QCD at Colliders Lecture 3

Lance Dixon, SLAC

Graduate College in Mass, Spectrum and Symmetry Berlin 1 Oct. 2009

Lecture 3 Outline

- Virtual corrections
- NLO Drell-Yan example
- Catani-Seymour dipole formalism
- Why are K factors so big?
- Resummations
- NNLO status

Virtual Corrections

L. Dixon, 1 Oct. 2009

More complicated 1-loop amplitudes

 $Vq\bar{q}gg$

ggggg

L. Dixon, 1 Oct. 2009

QCD at Colliders: Lect. 3

 $V = W, Z, \gamma^*$

The Drell-Yan process

L. Dixon, 1 Oct. 2009

Drell-Yan rapidity distribution

rapidity
$$Y = \frac{1}{2} \ln \left(\frac{E+p_z}{E-p_z}\right)$$

 $exp(2Y) = \frac{E+p_z}{E-p_z} = \frac{P_2 \cdot P_Z}{P_1 \cdot P_Z} = \frac{\frac{1}{x_2}p_{\bar{q}} \cdot P_Z}{\frac{1}{x_1}p_q \cdot P_Z} = \frac{x_1}{x_2}$
combined with mass measurement,
 $x_1x_2 = \tau = \frac{M^2}{s}$
double distribution $\frac{d^2\sigma}{dM^2dY} = \frac{\sigma_0}{N_c s} \sum_q Q_q^2 [q(x_1)\bar{q}(x_2) + \bar{q}(x_1)q(x_2)]$

measures product of quark and antiquark distributions at

$$x_1 = \sqrt{\tau} e^Y \qquad x_2 = \sqrt{\tau} e^{-Y}$$

L. Dixon, 1 Oct. 2009

NLO QCD corrections to Drell-Yan production

L. Dixon, 1 Oct. 2009

Phase space for DY @ NLO

L. Dixon, 1 Oct. 2009

Integral to do:

$$I = \left(\frac{\mu^2}{M^2}\right)^{\epsilon} z^{\epsilon} (1-z)^{-1-2\epsilon}$$

$$\times \int_0^1 dy \left[y(1-y)\right]^{-\epsilon} \frac{(1-y(1-z))^2 + (1-(1-y)(1-z))^2}{y(1-y)}$$

Hard collinear divergences are at y = 0, 1Separate using $\frac{1}{y(1-y)} = \frac{1}{y} + \frac{1}{1-y}$

related by symmetry

Expand 1/y term in cross section about y=0

$$I = 2\left(\frac{\mu^2}{M^2}\right)^{\epsilon} z^{\epsilon} (1-z)^{-1-2\epsilon} \int_0^1 dy \, y^{-1-\epsilon} \left[1+z^2-2y(1-y)(1-z)^2\right] \\ \times (1-\epsilon \ln(1-y)) \\ = 2\left(\frac{\mu^2}{M^2}\right)^{\epsilon} z^{\epsilon} (1-z)^{-1-2\epsilon} \left[-\frac{1+z^2}{\epsilon} - (1-z)^2 + \mathcal{O}(\epsilon)\right]$$

L. Dixon, 1 Oct. 2009

divergence absorbed into q(x)Including a few other omitted prefactors: in MS factorization scheme $\frac{d\hat{\sigma}^{\text{NLO, real}}}{dM^2} = \frac{\sigma_0}{N_c s} Q_q^2 \frac{\alpha_s}{2\pi} C_F \left[2\left(-\frac{1}{\epsilon} - \ln(4\pi) + \gamma\right) \frac{1+z^2}{1-z} \right] -2\frac{1+z^2}{1-z} \left(-2\ln(1-z) + \ln z - \ln\frac{M^2}{\mu^2}\right) \right]$ $-2(1-z)^2$ correction to artifact of my using cross section unconventional FDH scheme with 2 gluon helicities, vs. standard 2-2*ε* of CDR – drop! $q(x,\mu) = q_0(x) + \frac{\alpha_s(\mu)}{2\pi} \left(-\frac{1}{\epsilon} - \ln(4\pi) + \gamma_E \right) \int_x^1 \frac{d\xi}{\xi} \left[P_{qq}^{(0)}(x/\xi) q_0(\xi) + P_{qg}^{(0)}(x/\xi) g_0(\xi) \right]$ $= q_0(x) + \frac{\alpha_s(\mu)}{2\pi} \left(-\frac{1}{\epsilon} - \ln(4\pi) + \gamma_E \right) \int_x^1 \frac{dz}{z} \left[C_F \frac{1+z^2}{1-z} q_0(x/z) + P_{qg}^{(0)}(z) g_0(x/z) \right]$

L. Dixon, 1 Oct. 2009

L. Dixon, 1 Oct. 2009

• Note that there is no 1/(1-z) (soft gluon) singularity in this term.

