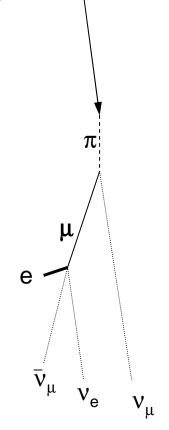
Atmospheric muons & neutrinos in neutrino telescopes


- Neutrino oscillations
- Muon & neutrino beams
- Muons & neutrinos underground

Atmospheric neutrinos

- Produced by cosmic-ray interactions
 - Last component of secondary cosmic radiation to be measured
 - Close genetic relation with muons
 - $p + A \rightarrow \pi^{\pm} (K^{\pm}) + other hadrons$

•
$$\pi^{\pm}$$
 (K[±]) $\rightarrow \mu^{\pm} + \nu_{\mu} (\bar{\nu}_{\mu})$

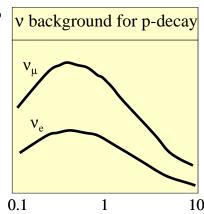
• $\mu^{\pm} \rightarrow e^{\pm} + \overline{\nu}_{\mu} (\nu_{\mu}) + \nu_{e} (\overline{\nu}_{e})$

р

Historical context

Detection of atmospheric neutrinos

- Markov (1960) suggests Cherenkov light in deep lake or ocean to detect atmospheric v interactions for neutrino physics
- Greisen (1960) suggests water Cherenkov detector in deep mine as a neutrino telescope for extraterrestrial neutrinos
- First recorded events in deep mines with electronic detectors, 1965: CWI detector (Reines et al.); KGF detector (Menon, Miyake et al.)


Two methods for calculating atmospheric neutrinos:

- From muons to parent pions infer neutrinos (Markov & Zheleznykh, 1961; Perkins)
- From primaries to π , K and μ to neutrinos (Cowsik, 1965 and most later calculations)
- Essential features known since 1961: Markov & Zheleznykh, Zatsepin & Kuz'min
- Monte Carlo calculations follow second method

Stability of matter: search for proton decay, 1980's

- IMB & Kamioka -- water Cherenkov detectors
- KGF, NUSEX, Frejus, Soudan -- iron tracking calorimeters
- Principal background is interactions of atmospheric neutrinos
- Need to calculate flux of atmospheric neutrinos

Berlin, 1 October 2009

Historical context (cont'd)

Atmospheric neutrino anomaly - 1986, 1988 ...

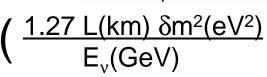
- IMB too few μ decays (from interactions of $\nu_{\mu})$ 1986
- Kamioka μ -like / e-like ratio too small.
- Neutrino oscillations first explicitly suggested in 1988 Kamioka paper
- IMB stopping / through-going consistent with no oscillations (1992)
- Hint of pathlength dependence from Kamioka, Fukuda et al., 1994

Discovery of atmospheric neutrino oscillations by S-K

- Super-K: "Evidence for neutrino oscillations" at Neutriino 98
- Subsequent increasingly detailed analyses from Super-K: $v_{\mu} \leftarrow \rightarrow v_{\tau}$
- Confirming evidence from MACRO, Soudan, K2K, MINOS
- Analyses based on ratios comparing to 1D calculations
- Compare up vs down

Parallel discovery of oscillations of Solar neutrinos

- Homestake 1968-1995, SAGE, Gallex ... chemistry counting expts.
- Kamioka, Super-K, SNO ... higher energy with directionality
- $\nu_e \leftrightarrow (\nu_\mu, \nu_\tau)$


DETECTOR

ZENITH

Atmospheric neutrino beam

- Cosmic-ray protons produce
 neutrinos in atmosphere
- $v_{\mu}/v_{e} \sim 2$ for $E_{v} < GeV$
- Up-down symmetric
- Oscillation theory:
 - Characteristic length (E/δm²)
 - related to $\delta m^2 = m_1^2 m_2^2$
 - Mixing strength ($sin^22\theta$)
- Compare 2 pathlengths
 - Upward: 10,000 km
 - Downward: 10 20 km

$$P(v_{\mu} \leftrightarrow v_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{1}{2}\right)$$

