
Physics at Hadron Colliders

Part 3

Search for the Higgs boson

- Higgs Bosons at the Tevatron
- SM Higgs bosons at the LHC
- How well can the Higgs boson parameters be measured
- MSSM Higgs bosons

Why do we need the Higgs Boson?

The Higgs boson enters the Standard Model to solve two fundamental problems:

Masses of the vector bosons W and Z:

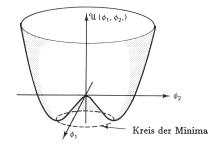
Experimental results: $M_W = 80.399 \pm 0.023$ GeV / c^2 $M_7 = 91.1875 \pm 0.0021$ GeV / c^2

A local gauge invariant theory requires massless gauge fields

Divergences in the theory (scattering of W bosons)

$$W^+$$
 V^+
 $V^ V^ V^-$

$$-i M (W^+W^- \rightarrow W^+W^-) \sim s / M_W^2$$


The Higgs mechanism

Spontaneous breaking of the SU(2) x U(1) gauge symmetry

Scalar fields are introduced

$$\phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{array} \right) = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array} \right)$$

Potential: $u(\phi) = \mu^2(\phi^*\phi) + \lambda(\phi^*\phi)^2$

• For $\mu^2 < 0$, $\lambda > 0$, minimum of potential:

$$\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2$$
 $v^2 = -\mu^2/\lambda$

$$v^2 = -\mu^2/\lambda$$

Perturbation theory around ground state:

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix} \Rightarrow$$

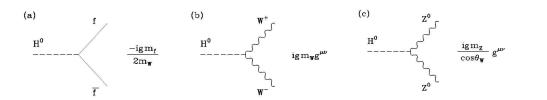
3 massive vector fields: $M_{W^{\pm}} = \frac{1}{2}vg$

$$M_{W^{\pm}} = \frac{1}{2}vg$$

 $M_Z = \frac{1}{2}vg/\cos\theta_W = M_W/\cos\theta_W$

Mass terms result from interaction of gauge bosons with Higgs field

1 massless vector field: $M_{\gamma} = 0$


1 massive scalar field: The Higgs boson H

$$M_H = \sqrt{\lambda v^2}$$

 $v = vacuum expectation value <math>v = (\sqrt{2} G_F)^{-1/2} = 246 GeV$

The Higgs mechanism (cont.)

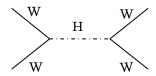
Coupling terms of W- and Z-bosons and fermions to the Higgs field:

$$g_{ffH} = \left(\sqrt{2}G_F\right)^{1/2} \ m_f$$

$$g_{VVH} = 2\left(\sqrt{2}G_F\right)^{1/2} M_V^2$$

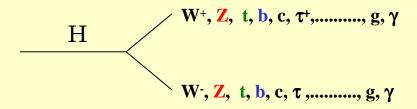
• The introduced scalar fields can also be used to generate

fermions masses $m_f = g_f \ v \ / \sqrt{2} \ \Rightarrow \ g_f = m_f \ \sqrt{2} \ / \ v$


$$\Rightarrow g_f = m_f \sqrt{2} / 2$$

(where g, is the coupling of the Higgs field to the fermion)

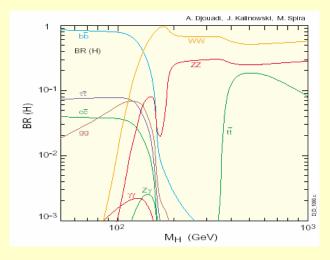
• Higgs boson self-coupling $L = \dots - \lambda v h^3 - \frac{1}{4} \lambda h^4$

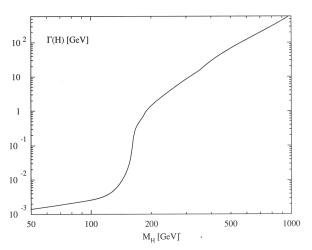

and finally:

