NLO Event Generation with SHERPA

Marek Schönherr

IKTP TU Dresden

29/09/2009

Contents

1 NLO Event Generation

NLO Cross Section Calculations
The Generalised POWHEG Method
First Results

2 Radiative Corrections to Semileptonic Meson Decays

Motivation – V_{xb} , etc.

Methods

Results

3 Conclusion

Part I

NLO Event Generation

in collaboration with J. Archibald, T. Gleisberg, S. Höche, F. Krauss, S. Schumann, F. Siegert, J. Winter

NLO Cross Section

LO cross section

$$\sigma_{LO} = \int\limits_{N} \mathrm{d}\sigma_{B}$$

NLO cross section

$$\sigma_{NLO} = \int\limits_{N} d\sigma_{B} + \int\limits_{N} d\sigma_{V} + \int\limits_{N+1} d\sigma_{R}$$

- $d\sigma_V$ may be IR-divergent due to massless loop propagators
- $\int_{1}^{1} d\sigma_R$ may be IR-divergent due to emission of massless line \rightarrow sum is finite (KLN-theorem)

NLO Cross Section

Problem: $d\sigma_V$ and $d\sigma_R$ live in different phase spaces

- in $d\sigma_V$ the loop integral is IR divergent
 - \rightarrow every point in the *N*-dim. phase space carries the divergence structure as poles in $\frac{1}{\epsilon}$ and $\frac{1}{\epsilon^2}$ (in dim. renormalisation)
- for $\mathrm{d}\sigma_R$ the phase space integral over the extra emission is IR divergent
 - \rightarrow a similar pole structure cannot be achieved by Monte Carlo integration (integration in integer number of dimensions only)
- \rightarrow NLO cross section cannot be directly integrated using Monte Carlo methods
- → no obvious cancellation of divergences

Marek Schönherr

IKTP TU Dresden

Subtraction Schemes

$$\sigma_{NLO} = \int\limits_{N} \mathrm{d}\sigma_{B} + \int\limits_{N} \mathrm{d}\sigma_{V} + \int\limits_{N+1} \mathrm{d}\sigma_{R}$$

individual terms rendered integrable by subtraction scheme

ightarrow needs to provide local counter terms $d\sigma_A$ which are integrable over extra emission phase space

IR-finite loop integration

$$\sigma_{NLO} = \int_{N} d\sigma_{B} + \int_{N} \left[d\sigma_{V} + \int_{1} d\sigma_{A} \right] + \int_{N+1} \left[d\sigma_{R} - d\sigma_{A} \right]$$

NLO Event Generation

The Generalised POWHEG Method

• generate N-jet event with

$$d\sigma_B + d\sigma_V + d\sigma_I + \int_1 [d\sigma_R - d\sigma_S]$$

- use Catani-Seymour variables as real radiation variables
- shower radiates real emission with Sudakov form factor

$$\Delta_t = \exp\left[-\int \theta(t_r - t) \frac{R}{B} d\Phi_r\right]$$

- \rightarrow shower needs to cover the whole phase space JHEP11(2007)070
- also correct if real emission constrained to $Q^2 < J$ \rightarrow positive weights only for large enough J

Marek Schönherr
NLO Event Generation with SHERPA

Multijet Matching

$$d\sigma_B + d\sigma_V + d\sigma_I + \int_1 \left[d\sigma_R \Theta(J - Q^2) - d\sigma_S \right] + \int_1 d\sigma_R \Theta(Q^2 - J)$$

- $d\sigma_R\Theta(Q^2-J)$ of a $2\to N$ process identified with $d\sigma_B$ of a $2\to N+1$ process
- generate $2 \to N$ event according to above formula \to first emission with $Q^2 < J$ via POWHEG to NLO accuracy
- possibility to replace $d\sigma_B$ of $2 \to N+1$ with

$$d\sigma_B + d\sigma_V + d\sigma_I + \int_1 [d\sigma_R - d\sigma_S]$$

• successively merge NLO $2 \rightarrow N$, NLO $2 \rightarrow N+1$, ..., LO $2 \rightarrow N+M$, LO $2 \rightarrow N+M+1$, ...