ZENITH

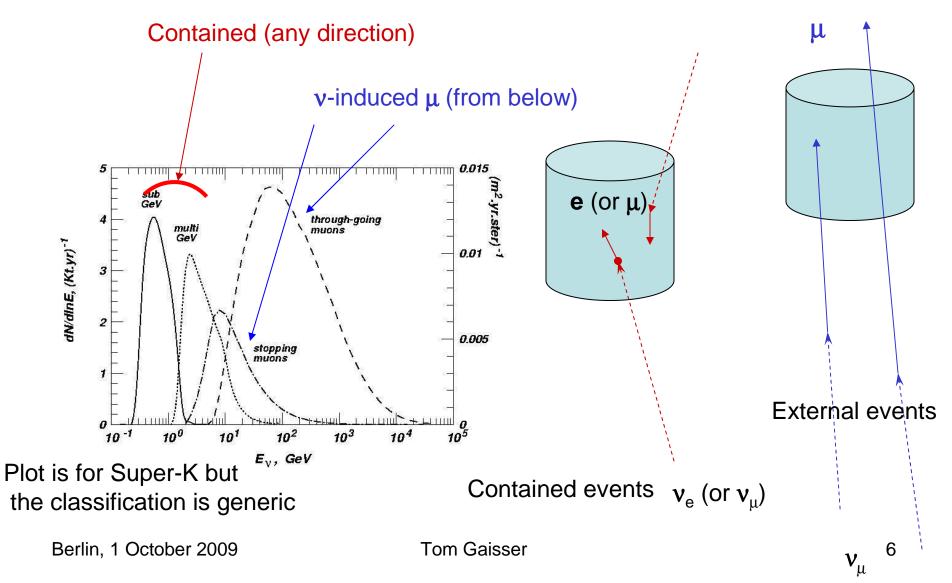
DETECTOR

Wolfenstein; Mikheyev & Smirnov

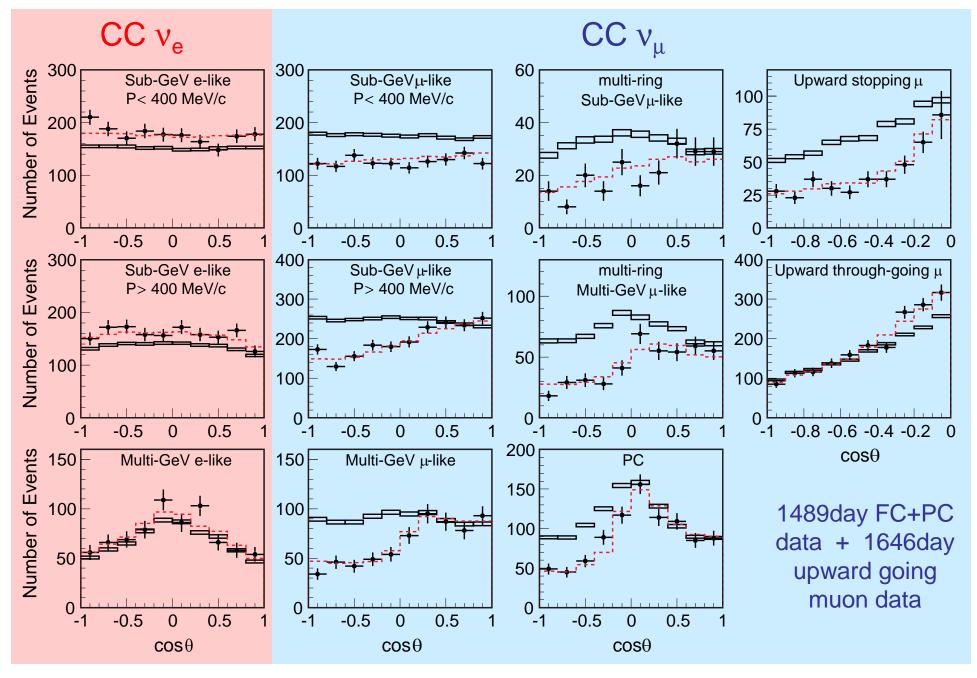
е

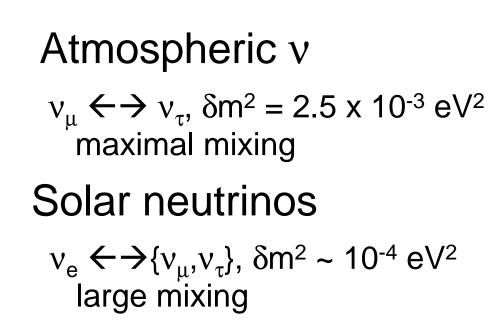
 $\bar{\nu}_{\mu}$

Berlin, 1 October 2009

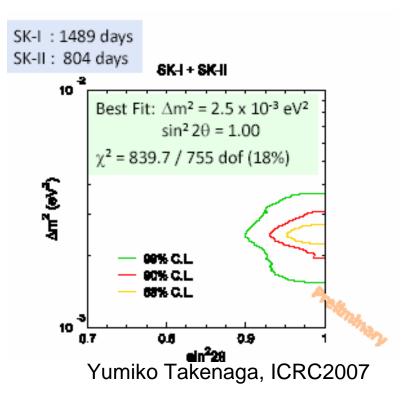

Tom Gaisser

 ν_{e}

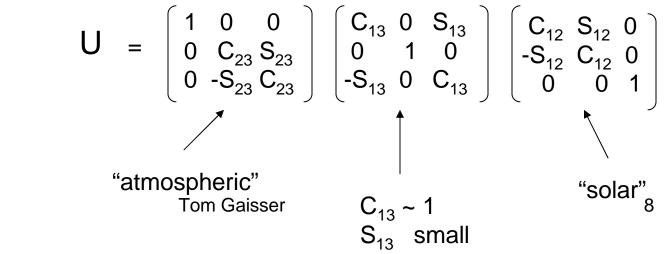

 ν_{μ}


р

Classes of atmospheric v events



Super-K atmospheric neutrino data (hep-ex/0501064)



3-flavor mixing

Flavor state $|v_{\alpha}) = \Sigma_i U_{\alpha i} |v_i$, where $|v_i\rangle$ is a mass eigenstate

Berlin, 1 October 2009

High-energy Neutrino telescopes

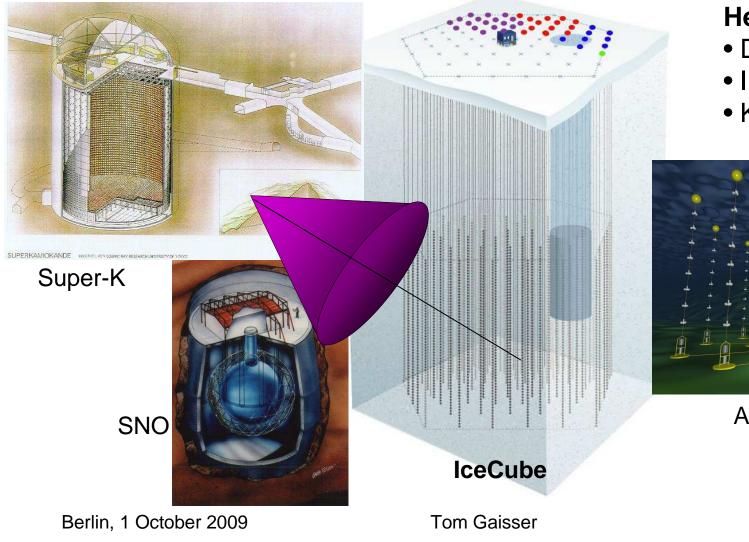

Detector	Number of OMs	Enclosed volume	Depth	Status
		(Megatons)	(m.w.e)	
Baikal (NT200+)	230	10	1100-1310	Operating
AMANDA	677	15	1350-1850	2000-2009
ANTARES	900	10	2050-2400	Operating
IceCube	3540	500	1350-2250	Operating, 2009
	5160	900	1350-2250	2011
KM3Net	\sim 10,000	km^3	2300-3300 (NEMO)	Design study
		$\rm km^3$	3000-4000 (NESTOR)	
		km^3	1400-2400 (ANTARES site)	
GVD (future Baikal)	~ 2500	km ³	800-1300	Design study

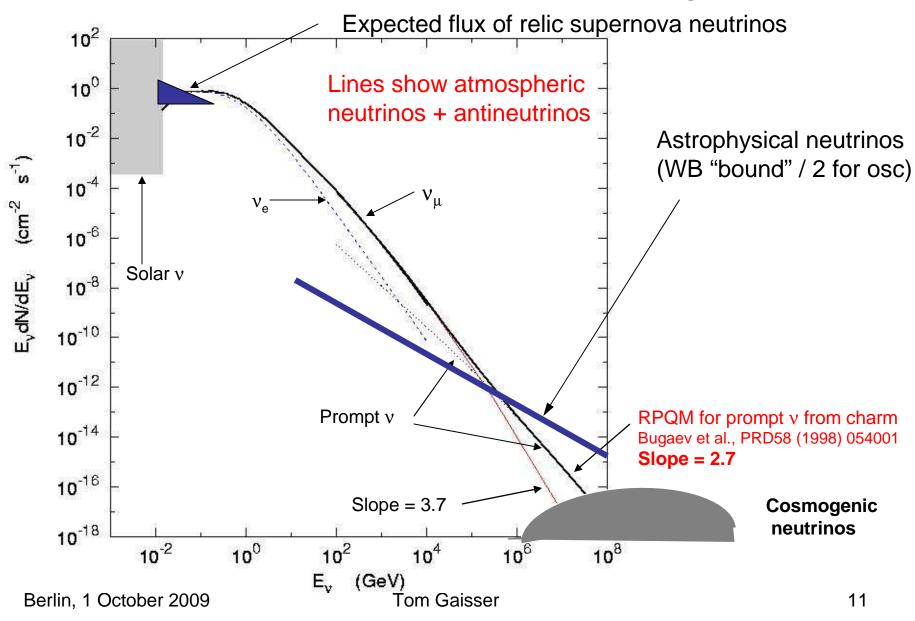
Table 4: Parameters of existing and proposed neutrino neutrino telescopes in water and ice.