 Higgs boson regulates divergences in the WW scattering cross section

Properties of the Higgs Boson

The decay properties of the Higgs boson are fixed, if the **mass** is known:


$$\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2}\pi} m_f^2(M_H^2) M_H$$


$$\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2}\pi} M_H^3 (1 - 4x + 12x^2) \beta_V$$

where: $\delta_Z=1, \delta_W=2, \quad x=M_V^2/M_V^2, \quad \beta=$ velocity

$$\Gamma(H \to gg) = \frac{G_F \ \alpha_s^2(M_H^2)}{36\sqrt{2}\pi^3} \ M_H^3 \ \left[1 + \left(\frac{95}{4} - \frac{7N_I}{6}\right)\frac{\alpha_s}{\pi}\right]$$

$$\Gamma(H o \gamma \gamma) = rac{G_F \ lpha^2}{128 \sqrt{2} \pi^3} \ M_H^3 \ \left[rac{4}{3} N_C e_t^2 - 7
ight]^2 \ (+ ext{W-loop contributions})$$

Upper limit on Higgs boson mass, from unitarity of WW scattering: $M_H < 1 \text{ TeV/c}^2$

Higgs mass constraints (from theory):

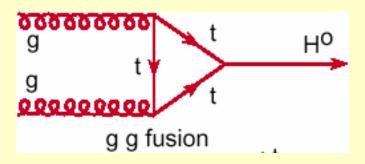
Stronger bounds on the Higgs-boson mass result from the energy dependence of the Higgs coupling λ (Q²) (if the SM is assumed to be valid up to some scale Λ)

$$\lambda (Q^2) = \lambda_0 \{ 1 + 3\lambda_0/2\pi^2 \log (2 Q^2/v^2) + \dots - 3g_t^4/32\pi^2 \log (2Q^2/v^2) + \dots \}$$

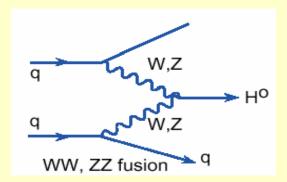
$$\lambda_0 = M_H^2/v^2$$

Upper bound: diverging coupling

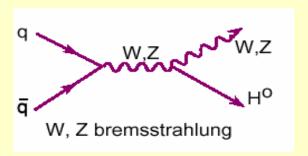
(Landau Pole)

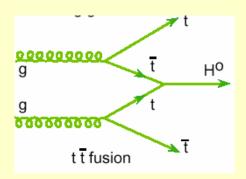

Lower bound: stability of the vacuum

(neg. contribution from top quark dominates)


Mass bounds depend on scale Λ up to which the Standard Model should be valid

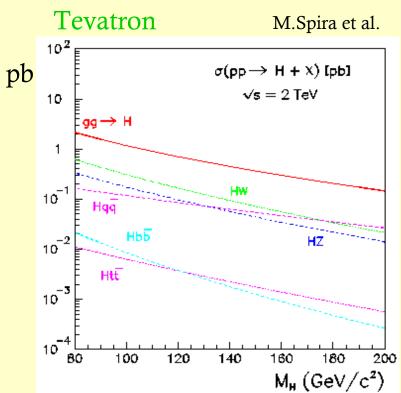
Higgs Boson Production at Hadron Colliders


(i) Gluon fusion



(ii) Vector boson fusion




(iii) Associated production (W/Z, tt)

Higgs Boson Production cross sections

$$\begin{array}{ll} qq \rightarrow W/Z + H & cross \ sections \\ gg \rightarrow H & \end{array}$$

~10 x larger at the LHC ~70-80 x larger at the LHC


Status of higher order corrections

NLO corrections (K-factors) have meanwhile been calculated for all Higgs production processes (huge theoretical effort!)

1. gg fusion:

- large NLO QCD correction K ~ 1.7 2.0
 [Djouadi, Spira, Zerwas (91)] [Dawson (91)]
- complete NNLO calculation ⇒
 evidence for nicely converging pQCD series
 (infinite top mass limit)

[Harlander, Kilgore (02)] [Anastasiou, Melnikov (02)]

2. Weak boson fusion: K ~1.1

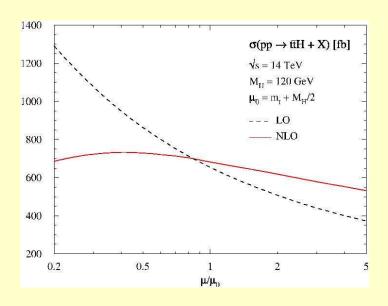
[Han, Valencia, Willenbrock (92)] [Spira (98)]

