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the modell of Hadron scattering

Factorisation of the (high energy) scattering process into Par-
tonevolution und —Scattering [COLLINS,SOPER,STERMAN]

proton
proton

subject of the following slides: Parton cross section oparion
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pertubative expansion and corrections

O Parton = (G0 (a;) + 04 (()‘?1) +..]

1. virtual corrections
= reduction and determination of the scale dependency

2. final state Bremsstrahlung
= infrared savety of observables
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the need for NLO calculations

pertubative expansion and corrections

A (2 A (7 H
OParton = 6o () + 61 (a5™) + ...

example: Higgs production (ur = pg = my
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performing a calculation

1. the naive way: draw all Feynman diagramms
(too small pieces, too much sums at one time)
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performing a calculation

2. the advanced approach: Feynman 2.0
e colour ordering (separation of Lorentz and colour structure)
[MANGANO, PARKE]
e spinor helicity formalism [xuer. ac. ]
3. the improved version: on-shell methods (scrw, ok
e use Cauchys theorem to solve integrals
o use treelevel amplitudes instead of vertices as building
blocks



the need for NLO calculations on-shell methods

a treelevel example: 5 pt. gluon function

conclusions



the need for NLO calculations on-shell methods conclusions

a treelevel example: 5 pt. gluon function

B
1 5+
pole of contribution B: z, , = {;2}

denominator: (3|112] — z,,(31)[52] =0
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a treelevel example: 5 pt. gluon function

I 4
pole of contribution A: z, s = —<?4
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massive fermions and on shell methodes

they suffer from:
e a more difficult inner colour ordering of fermions
¢ less symmetries — no vanishing helicity amplitudes
e less compact representation in terms of Weyl spinors
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massive fermions and on shell methodes

they suffer from:

e a more difficult inner colour ordering of fermions

¢ less symmetries — no vanishing helicity amplitudes

e less compact representation in terms of Weyl spinors
remaining properties:

e parity condition for involved gluons (factor 2)

e spin axis quantization freedom of heavy quarks (factor 4)
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the situation at one loop

A1 — D(e) + F

2. the scalar integralbase at one |00p [f.e. ELLIS, ZANDERIGHI]

K bk Ky /
I R AL @ <16)
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(a result of 30 years hard work in pertubative QFT)
= remaining task: compute the coefficients
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the situation at one loop

A1 — D(e) + F

2. the scalar integralbase at one |00p [f.e. ELLIS, ZANDERIGHI]

Ky K K
Al=loop  diju + Cijk //\ + by 1"1>Q<K”"f
K,
K Ky K K

(a result of 30 years hard work in pertubative QFT)
= remaining task: compute the coefficients

3. additional inner colour ordering due to loop contributions
— primitive amplitudes
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unitarity cuts | - foundations

consequences of S-matrix theory:
1. optical theorem

ssi—1 =¥ 2ﬁ|m[>©§]><¥>§

2. discontinuities of analytical continued matrix elements

2i Im[M(s)] = Disc[M(s)]
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unitarity cuts | - foundations

consequences of S-matrix theory:
1. optical theorem

Sst=1 =2 2ﬁ|m[>©§]><,§><

2. discontinuities of analytical continued matrix elements
2i Im[M(s)] = Disc[M(s)]

Sewing of treelevel amplitudes to 1-loop amplitudes allows
for the calculation of the logarithmic parts of F.
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example: a gg — gg 1loop configuration

2+

O0000!
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unitarity cuts Il - recent methodes

¢ the basic step of the calculation:

1

7 7d(1?)  (Cutkosky rules)
1€

e implementation of multiple cuts (generalized unitarity)
[BRITTO,FENG]; [OPP]; [FORDE]
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unitarity cuts Il - recent methodes

¢ the basic step of the calculation:

/2::_1-1 — w6(1?)  (Cutkosky rules)
€

e implementation of multiple cuts (generalized unitarity)
[BRITTO,FENG]; [OPP]; [FORDE]
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unitarity cuts Il - recent methodes

e the basic step of the calculation:

— w6 (1?) (Cutkosky rules)

12 + e

¢ implementation of multiple cuts (generalized unitarity)
[BRITTO,FENG]; [OPP]; [FORDE]
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unitarity cuts Il - recent methodes

e the basic step of the calculation:

1

25 76 (1?) (Cutkosky rules)
1€

¢ implementation of multiple cuts (generalized unitarity)

[BRITTO,FENG]; [OPP]; [FORDE]

D s 5
O RPN = LI

K,

¢ a step further: generalizing to d dimensional loop momenta

[BERN, MORGAN]; [ANASTASIOU, BRITTO, FENG, KUNSZT, MASTROLIA]; [BADGER]
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parametrisation by Forde

¢ loop moemtum is an object with four degrees of freedom
— choose a fixed base with complex momenta

21" =ay < Ki|v"[ki] + a2 < ko|y"|ke]+
az < k1"yu‘k2] +oag < kg"yu“ﬁ]
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parametrisation by Forde

loop moemtum is an object with four degrees of freedom
— choose a fixed base with complex momenta

21" =ay < Ki|v"[ki] + a2 < ko|y"|ke]+
az < k1"yu‘k2] +oag < kg"yu“ﬁ]

unfixed coefficients — complex parameters
analytically cumbersome for double and single cut
numerically instabilities in a naive implementation
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conclusions

1. physics @ LHC = cross sections @ NLO
2. on-shell methods

e are promising tools for this task
¢ have high potential for further progress
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conclusions

factorization

task:
e separation of intrisic processes from scattering events
¢ description for the time evolution of the intrisic processes
Upp—>X = Z / de dXS f(Xf7 /’L%) f(XS7 ,u%) X 6rs—>t X D(Xtu M%)t—»X
r,s,t

where

A ~ PR
Ors—t — |:0'0+C¥3(ILLR)U1 + ... ret
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scale dependence
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Scale dependence for single jet production (inkl.) at Er = 100 GeV.
Theoretical predictions at LO (dottet curve), NLO (blue dashed) and
NNLO (different modells in red). (aiover 02]
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general form of the recursion

Az=0)=>" A(i,....7",... P,,)p AP+, 5, i)
ij, h ij

Pij=pi+pi+ - +0br(z)+ - +p-1+p
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