Large volume--coarse instrumentation--high energy (> TeV) as compared to Super-K with 40% photo-cathode over 0.05 Mton

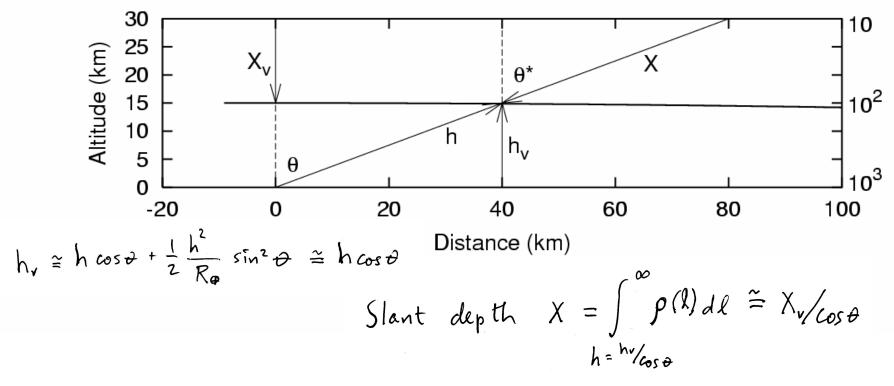
Detecting neutrinos in H₂0

Proposed by Greisen, Markov in 1960

Heritage:


- DUMAND
- IMB
- Kamiokande

ANTARES


The neutrino landscape

The atmosphere (exponential approximation)

Pressure = $X_v = X_o \exp\{-h_v / h_o\}$, where $h_o = 6.4$ km for $X_v < 200$ g / cm² and $X_o = 1030$ g / cm²

Density = $\rho = -dX_v / dh_v = X_v / h_o$ $X_v \sim p = \rho RT \rightarrow h_o \sim RT$

Berlin, 1 October 2009

Cascade equations

For hadronic cascades in the atmosphere

$$\begin{split} \frac{\mathrm{d}N_i(E,X)}{\mathrm{d}X} &= -\bigg(\frac{1}{\lambda_i} + \frac{1}{d_i}\bigg)N_i(E,X) + \sum_j \int \frac{F_{ji}(E_i,E_j)}{E_i} \frac{N_j(E_j)}{\lambda_j} \,\mathrm{d}E_j,\\ \mathbf{X} &= \text{depth into atmosphere} \quad \mathbf{d} = \text{decay length} \\ \lambda &= \text{Interaction length} \quad F_{ac}(E_c,E_a) \equiv E_c \frac{\mathrm{d}n_c(E_c,E_a)}{\mathrm{d}E_c} \end{split}$$

- $F_{ji}(E_i, E_j)$ has no explicit dimension, so $F \rightarrow F(\xi)$ $-\xi = E_i/E_j \& \int \dots F(E_i, E_j) dE_j / E_i \rightarrow \int \dots F(\xi) d\xi / \xi^2$
 - Small scaling violations from $m_{i},\,\Lambda_{\text{QCD}}$ ~ GeV, etc
 - Still... a remarkably useful approximation

Boundary conditions

Boundary condition for inclusive flux

Berlin, 1 October 2009

Tom Gaisser

 $N(E,0) = N_0(E) = \frac{\mathrm{d}N}{\mathrm{d}E} \approx 1.8 \, E^{-2.7}$

nucleons

 ${
m cm^2\,sr\,s\,GeV}/A$

EAS

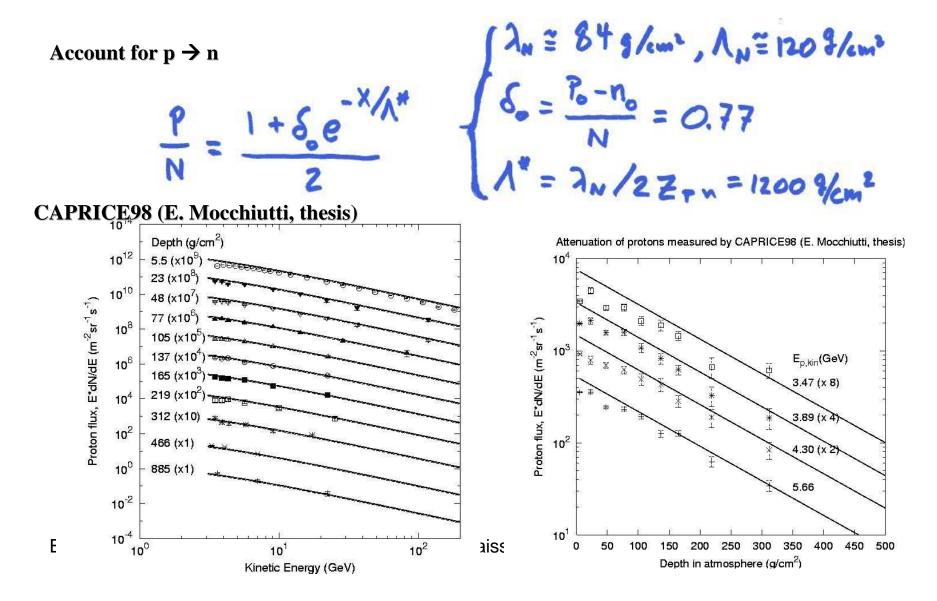
 $N(E,0) = A\,\delta(E - \frac{E_0}{A}),$

Uncorrelated fluxes in atmosphere **Example: flux of nucleons** Approximate: $\lambda \sim \text{constant}$, leading nucleon only $\frac{N(\varepsilon, x)}{\lambda_{N}} + \frac{1}{\lambda_{N}} \int N(\frac{\varepsilon}{s}, x) F(\varepsilon) \frac{d\varepsilon}{s}$ Separate X- and E-dependence; try factorized solution, $N(E,X) = f(E) \cdot g(X)$, **f** (**E**) ~ **E** $-(\gamma+1)$ $\frac{1}{2} + \frac{1}{2} - \frac{1}{2}$ Separation constant Λ_N describes attenuation of nucleons in atmosphere Berlin, 1 October ∠∪∪∋ I UIII Jaissei IJ

Nucleon fluxes in atmosphere

Evaluate Λ_N :

$$-\frac{1}{\Lambda_{N}} = -\frac{1}{\lambda_{M}} + \frac{1}{\lambda_{N}} \frac{E^{Y+1}}{b} \int_{0}^{1} b\left(\frac{T}{E}\right)^{Y+1} F_{NM}(T) \frac{dT}{T}$$


$$\int_{0}^{1} T^{Y-1} F_{NM}(T) dT = Z_{NM} \cong 0.3 + \Lambda_{N} = \frac{\lambda_{M}}{1-Z_{NM}}$$
Flux of nucleons:
$$N(E, X) = g(X) f(E) = abe^{-Y_{M}} E^{-(Y+1)} + ab = K$$

$$N(E, X) = N(E, 0) \times \exp\{-X/\Lambda_{N}\}$$
K fixed by primary spectrum at X = 0

.

Berlin, 1 October 2009

Comparison to proton fluxes

π^{\pm} in the atmosphere

$$\frac{\mathrm{d}\Pi}{\mathrm{d}X} = -\Pi(E, X) \left(\frac{1}{\Lambda_{\pi}} + \frac{\epsilon_{\pi}}{E \, X \, \cos \theta} \right) + \frac{Z_N \pi}{\lambda_N} N_0(E) \, e^{-X/\Lambda_N}.$$

$$\Pi(E, X) = e^{-(X/\Lambda_{\pi})} \frac{Z_N \pi}{\lambda_N} N_0(E) \int_0^X \exp\left[\frac{X'}{\Lambda_{\pi}} - \frac{X'}{\Lambda_N}\right] \left(\frac{X'}{X}\right)^{\epsilon_{\pi}/E \cos \theta} \mathrm{d}X'.$$

$$(3.30)$$

$$Z_{ac} \equiv \int_0^1 (x_L)^{\gamma - 1} F_{ac}(x_L) \, \mathrm{d}x_L, \quad \swarrow \frac{1}{d_{\pi}} = \frac{m_{\pi} c^2 h_0}{E \, c \, \tau_{\pi} \, X \, \cos \theta} \equiv \frac{\epsilon_{\pi}}{E \, X \, \cos \theta}.$$

[\] pion decay probability

 π decay or interaction more probable for E < ϵ_{π} or E > ϵ_{π} = 115 GeV Berlin, 1 October 2009