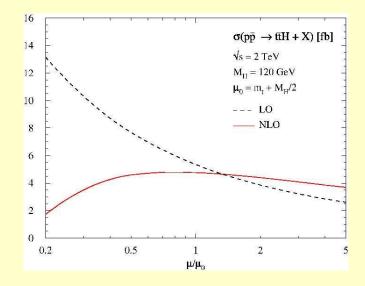
(similar behaviour for the Tevatron)

3. WH associated production: K ~ 1.3

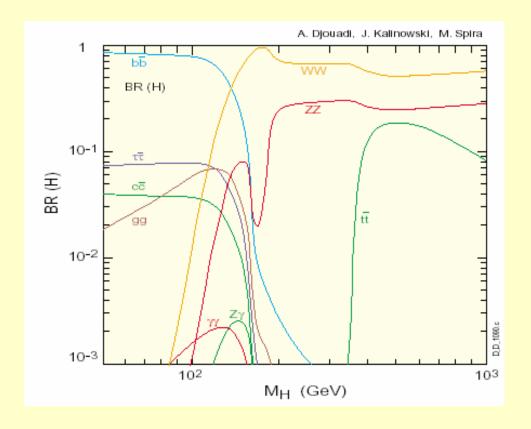
(QCD corrections from Drell-Yan process)

Status of higher order corrections (cont.)


4. ttH associated production:


• full NLO calculation LHC: $K \sim 1.2$ scale: $\mu_0 = m_t + M_H/2$

Tevatron: K ~ 0.8

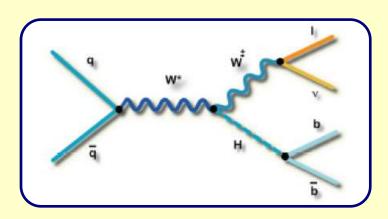

scale uncertainty drastically reduced
 [Beenakker, Dittmaier, Krämer, Plümper,
 Spira, Zerwas (01)]

[Dawson, Reina (01)]

Higgs Boson Decays at Hadron Colliders

at high mass:

Lepton final states are essential (via $H \rightarrow WW$, ZZ)

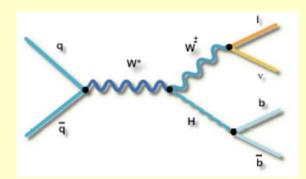

at low mass:

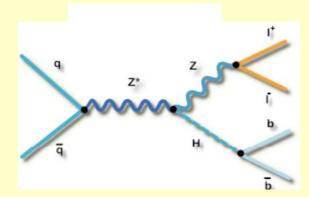
Lepton and Photon final states (via H → WW*, ZZ*)

Tau final states

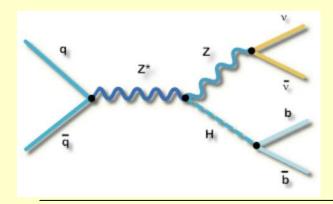
The dominant **bb decay mode** is only useable in the associated production mode (ttH, W/Z H) (due to the huge QCD jet background)

Searches for a low mass Higgs boson at the Tevatron



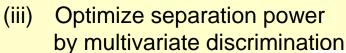

m_H < 135 GeV:

Associated production WH and ZH with H→bb decay


Main low mass search channels

 $\ell + E_T^{miss} + bb$: $WH \rightarrow \ell vbb$ Largest VH production cross section More backgrounds than $ZH \rightarrow \ell \ell bb$

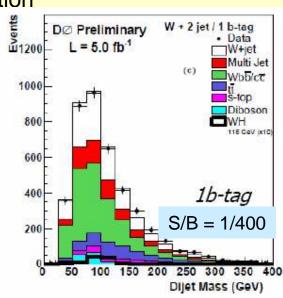
ℓℓ+bb: ZH → ℓℓbb
Less background than WH
Fully constrained
Smallest Higgs signal

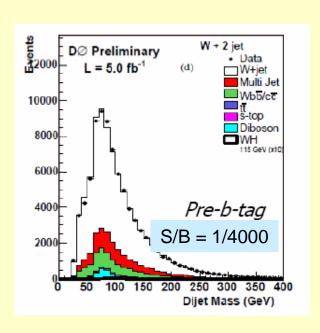

 $\mathsf{E_T}^{\mathsf{miss}}$ + bb: $ZH \to vvbb$ 3x more signal than $ZH \to \ell\ell bb$ (+ $WH \to \ell v bb$ when lepton non-identified) Large backgrounds which are difficult to handle

