QCD at Colliders Lecture 4

Lance Dixon, SLAC

Graduate College in Mass, Spectrum and Symmetry Berlin 2 Oct. 2009

Lecture 4 Outline

- NLO W + 3-jet production at hadron colliders
 Lessons about scales
- QCD corrections and the Higgs [→ γ] at the LHC

W + 3 jets at NLO

C.F.Berger, Z. Bern, LD, D. Forde, F. Febres Cordero, T. Gleisberg, H. Ita, D. Kosower, D. Maître, 0902.2760, 0907.1984

- Motivated as a background to SUSY searches in the "JETS + MET" channel, when the charged lepton in $W \rightarrow l v_l$ is lost
- Also closely related to Z + 3 jets (in progress), another SUSY background when $Z \rightarrow vv$
- Many different kinematic configurations can appear in final state
- have to be careful to choose scale μ correctly to avoid pathologies!
- First phenomenologically interesting results from BlackHat
- [+Sherpa]

Related work by Ellis, Melnikov, Zanderighi 0901.4101, 0906.1445

Virtual Corrections

The latter include many more terms, and are much more timeconsuming for computer to evaluate. But they are much smaller (~ 1/30 of total cross section) so evaluate them much less often.

Numerical Stability of Virtual Terms

• Nontrivial because there are many kinematic regions where there are large cancellations between terms in this expansion, leading to roundoff error: $A^{1-loop} = \sum_{i} d_{i} \underbrace{\downarrow}_{i} \underbrace{\downarrow}_{i} \underbrace{\downarrow}_{i} + \sum_{i} c_{i} \underbrace{\downarrow}_{i} \underbrace{\downarrow}_{i} + \sum_{i} b_{i} \ge \bigcirc$

10⁴

10²

10¹ E

+ $R + O(\epsilon)$

BlackHat has a lot of tests for instability; if a piece of A^{1-loop} is unstable, it recomputes that piece with higher precision (~32 digits).
Resulting distributions of

 $\sqrt{s} = 14 \text{ TeV}$ $g d \rightarrow e^{-\bar{v}} d\bar{d} u$ $g d \rightarrow e^{-\bar{v}} d\bar{d} u$ $g d \rightarrow e^{-\bar{v}} g g u$ $g d \rightarrow e^{-\bar{v}} d\bar{d} u$

• Resulting distributions of log(relative error)

QCD at Colliders, Lect. 4

 \rightarrow

W + 3 jets at Tevatron at NLO

L. Dixon, 2 Oct. 2009

W + 3 jets at LHC at NLO

• LHC has a much greater dynamic range; there will be events with jet E_T s much larger than M_W . Have to be more careful how we choose the renormalization + factorization scale. • Indeed, the scale we used at the Tevatron,

$$\mu = E_T^W \equiv \sqrt{M_W^2 + p_T^2(W)}$$

which was also used in several other LO studies, turns out to be a really bad choice – NLO cross section can even dive negative! \rightarrow

Better Scale Choice(s)

• What's going on? Consider these 2 configurations:

• If (a) dominates, then $\mu = E_T^W \equiv \sqrt{M_W^2 + p_T^2(W)}$ is OK

- But if (b) dominates, then the scale E_T^W is way too low.
- Looking at large E_{τ} for the 2nd jet forces configuration (b).
- The total (partonic) transverse energy is a better variable; gets large properly for both (a) and (b)

$$\hat{H}_T = \sum_p E_T^p + E_T^e + E_T^\nu$$

• Another reasonable scale is invariant mass of the n jets

Bauer, Lange 0905.4739

Compare the Two Scale Choice(s)

QCD at Colliders, Lect. 4

L. Dixon, 2 Oct. 2009

Total Transverse Energy H_T at LHC

$$H_T = \sum_j E_{T,j}^{\text{jet}} + E_T^e + E_T^\nu$$

often used in supersymmetry searches

L. Dixon, 2 Oct. 2009

QCD at Colliders, Lect. 4

10

Jet Separations $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$

Pretty well modeled by LO, except for first 2 jets

L. Dixon, 2 Oct. 2009

QCD Corrections and the Higgs $[\rightarrow \gamma\gamma]$ at the LHC

Production & decay mechanisms

L. Dixon, 2 Oct. 2009

$gg \rightarrow H \rightarrow \gamma\gamma$ Signal

- Height proportional to $\sigma(pp \to H + X) \times Br(H \to \gamma\gamma)$
- Compute σ and Br as expansion in α_s
- Series for Br is quite convergent, ~6% uncertainty from m_b in Γ_H
- Series for *σ* is *poorly* behaved: first correction (NLO) is 80% ! Dawson; Djouadi, Graudenz, Spira, Zerwas (1991)