π^{\pm} (K[±]) in the atmosphere

• Low-energy limit: $E_{\pi} < \epsilon_{\pi} \sim 115 \text{ GeV}$

$$TT(E,X) \implies N(E) \stackrel{Z_{NT}}{\xrightarrow{}} e^{-X/\Lambda_N} \xrightarrow{X \in GSP} \overline{E_{T}}$$

$$\mathcal{D}_{\pi}(E, \mathbf{x}) = \frac{\mathcal{E}_{\pi}}{\mathbf{x} E \omega s \vartheta} \quad T(E, \mathbf{x}) = N(E) \frac{\mathcal{E}_{n\pi}}{\lambda_{n}} e^{-\mathbf{x}/\Lambda_{n}}$$

Production spectrum

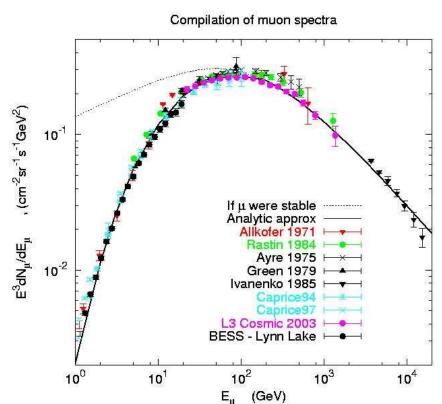
$$P_{\mu}(E_{\mu}, x) = \int \frac{dn}{dE_{\mu}}(E_{\mu}, E_{\pi}) d\Gamma_{\pi}(E_{\pi}, x) dE_{\pi}$$

Berlin, 1 October 2009

π^{\pm} (K[±]) in the atmosphere

• High-energy limit: $E_{\pi} > \epsilon_{\pi} \sim 115 \text{ GeV}$

$$T(E,X) \rightarrow N(E) \frac{Z_{NT}}{1-Z_{NN}} \frac{\Lambda_{T}}{\Lambda_{T}-\Lambda_{N}} \left(e^{-X/\Lambda_{T}} - e^{-X/\Lambda_{N}} \right)$$


$$\mathcal{D}_{\pi}(E, \mathbf{x}) = \frac{\epsilon_{\pi}}{\mathbf{x} E \omega s \vartheta} TT(E, \mathbf{x})$$

Spectrum of decaying pions one power steeper for $E_{\pi} >> \epsilon_{\pi}$

Berlin, 1 October 2009

μ and ν_{μ} in the atmosphere

- To calculate spectra of μ and ν
 - Multiply Π(E,X) by
 pion decay probability
 - Include contribution of kaons
 - Dominant source of neutrinos
 - Integrate over kinematics of $\pi \rightarrow \mu + \nu_{\mu}$ and K $\rightarrow \mu + \nu_{\mu}$
 - Integrate over the atmosphere (X)
 - Good description of data

2-body decays of π^{\pm} and K[±]

SCHÖNERT, GAISSER, RESCONI, AND SCHULZ

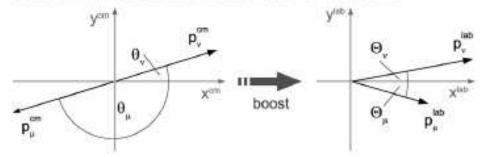


FIG. 1. Two-body decay of the parent meson into muon and neutrino. The left figure displays the back-to-back kinematics in the meson cm frame. The right figure shows the momenta after Lorentz transformation into the laboratory frame. $\pi + \rightarrow \mu^+ + \nu_{\mu}$ 99.99%

 $K^+ \rightarrow \mu^+ + \nu_{\mu} \quad 63.44\%$

also for negative mesons to produce anti-neutrinos

In rest frame of parent μ and ν have equal and opposite 3 momentum **p** CM energy of neutrino = p = |**p**| = E_v* = (M² - μ^2) / (2 M) CM energy of muon = p² + μ^2 = E_{μ}* = (M² + μ^2) / (2 M) M = mass of parent meson, μ = mass of muon

For both μ and ν : $E_{LAB} = \gamma E^* + \beta \gamma p \cos(\theta)$

Berlin, 1 October 2009

Momentum distributions for π , K

 $\mathsf{E}_{\mathsf{LAB}} = \gamma \,\mathsf{E}^* + \beta \,\gamma \,\mathsf{p} \,\cos(\theta)$

 $\gamma = E_M / M$ and assume $E_{LAB} >> M$ so $\beta \rightarrow 1$

Then $(E^* - p) / M < E_{LAB} / E_M < (E^* + p) / M$ because $-1 < \cos(\theta) < 1$

Also, decay is isotropic in rest frame so $dn / d cos(\theta) = constant$

But $d E_{LAB} = d \cos(q)$, so $dn / d E_{LAB} = constant$

Normalization requires exactly one μ or ν so the normalization gives

(constant)⁻¹ = $E_M (1 - r)$ where $r = \mu^2 / M^2$ for both μ and ν

Note: $r_{\pi} = 0.572$ while $r_{K} = 0.0458$, an important difference !

Berlin, 1 October 2009

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \mu \text{ and } \nu_{\mu} \text{ differ only by kinematics} \\ \text{of } \pi^{\pm} \text{ and } K^{\pm} \text{ decay} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{dN_{\mu}}{dE_{\mu}} \simeq \frac{N_{0}(E_{\mu})}{1-Z_{NN}} \\ \left\{ \begin{array}{l} A_{\pi\mu} \frac{1}{1+B_{\pi\mu}\cos\theta E_{\mu}/\epsilon_{\pi}} \\ +0.635 A_{K\mu} \frac{1}{1+B_{K\mu}\cos\theta E_{\mu}/\epsilon_{K}} \end{array} \right\}. \\ \end{array} \\ \begin{array}{l} A_{\pi\mu} \equiv Z_{N\pi} \left[1-(r_{\pi})^{\gamma+1} \right] (1-\tau_{\pi})^{-1} (\gamma+1)^{-1} \\ \end{array} \\ \begin{array}{l} B_{\pi\mu} \equiv \left(\frac{\gamma+2}{(\gamma+1)} \frac{1-(r_{\pi})^{\gamma+1}}{1-(r_{\pi})^{\gamma+2}} \frac{A_{\pi} - A_{N}}{A_{\pi} \ln (A_{\pi}/A_{N})} \\ \end{array} \\ \begin{array}{l} \frac{dN_{\nu}}{dE_{\nu}} \simeq \frac{(\gamma+2)}{(\gamma+1)} \frac{1-(r_{\pi})^{\gamma+1}}{1-(r_{\pi})^{\gamma+2}} \frac{A_{\pi} - A_{N}}{A_{\pi} \ln (A_{\pi}/A_{N})} \\ \end{array} \\ \begin{array}{l} \frac{dN_{\mu}}{dE_{\mu}} \approx \frac{0.14 E^{-2.7}}{cm^{2} \operatorname{s sr} \operatorname{GeV}} \left\{ \frac{1}{1+\frac{1.1E_{\mu}\cos\theta}{115 \operatorname{GeV}}} + \frac{0.054}{1+\frac{11E_{\mu}\cos\theta}{850 \operatorname{GeV}}} \right\} \\ \end{array} \\ \end{array}$$

Berlin, 1 October 2009

Spectrum-weighted moments

$$Z_{ab} \equiv \int \xi^{(\gamma-1)} F_{ab}(\xi) d\xi$$

projectile	p	π^+	<u></u>
p	0.263	-	
\overline{n}	0.035		
π^+	0.046	0.243	0.030
π^-	0.033	0.028	0.022
π^0	0.039	0.098	0.026
K^+	0.0090	0.0067	0.211
K	0.0028	0.0067	0.012