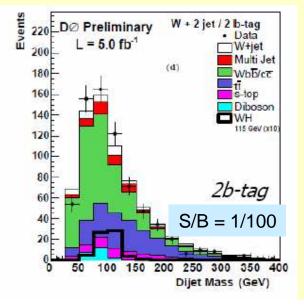
General Search Strategy

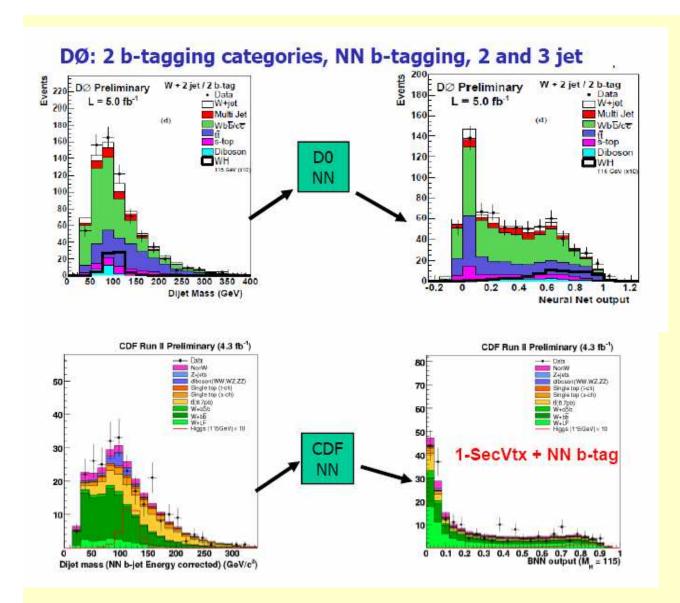
Example: $WH \rightarrow \ell \nu$ bb

- (i) Select events consistent with Z/W + 2 jets (large W+jet and Z+jet backgrounds)
- (ii) Apply b-tagging (most discriminating variable: dijet inv. mass)

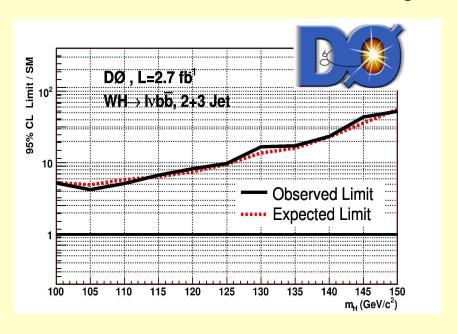

even after b-tagging S:B ratio remains small,
 → needs advanced (multivariate) analysis tools

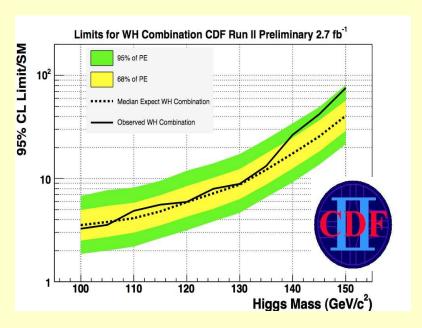



(neutral networks, matrix elements,)


Major Inputs at low mass:

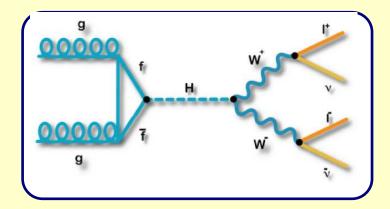
- Dijet mass
- p_⊤ of dijet
- $W p_T Z p_T$
- Sphericity
- ΔR_{jj} , $\Delta \phi_{jj}$. $\Delta \eta_{jj}$




Example: WH $\rightarrow \ell \nu$ bb

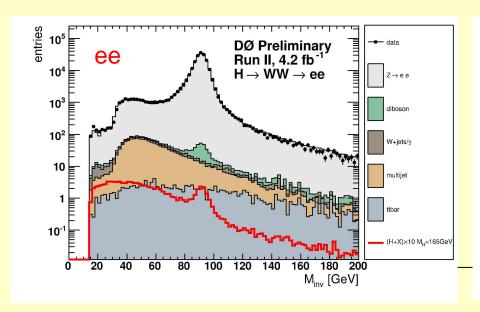
- (iv) Split data into several sub-samples with different final state topologies
 - maximize sensitivity due to S:B variations
 - different background composition in the different classes