• Drove big theoretical effort to compute NNLO term

Catani, DeFlorian, Grazzini; Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven (2001–03)

L. Dixon, 2 Oct. 2009

$\sigma(pp \rightarrow H + X)$ at NNLO

To make tractable, use large m_t approximation: reduces number of loops by 1 $g \cos$ $C(m_t)HG^a_{\mu\nu}G^{a\,\mu\nu}$ - - H $g \cup 00$ effective vertex Still many amplitude interferences, with different numbers of final state gluons (or quarks). Each diverges; only sum is finite. 000 000 virtual x virtual ۵۵۵ x م real x real 0002000 20005 000 000,000 000 • virtual x real • doubly-virtual x real

L. Dixon, 2 Oct. 2009

$\sigma(pp \rightarrow H + X)$ at NNLO

Results expressed as *K* factor:

$\sigma(pp \rightarrow H + X)$ at N³LO_{SV}

Using partial (logarithmically enhanced) results at N³LO, even more stable results are obtained :

Moch, Vogt, hep-ph/0508265 (also Ravindran, hep-ph/0603041)

L. Dixon, 2 Oct. 2009

Corrections to large m_t approximation

Harlander, Ozeren, 0909.3420

Recent evaluation of these corrections at NLO (to check convergence against the known exact result):

L. Dixon, 2 Oct. 2009

Corrections to large m_t approx. (cont.)

Showing that these corrections are quite small, ~ 1-2%.

L. Dixon, 2 Oct. 2009

And then at NNLO:

Harlander, Ozeren, 0909.3420

$\sigma(pp \rightarrow H + X)$ pdf uncertainty

Martin, Stirling, Thorne, Watt, 0905.3531

L. Dixon, 2 Oct. 2009

20

$\frac{d\sigma}{dY}(pp \rightarrow H + X)$ at NNLO

Anastasiou, Melnikov, Petriello, hep-ph/0501130

Y = rapidity of Higgs boson

- Can include parton-level event cuts (photon kinematics, isolation, jet or jet veto, ...)
- Can use NNLO information to reweight event generators (PYTHIA, MC@NLO) in bins of p_T, Y
 Davatz, et al., hep-ph/0604077

$$gg \rightarrow H \rightarrow \gamma\gamma$$
 interference?

LD, M.S. Siu, hep-ph/0302233

• In principle as important as signal, since it contaminates peak

Is Signal =
$$\sigma_{ii \to H} \times Br(H \to ff) = \frac{\Gamma_i \Gamma_f}{\Gamma}$$

• Resonance-continuum interference would negate this:

$$\mathcal{A}(gg \to \gamma\gamma) = \frac{-\mathcal{A}(gg \to H) \mathcal{A}(H \to \gamma\gamma)}{\widehat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}(gg \to \gamma\gamma)$$

- Normally interference effects are small for a narrow resonance, and $\Gamma_H \sim$ few MeV for Higgs.
- However, this resonance is pretty wimpy, ~ (one-loop)²

• Total $gg \rightarrow \gamma \gamma$ amplitude

$$\mathcal{A}_{gg \to \gamma\gamma} = \frac{-\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma}}{\hat{s} - m_H^2 + im_H \Gamma_H} + \mathcal{A}_{\text{cont}}$$

Interference term has 2 pieces

$$\delta\hat{\sigma}_{gg\to H\to\gamma\gamma} = -2(\hat{s} - m_H^2) \frac{\operatorname{Re}\left(\mathcal{A}_{gg\to H}\mathcal{A}_{H\to\gamma\gamma}\mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2\Gamma_H^2} - 2m_H\Gamma_H \frac{\operatorname{Im}\left(\mathcal{A}_{gg\to H}\mathcal{A}_{H\to\gamma\gamma}\mathcal{A}_{\operatorname{cont}}^*\right)}{(\hat{s} - m_H^2)^2 + m_H^2\Gamma_H^2}$$

- "Re" term vanishes upon integration over \hat{s} , provided that $\mathcal{A}_{gg \rightarrow H}, \mathcal{A}_{H \rightarrow \gamma\gamma}, \mathcal{A}_{cont}$ do not vary too quickly. Dicus, Willenbrock
- "Im" term needs relative phase, resonance vs. continuum.