Real radiation in general case

Cannot perform the phase-space integral analytically in $D=4-2\epsilon$, especially not for generic experimental cuts

Also can't do it numerically, because of $1/\epsilon^2$ poles

2 solutions:

- Slice out singular regions of phase-space, with (thin) width s_{min} Perform integral there approximately. Rest of integral done numerically. Check cancellation of s_{min} dependence.
- Subtract a function that mimics the soft/collinear behavior of the radiative cross section, and which you can integrate (analytically). Integral of the difference can be done numerically.

L. Dixon, 1 Oct. 2009

Dipole formalism

Catani, Seymour, hep-ph/9602277, hep-ph/9605323. Recently automated by several groups

Popular version of the subtraction method

L. Dixon, 1 Oct. 2009

Why are (N)NLO corrections large?

Some answers (not all for all processes)

- 1. LO parton distribution fits not very reliable due to large theory uncertainties
- New processes can open up at NLO. In W/Z
 production at Tevatron or LHC, qg -> γ*q opens up,
 and g(x) is very large but correction is negative!
- Large π² from analytic continuation from space-like region where pdfs are measured (DIS) to time-like region (Drell-Yan/W/Z):

$$2 \operatorname{Re} \xrightarrow{} = 1 + \frac{\alpha_s}{\pi} C_F \left(-\frac{1}{\epsilon^2} \right) \operatorname{Re} \left[\left(\frac{\mu^2}{-Q^2} \right)^{\epsilon} - \left(\frac{\mu^2}{+Q^2} \right)^{\epsilon} \right]$$
$$= 1 + \frac{\alpha_s}{\pi} C_F \left(-\frac{1}{\epsilon^2} \right) \operatorname{Re} \left[\exp(i\pi\epsilon) - 1 \right] = 1 + \frac{\alpha_s}{\pi} C_F \frac{\pi^2}{2}$$

L. Dixon, 1 Oct. 2009

4. Soft-gluon/Sudakov resummation

- A prevalent theme in QCD whenever one is at an edge of phase space.
- Infrared-safe but sensitive to a second, smaller scale
- Same physics as in (high-energy) QED: $e^+e^- = e^+e^-(\gamma)$
- What is prob. of no γ with $E > \Delta E$, $\theta > \Delta \theta$?

$$P = 1 - \frac{\alpha}{\pi} \int_{\Delta E} \frac{dE}{E} \int_{\Delta \theta} \frac{d\theta}{\theta} + \dots = 1 - \frac{\alpha}{\pi} \ln \Delta E \ln \Delta \theta + \dots$$

soft collinear
$$= \exp\left(-\frac{\alpha}{\pi} \ln \Delta E \ln \Delta \theta\right) + \dots$$

leading double logarithms -- in contrast to single logs of renormalization group, DGLAP equations. exponentiation because soft emissions are independent

L. Dixon, 1 Oct. 2009

Hadron collider examples

 $p_T(Z)$, important application to $p_T(W)$, m_W measurement at Tevatron

Production of heavy states, like

- top quark at the Tevatron (W and Z production less so),
- even a light Higgs boson at the LHC, via $gg \rightarrow H$ Called threshold resummation or $z \rightarrow 1$ limit, where $z = M^2/s$. Can be important for $z \ll 1$ though. For $m_H = 120$ GeV at 14 TeV LHC, $x = 10^{-4}$! Radiation is being suppressed because you are running out of phase space – parton distributions are falling fast.

Threshold Resummation

Can see the first threshold log in the NLO corrections to Drell-Yan/W/Z production:

$$C_F D_q(z,\mu_F) = 4C_F (1+z^2) \left(\frac{\ln(1-z) + \ln(M/\mu_F)}{1-z} \right)_+ -2\frac{1+z^2}{1-z} \ln z + \delta(1-z) \left(\frac{2}{3}\pi^2 - 8 \right)$$

It is a double-log expansion:

$$D_q^{(n)}(z,\mu_F) \propto (C_F lpha_s)^n \left[\left(rac{\ln^{2n+1}(1-z)}{1-z}
ight)_+ + \cdots
ight]$$