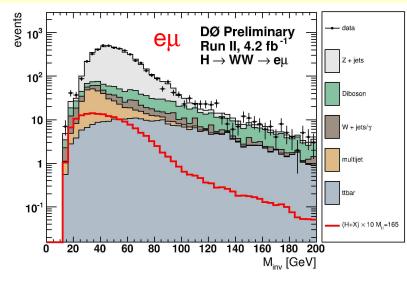
Sensitivity in individual channels

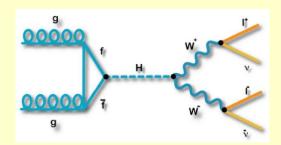

- Limits on individual channels a factor of 5-10 away from SM cross section at $m_H = 115 \text{ GeV}$
- → The combination of all contributing channels is crucial

- Main systematic uncertainties for low mass channels:
 - Signal (total 15%): cross section, b-tagging, ID efficiencies
 - Background (total 25-30%): normalization of W/Z+jets heavy flavour samples, modelling of the multijet and W/Z+jet backgrounds, b-tagging
- At high values of the discriminant output, S:B is typically 1/10 1/20 for the most sensitive low mass channels

Searches for a high mass Higgs boson at the Tevatron

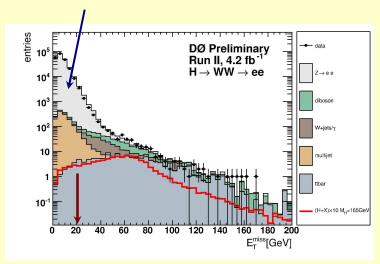


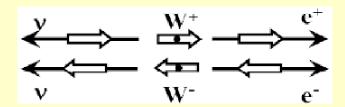


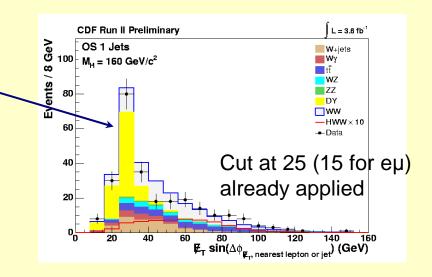

$$gg \to H \to WW \to \text{en} \, \text{en}$$

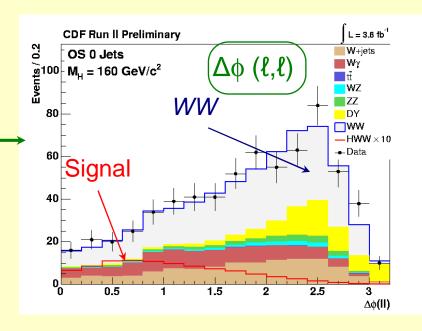
$H \rightarrow \ell^+\ell^- \nu \nu$

- Dominant decay for $m_H > 135 \text{ GeV}$: $H \rightarrow W^*W$
- Leptons in final state
 - → exploitation of gg→H is possible
- Signal contribution also from W/Z+H and qqH production
 - ightarrow Consider all sources of opposite sign di-lepton + E_T^{miss} Split analysis in ee, $\mu\mu$, and e μ final states
- Backgrounds: Drell-Yan, dibosons, tt, W+jet, multijet production

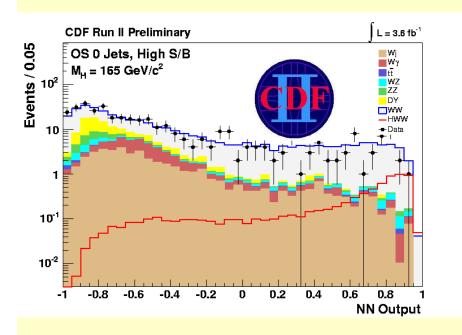


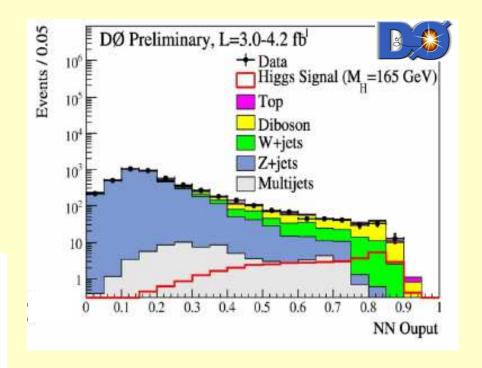



$H \rightarrow \ell^+ \ell^- \nu \nu$


Dominant Drell-Yan background can be reduced with cuts on E_T^{miss} and its isolation (distance to nearest object)