Interaction vs. decay

 $X_v = 100 \text{ g} / \text{cm}^2 \text{ at } 15 \text{ km}$ altitude

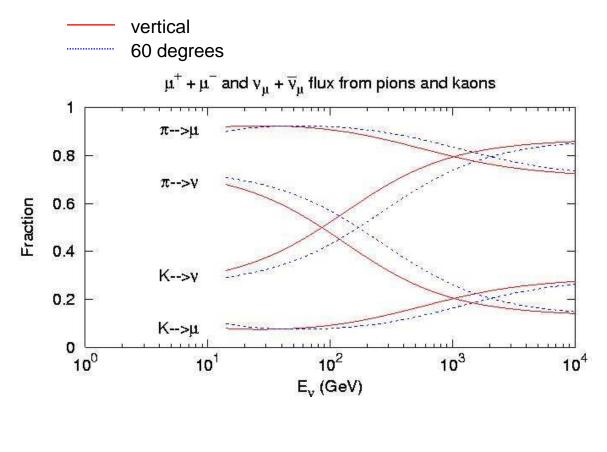
which is comparable to interaction lengths of hadrons in air

Table 5.1: Interaction lengths of hadrons (g/cm^2) . $E_{\rm Lab}({
m TeV})$ p-p p-air $\pi-p$ $\pi-\text{air}$ K-p K-air0.1 53 86 82 116 96 138 1.0 49 83 [74] [107] 1000 30 60 [41] [70] - 10^{6} 15 [43] [26][50]

Relative magnitude of λ_i and $d_i = X \cos\theta$ (E / ϵ_i) determines competition between interaction and decay

Table 3.1: Decay constants.

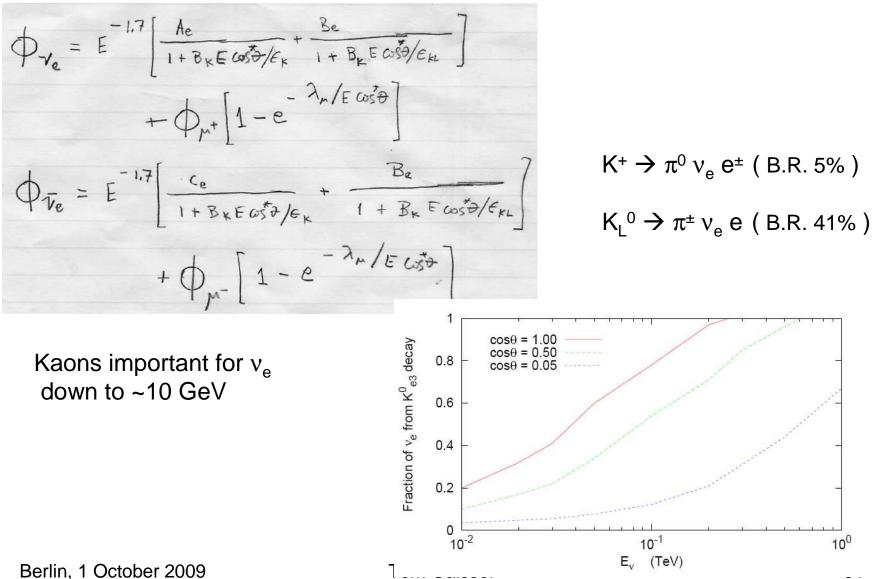
Particle	$c au_0(ext{cm})$	ϵ (GeV)
μ^{\pm} π^{\pm} π^{0} K^{\pm} K_{S} K_{L} D^{\pm} D^{0} n	6.59×10^4 780 2.5×10^{-6} 371 2.68 1554 0.028 0.013	$\begin{array}{c} 1.0\\ 115\\ 3.5\times 10^{10}\\ 850\\ 1.2\times 10^{5}\\ 205\\ 4.3\times 10^{7}\\ 9.2\times 10^{7} \end{array}$
	$2.69 imes10^{13}$	


High-energy atmospheric neutrinos

Berlin, 1 October 2009

Importance of kaons at high E

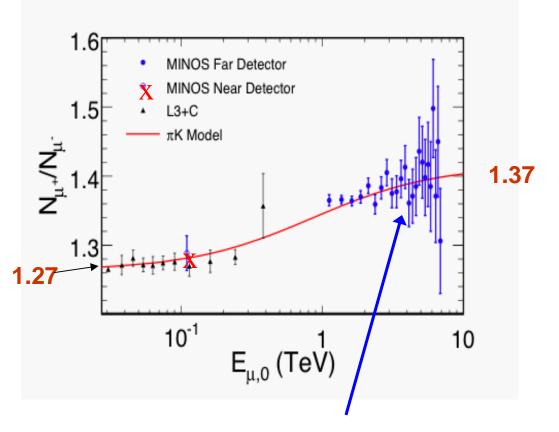
- Importance of kaons
 - main source of v
 > 100 GeV
 - $p \rightarrow K^{+} + \Lambda$
important
 - Charmed analog important for prompt leptons at higher energy


Neutrinos from kaons

Critical energy
$$\epsilon_i = m_i c^2 \frac{h_o}{c \tau_i}$$

 $\epsilon_{\mu} = 1 \text{ GeV}$
 $\epsilon_{T} = 115 \text{ GeV}$
 $\epsilon_{charm} \sim 5.10^7 \text{ GeV}$
 $\epsilon_{kl} = 0.205 \text{ TeV}$

Critical energies determine where spectrum changes, but $A_{Kv} / A_{\pi v}$ and A_{Cv} / A_{Kv} determine magnitudes


New information from MINOS relevant to v_{μ} with E > TeV

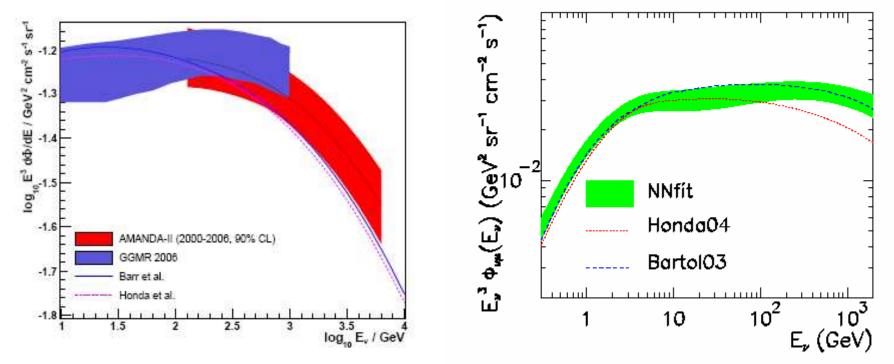
Electron neutrinos

TeV μ^+/μ^- with MINOS far detector

- 100 to 400 GeV at depth → > TeV at production
- Increase in charge ratio shows
 - − p → K⁺ Λ is important
 - Forward process
 - s-quark recombines
 with leading di-quark
 - Similar process for Λ_c ?

Increased contribution from kaons at high energy

Berlin, 1 October 2009


MINOS fit ratios of Z-factors

$$\frac{Z_{N\pi^+}}{Z_{N\pi^+} + Z_{N\pi^-}} = 0.55 \qquad \qquad \frac{Z_{NK^+}}{Z_{NK^+} + Z_{NK^-}} = 0.67.$$

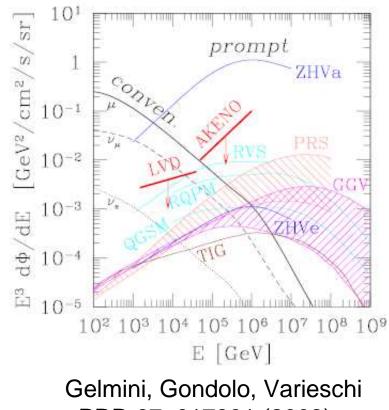
- Z-factors assumed constant for E > 10 GeV
- Energy dependence of charge ratio comes from increasing contribution of kaons in TeV range coupled with fact that charge asymmetry is larger for kaon production than for pion production
- Same effect larger for $v_{\mu} / \overline{v}_{\mu}$ because kaons dominate

Berlin, 1 October 2009

Atmospheric neutrinos – harder spectrum from kaons?