L. Dixon, 2 Oct. 2009

L. Dixon, 2 Oct. 2009

- Effect is -(2-6)% over region where $\gamma\gamma$ is visible.
- Gets very large near WW threshold. But visibility of $\gamma\gamma$ is very poor there

L. Dixon, 2 Oct. 2009

$\gamma\gamma$ backgrounds

- Multiple components, working from the "outside" in:
- Non-photons faking photons: e[±], hadrons
- Real photons from hadronic decay, principally $\pi^0 \rightarrow \gamma \gamma$
- Photons from QED bremsstrahlung from e[±]
- Photons from fragmentation "long" distance radiation from within a hadronic jet, $p_T^{\chi \text{ jet}} < 1 \text{ GeV}$
- Photons from QCD hard process "short" distance radiation off quark lines, $p_T^{\gamma, q} > 1$ GeV. Hard processes include:
 - $q\bar{q} \rightarrow \gamma\gamma$ LO
 - $qg \rightarrow \gamma \gamma q$ NLO, enhanced by g(x), FS singularity
 - $gg \rightarrow \gamma\gamma$ NNLO, enhanced by g(x)

Photon isolation a key tool for suppressing many of the components

L. Dixon, 2 Oct. 2009

Photon isolation criteria

Cut on nearby transverse hadronic energy

• Required to reject jets or π^0 s faking γ s, reduce fragmentation terms

• Either

- standard cone: Circle, radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ in (η, ϕ) plar Require $E_{\rm T} < E_{\rm T max}$ inside circle.
- smooth (Frixione) cone: Require $E_{T}(r)$ less than

$$E_{\mathrm{T\,max}}(r) \equiv p_{\mathrm{T}}(\gamma) \,\epsilon \, \frac{1 - \cos r}{1 - \cos R}$$

for all circles with r < R.

Frixione, hep-ph/9801442

Smooth cone has no fragmentation contribution, but may be difficult to exploit experimentally (transverse shower extent, finite detector granularity).

• Too strict isolation: a) is not infrared safe, and b) lowers efficiency at high L

Irreducible yybackground

Bern, LD, Schmidt, hep-ph/0206194; DIPHOX: Binoth, Guillet, Pilon, Werlen, hep-ph/9911340

Irreducible *yy* background

With a tighter E_T cut:

L. Dixon, 2 Oct. 2009

Angular distribution of γ 's

- Scalar Higgs decay is flat in $\cos \theta^*$. At LO, $\cos \theta^* = \tanh y^*$, where $y^* \equiv \frac{1}{2}(y(\gamma_1) - y(\gamma_2))$.
- QCD background from qq̄, qg, and gg enhanced at small θ*, large y*, due to t-channel fermion exchange. Information can be used to improve S/√B, but only marginally.
 better to use in likelihood function than as hard cut

L. Dixon, 2 Oct. 2009

Require additional jet activity?

Motivation:

Abdullin et al., hep-ph/9805341

- Signal dominantly $gg \rightarrow H$, really likes to radiate $(8 + 8 \rightarrow 1)$.
- Background has $q\bar{q} \rightarrow \gamma\gamma$, smaller color charge, less radiation

$M_H = 120 \text{ GeV}$	no $\sqrt{\hat{s}}$ cut	$\sqrt{\hat{s}} > 210 \text{ GeV}$	$\sqrt{\hat{s}} > 300 \text{ GeV}$
σ_S^{QCD} fb	10.6	7.0	4.0
σ_S^{EW} fb	1.1	0.81	0.58
σ_B fb/GeV	25.3	9.1	2.9

de Florian, Kunszt, hep-ph/9905283; de Florian, Kulesza Vogelsang, hep-ph/0511205

- Can play a similar game using transverse momentum of photon pair, $q_T(\gamma\gamma)$.
- Maybe best done via likelihoods as well?

Conclusions

- Higher order QCD for the LHC is an extremely rich field we only scratched the surface of it here
- At hadron colliders, the physics is QCD
- up to small, electroweak corrections!
- To uncover new physics of electroweak strength, we will need to understand QCD at colliders quite well
- Fortunately, there are lots of energetic young researchers
- But still, lots of work to be done, even as the data begin to roll in from the energy frontier!