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the need for NLO calculations on-shell methods conclusions

the modell of Hadron scattering

Factorisation of the (high energy) scattering process into Par-
tonevolution und -scattering [COLLINS,SOPER,STERMAN]

µF

proton

X

proton

subject of the following slides: Parton cross section σParton
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pertubative expansion and corrections

σParton = [σ̂0 (αz
s) + σ̂1 (αz+1

s ) + . . .] αs = αs(µ
2
R)

1. virtual corrections
⇒ reduction and determination of the scale dependency

2. final state Bremsstrahlung
⇒ infrared savety of observables
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pertubative expansion and corrections

σParton = [σ̂0 (αz
s) + σ̂1 (αz+1

s ) + . . .] αs = αs(µ
2
R)

example: Higgs production (µF = µR = mH)

[ANASTASIOU, MELNIKOV, PETRIELLO]
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performing a calculation

1. the naive way: draw all Feynman diagramms
(too small pieces, too much sums at one time)

2. the advanced approach: Feynman 2.0

• colour ordering (separation of Lorentz and colour structure)
[MANGANO, PARKE]

• spinor helicity formalism [XU ET. AL. ]

3. the improved version: on-shell methods [BCFW, BDK]

• use Cauchys theorem to solve integrals
• use treelevel amplitudes instead of vertices as building

blocks
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a treelevel example: 5 pt. gluon function

1

2

3 4

5

1

1
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5

5

3

4

4

A

B

p̂1(z) = λ1

(
λ̃1 − z λ̃5

)
p̂5(z) = (λ1 + z λ5) λ̃5
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a treelevel example: 5 pt. gluon function

1

2

5

3

4 B

pole of contribution B: z1,2 =
[1 2]

[5 2]

denominator: 〈3|1|2]− z1,2 〈3 1〉[5 2] = 0
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a treelevel example: 5 pt. gluon function

1

2

3

5

4

A

pole of contribution A: z4,5 = −〈5 4〉
〈1 4〉

A2−
5 = −i 〈1 3〉4 [4 5]3

〈1 2〉 〈2 3〉 〈1|5|4] 〈3|4|5]〈4|5|4]

= i
〈1 3〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
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massive fermions and on shell methodes

they suffer from:
• a more difficult inner colour ordering of fermions
• less symmetries→ no vanishing helicity amplitudes
• less compact representation in terms of Weyl spinors
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massive fermions and on shell methodes

they suffer from:
• a more difficult inner colour ordering of fermions
• less symmetries→ no vanishing helicity amplitudes
• less compact representation in terms of Weyl spinors

remaining properties:
• parity condition for involved gluons (factor 2)
• spin axis quantization freedom of heavy quarks (factor 4)
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the situation at one loop

1.
A1−loop = D(ε) + F

2. the scalar integralbase at one loop [f.e. ELLIS, ZANDERIGHI]

A1−loop ∼ l1

l2

l3

l4 l3

l1 l2
l2

l1 l1

K1

K2 K3

K4 K3

K2

K1

K1

K1

K2

ai+bij+cijk+dijkl

(a result of 30 years hard work in pertubative QFT)
⇒ remaining task: compute the coefficients

3. additional inner colour ordering due to loop contributions
→ primitive amplitudes
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unitarity cuts I - foundations

consequences of S-matrix theory:
1. optical theorem

SS† = 1
1 loop
=⇒ 2i Im =

2. discontinuities of analytical continued matrix elements

2i Im[M(s)] = Disc[M(s)]

Sewing of treelevel amplitudes to 1-loop amplitudes allows
for the calculation of the logarithmic parts of F .
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example: a gg → gg 1loop configuration

1−

2+
3+

4+
1−

2+

3+

4+
1−

2+3+

4+

1−
2+

4+

3+
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unitarity cuts II - recent methodes

• the basic step of the calculation:

1
l 2 + iε

→ πδ(+)(l 2) (Cutkosky rules)

• implementation of multiple cuts (generalized unitarity)
[BRITTO,FENG]; [OPP]; [FORDE]

• a step further: generalizing to d dimensional loop momenta
[BERN, MORGAN]; [ANASTASIOU, BRITTO, FENG, KUNSZT, MASTROLIA]; [BADGER]
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parametrisation by Forde

• loop moemtum is an object with four degrees of freedom
→ choose a fixed base with complex momenta

2 lµ =α1 < k1|γµ|k1] + α2 < k2|γµ|k2]+

α3 < k1|γµ|k2] + α4 < k2|γµ|k1]

• unfixed coefficients→ complex parameters
• analytically cumbersome for double and single cut
• numerically instabilities in a naive implementation
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conclusions

1. physics @ LHC⇒ cross sections @ NLO
2. on-shell methods

• are promising tools for this task
• have high potential for further progress
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backup slides
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factorization

task:
• separation of intrisic processes from scattering events
• description for the time evolution of the intrisic processes

σpp→X =
∑
r ,s,t

∫
dxr dxs f (xr , µ

2
F ) f (xs, µ

2
F )× σ̂rs→t ×D(xt , µ

2
F )t→X

where
σ̂rs→t =

[
σ̂0 + αs(µ

2
R)σ̂1 + . . .

]
rs→t
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scale dependence

Scale dependence for single jet production (inkl.) at ET = 100 GeV.
Theoretical predictions at LO (dottet curve), NLO (blue dashed) and
NNLO (different modells in red). [GLOVER 02]
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general form of the recursion
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A(z = 0) =
X
i, j, h

A(i, . . . , r̂+, . . . , j,−P̂ h
i,j )

−i

p2
i,j

A(P̂ −h
i,j , j+1, . . . , ŝ−, . . . , i-1)

Pi,j = pi + pi+1 + · · ·+ p̂r (zi,j) + · · ·+ pj−1 + pj
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