AMANDA atmospheric neutrino arXiv:0902.0675v1

Re-analysis of Super-K Gonzalez-Garcia, Maltoni, Rojo JHEP 2007


Signature of charm: θ dependence

For $\varepsilon_{\rm K}$ < E cos(θ) < $\varepsilon_{\rm c}$, conventional neutrinos ~ sec(θ), but "prompt" neutrinos independent of angle Angular dependence of 10 - 20 TeV neutrinos $\phi_{\gamma}(E_{\nu}) = \frac{\phi_{N}(E_{\nu})}{1 - Z_{NN}} \left\{ \frac{A_{\pi\nu}}{1 + B_{\pi\nu} \cos \theta E_{\nu}/\epsilon_{\pi}} \right\}$ 1.5 Conventional neutrinos reutrino flux (arbitrary units) Prompt neutrinos (RQPM) $\frac{A_{kv}}{1 + B_{Kr}\cos\phi E_r/\epsilon_k}$ 1 0.5 0 -0.8 -0.6 -0.4 -0.2 0 $\cos(\theta)$ ical + $\frac{A_{CV}}{1 + B_{CV}}$ Critical energy $\epsilon_i = m_i C^2 \frac{h_o}{CT}$ + $\frac{1 + B_{CV} \cos \theta E_v / \epsilon_c}{CT}$ **Uncertain charm component** most important near the vertical

Berlin, 1 October 2009

Neutrinos from charm

- Main source of atmospheric v for E_v > ??
- ?? > 20 TeV
- Large uncertainty in normalization!

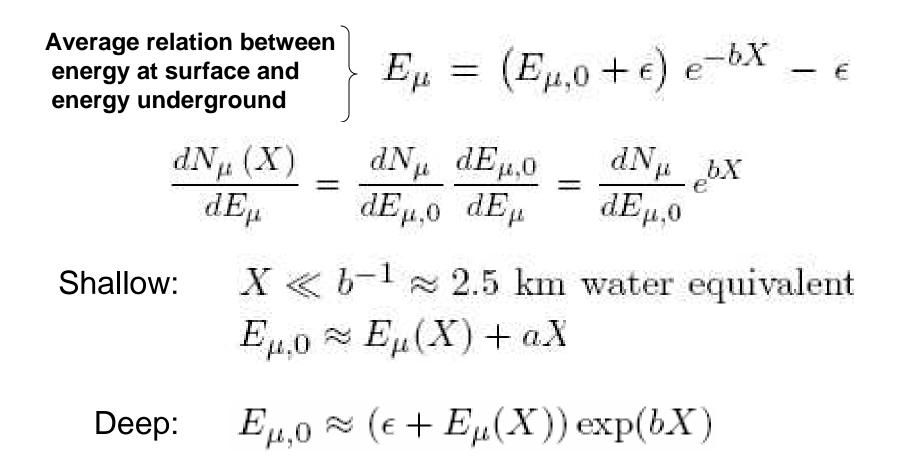
PRD 67, 017301 (2003)

Berlin, 1 October 2009

Muons & Neutrinos underground

$$-\frac{dE_{\mu}}{dX} = a + bE_{\mu}$$

Table 1.2: Average muon range R and energy loss parameters calculated for standard rock [53]. Range is given in km-water-equivalent, or 10^5 g cm⁻².

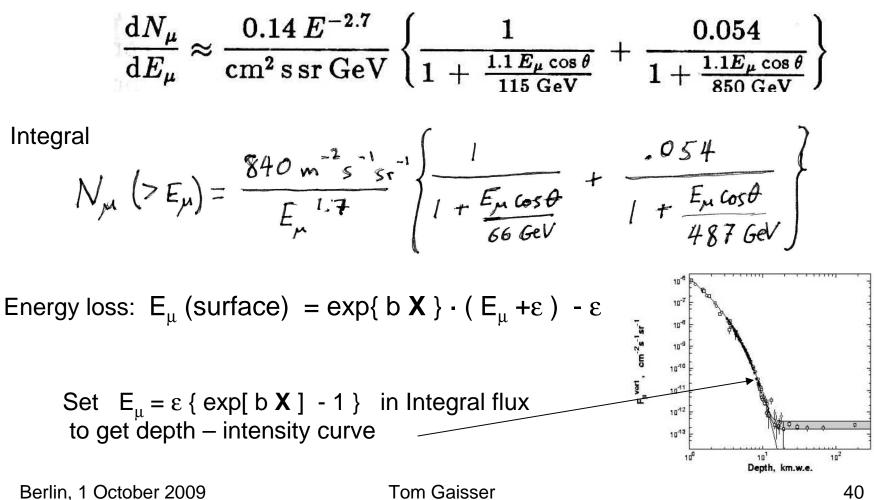

E_{μ} GeV	R km.w.e.	a MeV g ⁻¹ cm ²	$b_{\rm brems}$		$b_{ m nucl}$ $^{-1}$ cm ²		$\sum b(ice)$
10	0.05	2.17	0.70	0.70	0.50	1.90	1.66
100	0.41	2.44	1.10	1.53	0.41	3.04	2.51
1000	2.45	2.68	1.44	2.07	0.41	3.92	3.17
10000	6.09	2.93	1.62	2.27	0.46	4.35	3.78

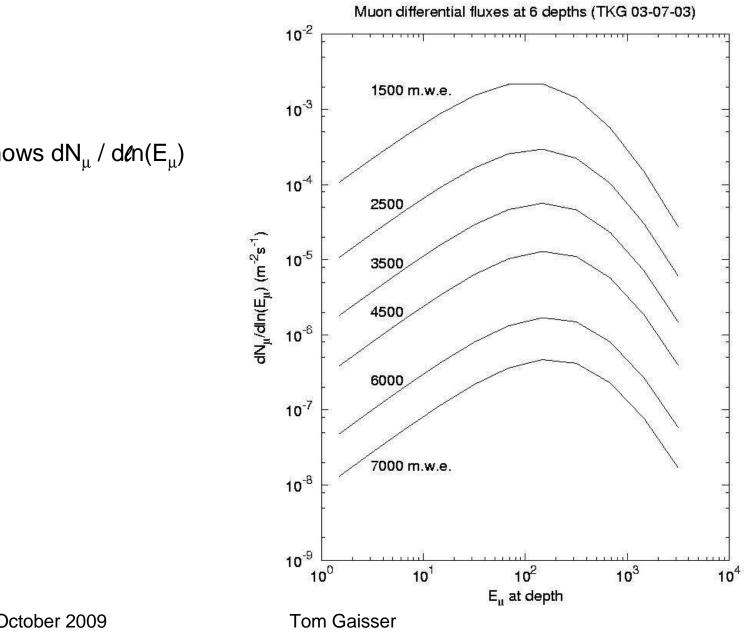
from Reviews of Particle Physics, Cosmic Rays