Available in SHERPA-1.2.0 (released 28/09/09)

- automated Catani-Seymour subtraction term generation (in AMEGIC++) Eur.Phys.J.C53(2008)501-523
- LO ME generators (AMEGIC++, COMIX)
 JHEP02(2002)044, JHEP12(2008)039
- few built-in virtual MEs + extensive tensor integral library
- interfaces to NLO codes (BLACKHAT, GOLEM, etc.)
 arXiv:0902.2760, arXiv:0810.0992
- parton shower (CSSHOWER++) JHEP03(2008)038
- \rightarrow rearrange terms to give N-jet event with NLO weight
- → get correct real emission via POWHEG method

First Results

First Results on $ee \rightarrow 2jets$ at 91.25 GeV

fixed order result:

$$\mathrm{d}\sigma_{NLO} = \left(1 + \frac{\alpha_S}{\pi}\right) \mathrm{d}\sigma_{LO} \quad \text{with } (J=1)$$

unweighted event generation

weighted event generation

LO: 40189.9 pb +- (18.29 pb = 0.045509 %)41712.5 pb +- (20.79 pb = 0.049842 %)2_2_e-_e+_j_j_QCD(BVIRS) : NI.O ·

Marek Schönherr

IKTP TU Dresden

Further Ideas

Resummation Effects:

- ullet determine k_\perp^2 of most probable splitting for real emission
 - → shower language
- consistently replace one power of α_S with $\alpha_S(k_T^2)$
 - → capture resummed large logarithms from higher orders
 - → enlarged possibility of softer emission

```
LD: 2_2_e-_e+_j_j: 40189.9 pb +- ( 18.29 pb = 0.045509 % ) NLO: 2_2_e-_e+_j_j_QCD(BVIRS): 41712.5 pb +- ( 20.79 pb = 0.049842 % ) NLO+NLL: 2_2_e-_e+_j_j_QCD(BVIRS): 42757.4 pb +- ( 20.41 pb = 0.047748 % )
```

Part II

Radiative Corrections to Semileptonic Meson Decays

in collaboration with F. Bernlochner

Motivation

• Determination of V_{xb}

$$\Gamma_{\text{measured}} = \eta_{\text{QCD}}^2 \eta_{\text{QED}}^2 |V_{xb}|^2 \Gamma_{\text{Born}}'$$

- → experiments extract rates which include radiative effects
- Corrections to measured kinematics
 - → real and virtual photons alter momenta of involved particles
 - → fits to kinematic variables can be very sensitive to slight changes

 Phys. Rev. D 79, 012002(2009)

Model

$$\mathcal{M} = \sqrt{2}G_F V_{xb} H_{\mu} L^{\mu}$$

$$L^{\mu} = \bar{u}_{\nu} P_R \gamma^{\mu} v_{\ell}$$

$$H^{\mu} = \langle X | V^{\mu} | B \rangle - \langle X | A^{\mu} | B \rangle$$

- supplement phenomenological model with QED
 - scalar, fermion, vector QED

•000

- emission off phen. vertex through minimal coupling
- fully gauge invariant effective theory, Ward identities are fulfilled
- renormalise analoguous to QED
 - on-shell
 - ullet vanishing $\mathcal{O}(eG_F)$ corrections at maximum momentum transfer
 - additional counter terms needed

Methods

Asumptions

- **1** QED corrections can be adequately described at $\mathcal{O}(\alpha)$
- 2 hadronic model fully characterises weak interaction
- g presence of QED radiation does not modify structure of form factors
- momentum dependence of form factors negligible in loop integrations
- **6** scalar/vector QED is sufficient to describe meson-photon interaction

Methods

$$\Gamma_{\rm measured} = \eta_{tot}^2 |V_{xb}|^2 \Gamma_{\rm Born}'$$

$$\eta^2 \ = \ (\eta_{\rm QCD}^{SD} \ \eta_{\rm QED}^{SD} \ \eta_{\rm QED}^{LD})^2 \ = \ 1 + \delta^{SD} + \delta_{\rm QED}^{LD}$$

- $\eta_{\rm QCD}^{SD}$ from HQET, χ PT, etc. Nucl.Phys.Proc.Suppl.140,461(2005)
- η_{QED}^{SD} known in LL Nucl.Phys.B196,83(1982)

0000

$$\eta_{\text{QED}}^{SD^2} = 1 + \frac{\alpha}{\pi} \ln \frac{m_Z^2}{\Lambda^2}$$

• η_{QED}^{LD} to be determined through

$$1 + \delta_{\text{QED}}^{LD} = \frac{\Gamma^{\mathcal{O}(\alpha G_F^2)}}{\Gamma^{\mathcal{O}(G_F^2)}}$$