For $gg \rightarrow H$, same leading behavior at large *z*. Except color factor is much bigger: $C_A = 3$, not $C_F = 4/3$

$$D_{gg \rightarrow H}^{(n)}(z,\mu_F) \propto (C_A \alpha_s)^n \left[\left(\frac{\ln^{2n+1}(1-z)}{1-z} \right)_+ + \cdots \right]$$

L. Dixon, 1 Oct. 2009

1

Fast falling pdfs -- worse for gluons

The NNLO Frontier

NNLO QCD required for high precision at LHC:

- parton distributions
 - evolution (NNLO DGLAP kernels)
 - fits to DIS, Drell-Yan, and jet data
- LHC production of single Ws and Zs
 - "partonic" luminosity monitor
 - precision m_W
- Higgs production via gluon fusion and extraction of Higgs couplings
- NNLO progress historically in terms of number of scales:
 0,1,2, X
- More scales tougher, but more flexible applications

No-scale, inclusive problems

 $R(e^+e^- \rightarrow \text{hadrons}) \& R(\tau \rightarrow \nu_{\tau} + \text{hadrons})$

DIS sum rules: $\int_0^1 dx F_n(x)$

Gorishnii, Kataev, Larin; Surguladze, Samuel (1990)

Bjorken $(\bar{\nu}p - \nu p)$ Bjorken $(\bar{e}p)$ & Gross-Llewellyn-Smith $(\nu p + \bar{\nu}p)$ Larin, Vermaseren (1991)

Use unitarity of S-matrix to relate real production of hadrons to imaginary part of virtual-photon forward scattering:

Transforms inclusive phase-space integrals into loop integrals for virtual photon propagator. s (or Q^2) factors out by dim. analysis

No-scale problems (cont.)

Multi-loop integral technology: Integration by parts (IBP)

$$k \xrightarrow{p+k} q-k \qquad 0 = \int d^D p d^D q \dots \frac{\partial}{\partial q^{\mu}} \frac{k^{\mu}}{p^2 q^2 (p+q)^2 \dots}$$

 Reduces problem to system of linear equations, solved recursively by MINCER, Gorishnii, Larin, Surguladze, **Tkachov** (1989) in terms of few "master integrals"

No-scale \Rightarrow analytic simplicity – pure numbers

$$\begin{aligned} \frac{R_{e^+e^-}}{R^{(0)}} &= 1 + \frac{\alpha_s}{\pi} + \left(\frac{\alpha_s}{\pi}\right)^2 \left[-11\zeta(3) + \frac{365}{24} + n_f \left(\frac{2}{3}\zeta(3) - \frac{11}{12}\right) \right] \\ &+ \left(\frac{\alpha_s}{\pi}\right)^3 \left[\frac{275}{6}\zeta(5) - \frac{1103}{4}\zeta(3) - \frac{121}{8}\zeta(2) + \frac{87029}{288} \right] \\ &+ n_f \left(-\frac{25}{9}\zeta(5) + \frac{262}{9}\zeta(3) + \frac{11}{6}\zeta(2) - \frac{7847}{216} \right) \\ &+ n_f^2 \left(-\frac{19}{27}\zeta(3) - \frac{1}{18}\zeta(2) + \frac{151}{162} \right) \end{aligned}$$

365

12

L. Dixon, 1 Oct. 2009

QCD at Colliders: Lect. 3

 α $(\alpha) \geq 2\Gamma$

11\1

1-scale, inclusive problems

 $\begin{array}{ll} \mbox{Drell-Yan, W,Z total cross section} \\ \sigma^{\rm tot}(pp \rightarrow V + X) & \mbox{Hamberg, van Neerven, Matsuura (1990)} \\ \mbox{Higgs total cross section $(m_t \rightarrow \infty)$} \\ \sigma^{\rm tot}(pp \rightarrow H + X) & \mbox{Harlander, Kilgore; Anastasiou, Melnikov (2002);} \\ \hline \sigma & \mbox{depends on $z = M_{V,H}^2/\hat{s}$} \end{array}$

DIS coefficient functions $C_i(z)$ Van Neerven, Zijlstra (1991) F_L -- Moch, Vermaseren, Vogt (2004)

Leading-twist anomalous dimensions DGLAP kernels $P_{ij}(x)$ Moch, Vermaseren, Vogt (2004)

L. Dixon, 1 Oct. 2009

1-scale problems (cont.)