Critical energy:
$$\epsilon \equiv a/b \approx 500 \text{ GeV}$$

Berlin, 1 October 2009

μ energy spectrum underground

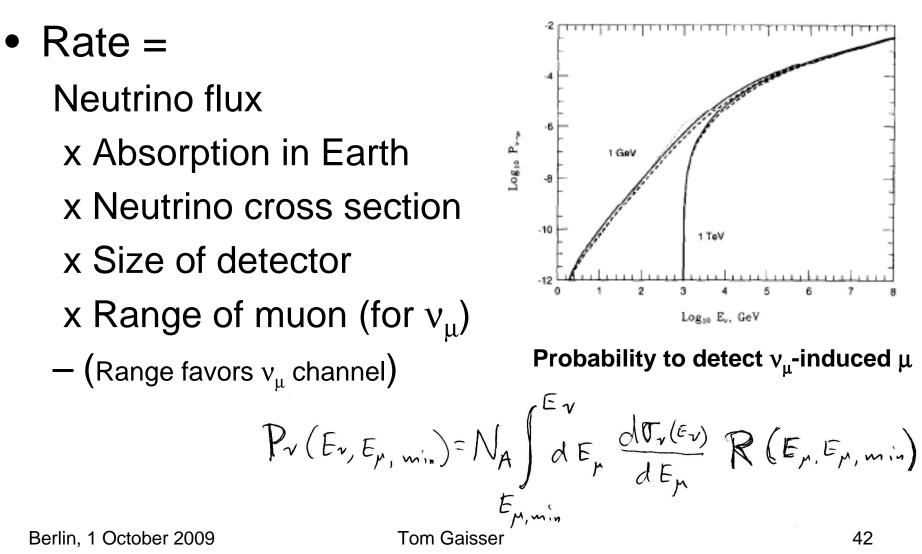



High-energy, deep muons At large depths (bx>>1, x>2.5 km.w.e.) ANr ~ constant for En < E = 500 GeV AE Then dNr -> e dNr dEr dEo Er For Er >> E If surface spectrum is $K E_0^{-(Y(E)+1)}$ then $\frac{\partial N_r}{\partial E_p} \rightarrow K e^{-b \times Y(E)} - (Y(E)+1)$ $\chi(E) \rightarrow 2.7$ for $E >> E_K$

Berlin, 1 October 2009

Differential and integral spectrum of atmospheric muons

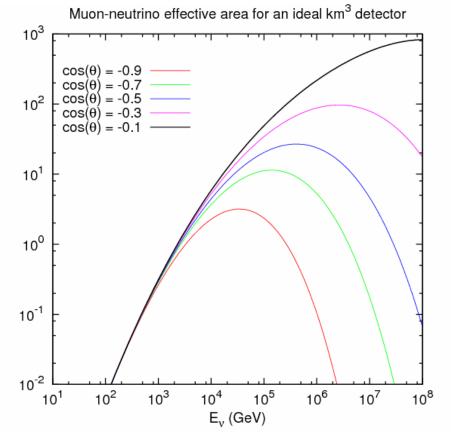
Differential



Plot shows $dN_{\mu} / d\ell n(E_{\mu})$

Berlin, 1 October 2009

Detecting neutrinos

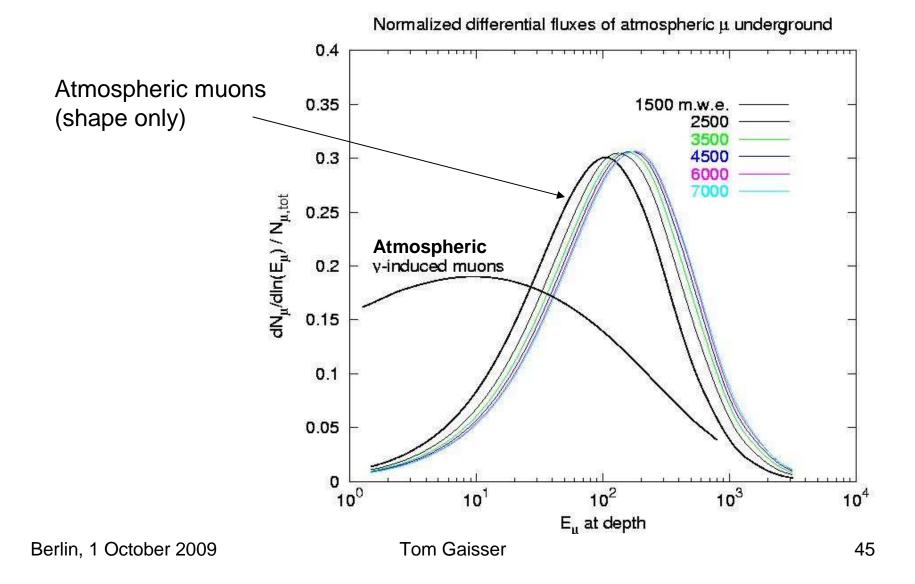

T.K. Gaisser et al. / Physics Reports 258 (1995) 173-236

42

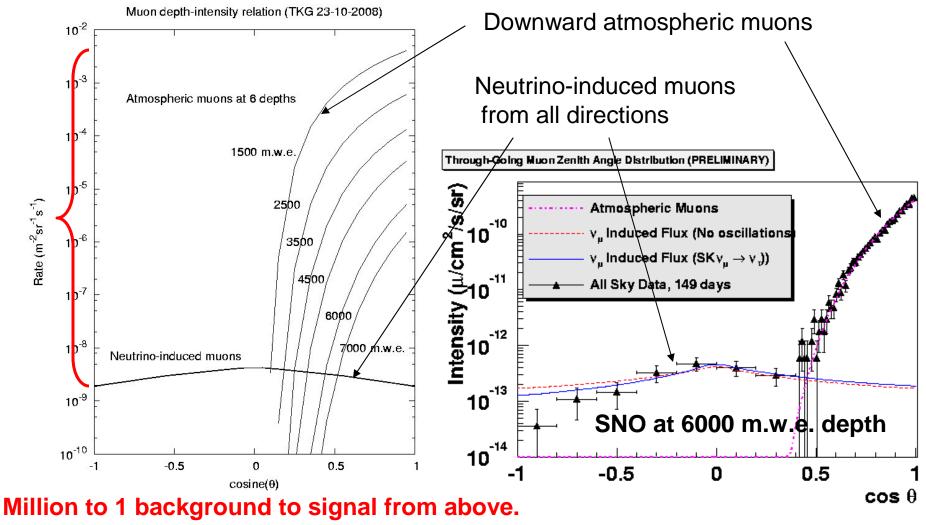
Neutrino effective area - Jr(Er) NAX(0) $A_{eff}(\theta, E_{v}) = \epsilon(\theta) A(\theta) P_{v}(E_{v}, E_{v}, min)e$

- Rate:
- $= \int \phi_{v}(E_{v})A_{eff}(E_{v})dE_{v}$
- Earth absorption
 - Starts 10-100 TeV
 - A_{effective} (m²) Biggest effect near vertical
 - Higher energy v's absorbed at larger angles

