of coefficients in ~cb:

N
(n)

min = 1 + n + n(n + 1)/2 + (n + 1)(n + 2)/6︸ ︷︷ ︸
cubic only

Oversampling by a factor of three has proven to be much better

Num params, P N
(P)
2 (2nd order) N

(P)
3 (3rd order)

1 3 4

2 6 10

4 15 35

6 28 84

8 45 165

9 55 220

10 66 286
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