 Can apply unitarity and multi-loop integral technology to DY/Higgs production too: Anastasiou, Melnikov (2002) forward 2 → 2 scattering instead of propagator

cut imposes $\delta(p_i^2 - m_i^2)$, which includes $\delta(m_V^2 - z\hat{s})$

analytic structure of 1-scale integrals: (harmonic) polylogarithms $Li_n(z)$

1-scale applications

• Precise prediction of total cross sections σ_W and σ_Z at Tevatron (and LHC) – use ratio to measure $Br(W \rightarrow Iv)$

2-scale, semi-inclusive problem

Drell-Yan, W, Z rapidity distribution $Y_V = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$ $\frac{d\sigma(pp \rightarrow V + X)}{dY_V}$ Anastasiou, LD, Melnikov, Petriello (2003)

 $\hat{\sigma}$ depends on $\textbf{\textit{z}}=M_{V,H}^2/\hat{s}$ and Y_V

• Unitarity + multi-loop IBP method still works – one more "propagator" to implement rapidity δ function

2-scale applications

L. Dixon, 1 Oct. 2009

2-scale applications (cont.)

Uncertainty due to omitted higher-order terms very small

• Permits use of $d\sigma_{W,Z}/dY$ as "partonic luminosity monitor": use it to normalize other cross sections – pp luminosity, some detector efficiencies, drop out of ratio

> Dittmar, Pauss, Zurcher, hep-ex/9705004

L. Dixon, 1 Oct. 2009

∞ -scale problem

 "Holy grail": Flexible method for arbitrary (infrared-safe) observable at NNLO. Include isolation, p_T, rapidity cuts, jet algorithm dependence, ...

Partial wish list:

• e^+e^- event-shape observables

Now done!

Gehrmann, Gehrmann-de Ridder, Glover, Heinrich; Weinzierl

- pp or $ep \rightarrow$ inclusive jets, dijets, multijets
- $pp \rightarrow (W, Z, H) + X$ with parton-level cuts
- $pp \rightarrow (W, Z)$ + jets
- Amplitudes known for many of these processes
- Phase-space integration is the stumbling block
- Analytic structure too complicated; go numerical

L. Dixon, 1 Oct. 2009

Numerical phase-space integration

Phase-space integration (cont.)

Two basic approaches at present:

Method 1. Iterated sector decomposition

Partition integration region and remap to make divergences "1-dimensional", let computer find subtraction terms

Binoth, Heinrich; Anastasiou, Melnikov, Petriello (2003,2004)

L. Dixon, 1 Oct. 2009

Phase-space integration (cont.)

Method 2. Use known factorization properties of amplitudes to build subtraction terms (~1997-2003) for general processes, and integrate them, a la NL

Kosower; Weinzierl; Gehrmann, Gehrmann-de Ridder, Heinrich (2003) Frixione, Grazzini (2004); Gehrmann, Gehrmann-de Ridder, Glover (2004,2005) Del Duca, Somogyi, Trocsanyi (2005)

L. Dixon, 1 Oct. 2009

LHC applications

- So far, just from method 1
- $pp \rightarrow H + X \rightarrow \gamma \gamma + X$ with parton-level cuts

Anastasiou, Melnikov, Petriello, hep-ph/0409088; hep-ph/0501130

QCD at Colliders: Lect. 3

LHC applications (cont.)

• $pp \rightarrow W + X \rightarrow \ell \nu + X$ with parton-level cuts

Melnikov, Petriello, hep-ph/0603182

Important to constrain observed lepton rapidity (not *W* rapidity) and to impose realistic cuts on lepton p_T and missing E_T

 $p_{\perp}^{e} > p_{\perp}^{e,\min}, \quad |\eta^{e}| < 2.5, \ E_{\perp}^{miss} > 20 \text{ GeV}$

$p_{\perp}^{e,\min}$	LO	NLO	NNLO
Inc	11.70,13.74,15.65	16.31,16.82,17.30	16.31, 16.40, 16.50
20	5.85, 6.96, 8.01	7.94, 8.21, 8.46	8.10,8.07,8.10
30	4.305, 5.12, 5.89	6.18, 6.36, 6.54	6.18, 6.17, 6.22
40	0.628, 0.746, 0.859	2.07, 2.10, 2.11	2.62, 2.54, 2.50
50	0,0,0	0.509,0.497,0.480	0.697, 0.651, 0.639

As in more inclusive computations, scale uncertainties highly reduced at NNLO

TABLE I: The lepton invariant mass distribution $d\sigma/dM^2$, $M = m_W$, for on-shell W production in the reaction $pp \rightarrow W^- X \rightarrow e^- \bar{\nu} W$, in pb/GeV², for various choices of $p_{\perp}^{e,\min}$, GeV and $\mu = m_W/2, m_W, 2m_W$.

L. Dixon, 1 Oct. 2009

End of Lecture 3

L. Dixon, 1 Oct. 2009