Methods

Resummation Effects – YFS-scheme

- resummation of soft limit $(k \to 0)$
- separation of soft limit of real and virtual amplitudes
- ightarrow YFS form factor $\exp[Y(\Omega)]$
- reorganisation of perturbative series
 - ightarrow series in e with infrared divergent amplitudes into series in lpha with infrared subtracted squared amplitudes

$$\left| \mathcal{M}_{0}^{0} + \mathcal{M}_{1}^{\frac{1}{2}} + \mathcal{M}_{0}^{1} + \dots \right|^{2}$$

$$= e^{Y(\Omega)} \prod_{i=0}^{i} \tilde{S}(k_{i}, \Omega) \left(\tilde{\beta}_{0}^{0} + \tilde{\beta}_{0}^{1} + \sum_{i=0}^{i} \frac{\tilde{\beta}_{1}^{1}(k_{i})}{\tilde{S}(k_{i})} + \dots \right)$$

• improved predictions

Marek Schönherr

IKTP TU Dresden

η_{QED} – BLOR (no resummation)

• first preliminary results

$$\eta_{\rm QED} = \sqrt{1 + \delta^{SD} + \delta^{LD}}$$

• $\eta_{ extsf{QED}}$ includes statistical + lattice model error of δ^{SD}

	$1 + \delta_{ extsf{QED}}^{LD}$	stat. error	η_{QED}	error
$B^{\pm} \rightarrow D^0 e^{\pm} \nu_e$	1.00452	0.00012	1.078	0.034
$B^0 \to D^{\mp} e^{\pm} \nu_e$	1.01946	0.00014	1.085	0.034
$B^{\pm} \to D^0 \mu^{\pm} \nu_e$	1.00456	0.00007	1.078	0.034
$B^0 \to D^{\mp} \mu^{\pm} \nu_e$	1.01983	0.00010	1.085	0.034

ightarrow QED breaks isospin symmetry

Marek Schönherr

NLO Event Generation with SHERPA

Differential distributions - SHERPA/PHOTONS++

spectrum of radiative energy loss

photon angular distribution

sold line – full $\mathcal{O}(\alpha G_F^2)$ result dashed line – approximated $\mathcal{O}(\alpha G_F^2)$ result using dipole splitting kernels dotted line – exponentiated YFS-kernels only

Conclusion

Done:

- consistent use of already built-in components in new approach
- integration of R+S converges
- numbers seem to be right
- inclusion of resummed corrections real extra emission via α_S rescaling

Todo:

- determine $\left(\frac{R}{B}\right)_{max}$ for POWHEG matching
- ullet imposing upper cut-off J on real emission to make cross sections exclusive for multijet merging

Conclusion

Done:

- calculation of $\mathcal{O}(eG_F)$ amplitudes and counter terms (exept for $S \to V \ell \nu$)
- almost everything is implemented in BLOR and PHOTONS++

Todo:

- finalise implementations
- cross check of Monte Carlo output for the two different methods
- cross check for different renormalisation schemes
- write-up

Appendix

Phenomenological LO decay – $\mathcal{O}(G_F)$

FS scalar
$$\langle X|V^{\mu}|B\rangle = f_{+}(t)(p_{B}+p_{X})^{\mu}+f_{-}(t)(p_{B}-p_{X})^{\mu}$$
 $\langle X|A^{\mu}|B\rangle = 0$ FS vector $\langle X|V^{\mu}|B\rangle = 2ig(t)\epsilon^{\mu\nu\rho\sigma}\varepsilon_{\nu}^{*}p_{B\rho}p_{X\sigma}$ $\langle X|A^{\mu}|B\rangle = f(t)\varepsilon^{\mu*}+a_{+}(t)(p_{B}+p_{X})^{\mu}(p_{B}-p_{X})^{\nu}\varepsilon_{\nu}^{*}+a_{-}(t)(p_{B}-p_{X})^{\mu}(p_{B}+p_{X})^{\nu}\varepsilon_{\nu}^{*}$

Renormalisation Schemes

- dimensional regularisation
- on-shell scheme, best suited to be interfaced with otherwise LO Monte Carlo
- need to renormalise only wave functions and phen. vertex:
 - residues vanish at pole
 - 2 first order corrections vanish at maximum physical momentum transfer to leptonic system

Advantages over LL Factorization

		phen. model	Photos	
V	t dependency in FF	approximate	none	
V	corrections on kinematics	yes	none	
V	vertex emission	yes	none	
V	contribution to decay rate	yes	none	
R	t dependency in FF	yes	none	
R	full photon emission coupling	yes	resummed soft limit	
R	vertex emission	yes	none	
R	parton level emission	none	none	
R	emission ration at first order	yes	approximate	
RV	total rate change	yes/no	none	

Marek Schönherr

Differential distributions - SHERPA/PHOTONS++

spectrum of radiative energy loss

photon angular distribution

sold line – full $\mathcal{O}(\alpha G_F^2)$ result dashed line – approximated $\mathcal{O}(\alpha G_F^2)$ result using dipole splitting kernels dotted line – exponentiated YFS-kernels only