Neutrino-induced muons

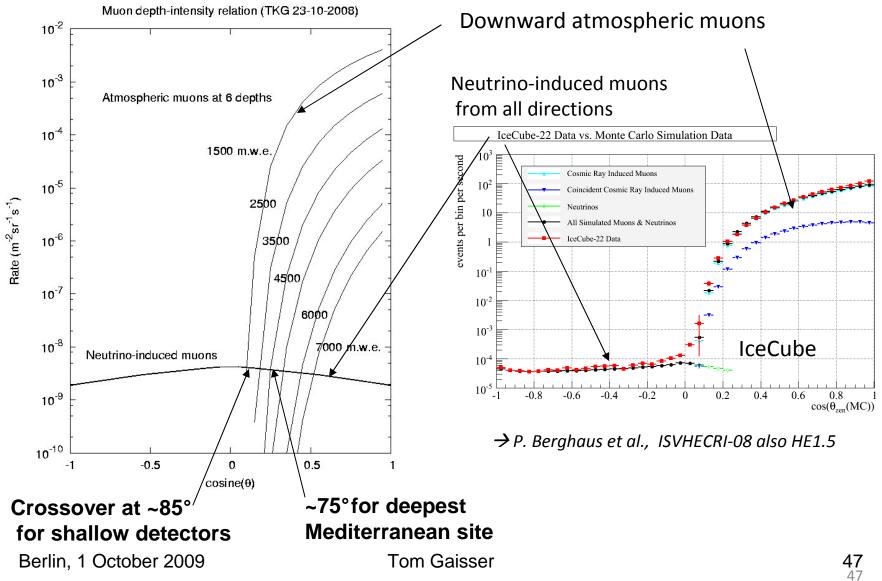

For
$$V_{\mu}$$
 - induced muons

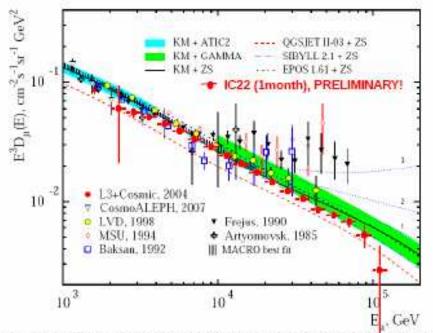
$$\frac{dN_{\mu}}{dE_{\mu}} = \int_{0}^{\infty} dE_{\nu} \frac{dN_{\nu}}{dE_{\nu}} \int_{E_{\mu}}^{E_{\nu}} \int_{0}^{\infty} dX N_{\mu} \frac{dO_{\nu}}{dE_{\nu}} \frac{Q(X, E_{\mu}, E_{\nu}')}{dE_{\mu}'} \frac{dE_{\nu}'}{dE_{\mu}'} \int_{0}^{1} \frac{dO_{\nu}}{dX d_{\nu}'} \frac{d(X, E_{\mu}, E_{\nu}')}{dE_{\mu}'} \frac{dE_{\nu}'}{dE_{\mu}'} \int_{0}^{1} \frac{dO_{\nu}}{dX d_{\nu}'} \frac{dV}{dV} \Big|_{Y = 1 - E_{\mu}/E_{\nu}}$$


$$\frac{d^{2}\sigma}{dx dy} = \frac{G_{F}^{2}ME_{\nu}}{\pi} \frac{1}{(1 + Q^{2}/m_{W}^{2})^{2}} x (Q_{1} + (1 - y)^{2}Q_{2})$$

$$\frac{dP(E_{\nu})}{dE_{\mu}} = \frac{1}{E_{\nu}} \int_{0}^{1} \frac{dV}{dX d_{\nu}'} \frac{dV}{dV} = \frac{1}{(1 + Q^{2}/m_{W}^{2})^{2}} x (Q_{1} + (1 - y)^{2}Q_{2})$$

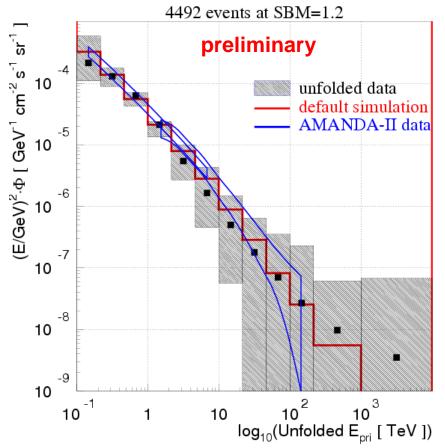
$$\frac{dP(E_{\nu})}{dV} = \frac{1}{E_{\nu}} \int_{0}^{1} \frac{dV}{dV} \frac{dV}{dV} \frac{dV}{V} = \frac{1}{E_{\nu}} \int_{0}^{1} \frac{dV}{dV} \frac{dV}{V} \frac{dV}{V} \frac{dV}{V} = \frac{1}{E_{\nu}} \int_{0}^{1} \frac{dV}{dV} \frac{dV}{V} \frac{dV$$


Muons in v telescopes


\rightarrow Use Earth as filter; look for neurtinos from below.

Berlin, 1 October 2009

Muons in IceCube



Atmospheric μ and ν in IceCube Extended energy reach of km³ detector

The Atmospheric Muon Spectrum as derived from IceCube data is shown above, compared to previous measurements and various theoretical predictions [3]. The error bars shown do not yet include systematic detector effects. Even though only about 10% of the entire data set has been unblinded, the energy range extends already significantly higher than previous measurements.

Patrick Berkhaus, ICRC 2009

Dmitry Chirkin, ICRC 2009 Currently limited by systematics

Berlin, 1 October 2009

Deep muons as a probe of weather in the stratosphere

- Barrett et al.
- MACRO
- MINOS far detector
 - Sudden stratospheric warmings observed
- IceCube
 - Interesting because of unique seasonal features of the upper atmosphere over Antarctica related to ozone hole
- Decay probability ~ T:
 - $-h_0 \sim RT$

$$\int \frac{1}{d_{\pi}} = \frac{m_{\pi}c^2h_0}{E\,c\,\tau_{\pi}\,X\,\cos\theta} \equiv \frac{\epsilon_{\pi}}{E\,X\,\cos\theta}.$$
pion decay probability

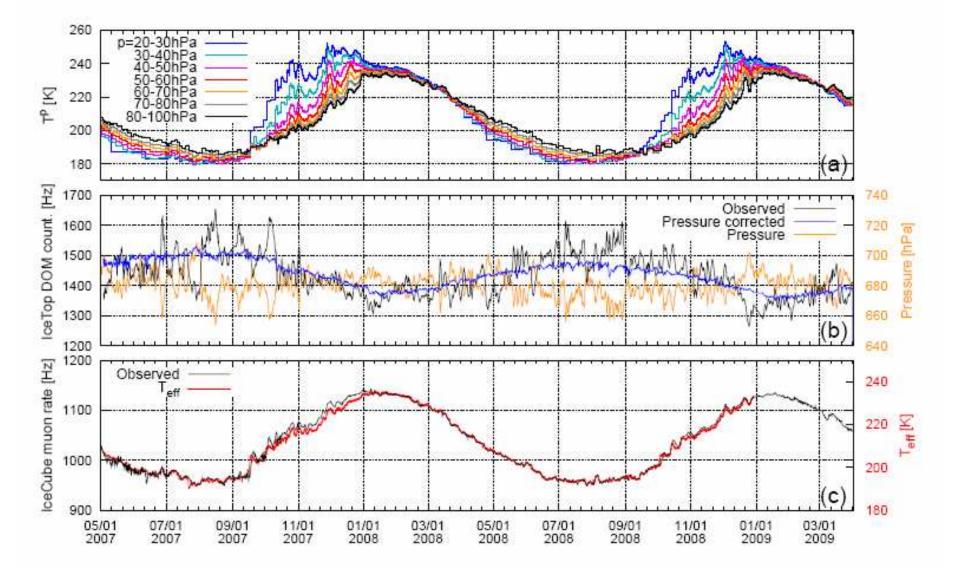


Fig. 1. The temporal behavior of the South Pole stratosphere from May 2007 to April 2009 is compared to IceTop DOM counting rate and the high energy muon rate in the deep ice. (a) The temperature profiles of the stratosphere at pressure layers from 20 hPa to 100 hPa where the first cosmic ray interactions happen. (b) The IceTop DOM counting rate (black -observed, blue -after barometric correction) and the surface pressure (orange). (c) The IceCube muon trigger rate and the calculated effective temperature (red).