Spin correlation gives main discrimination against irreducible background from non-resonant *WW* production

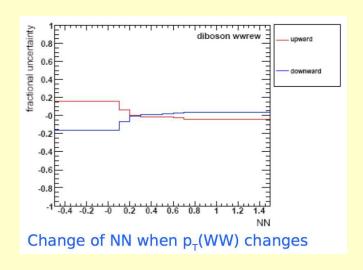



$H \rightarrow \ell^+ \ell^- \nu \nu$

To increase sensitivity:

DØ: Split the samples according to lepton flavour and combine result

Neural Network with 11 kinematic and topological input variables



CDF: Split samples into jet multiplicity and lepton ID criteria: different signal and background composition

Veto events with tight b-tagged jet

Systematic uncertainties

Main systematic uncertainties:

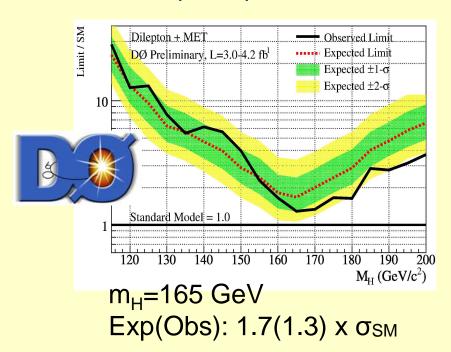
- Signal (total 10%): cross section, lepton ID/trigger
- Background (total 13%): cross sections,
 jet → lepton fake rate, jet ID/resolution/calibration

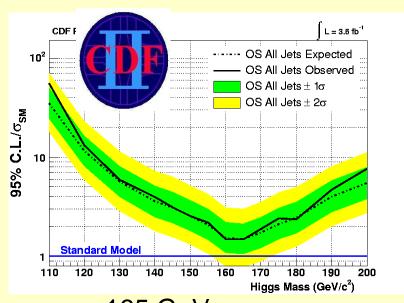
Systematic uncertainties change rate and shape of the signal and background predictions

SM signal expectation and data after background subtraction

Constrained total systematic uncertainty

Data - Background Higgs Signal (M_H=165 GeV)

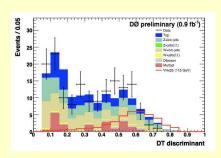

-±1 s.d. on Background

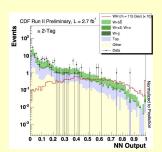

DØ Preliminary, L=3.0-4.2 fb¹

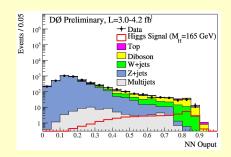
NN Ouput

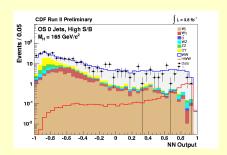
$H \rightarrow \ell^+ \ell^- \nu \nu$

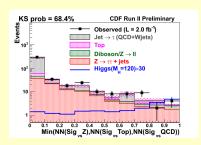
Exclusion limits per experiment:

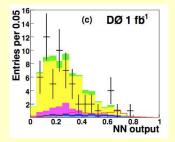

 $m_H=165 \text{ GeV}$

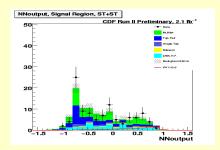

Exp(Obs): $1.4(1.5) \times \sigma_{SM}$


With additional luminosity expect single experiment exclusion around $m_H = 165 \text{ GeV}$

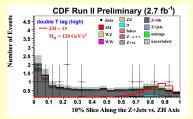

Combination → **limit setting**

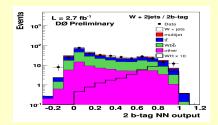

Combination of all channels and of the two experiments: (note that exclusion is not possible in a single channel / experiment)

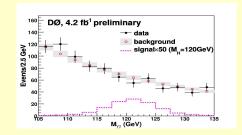


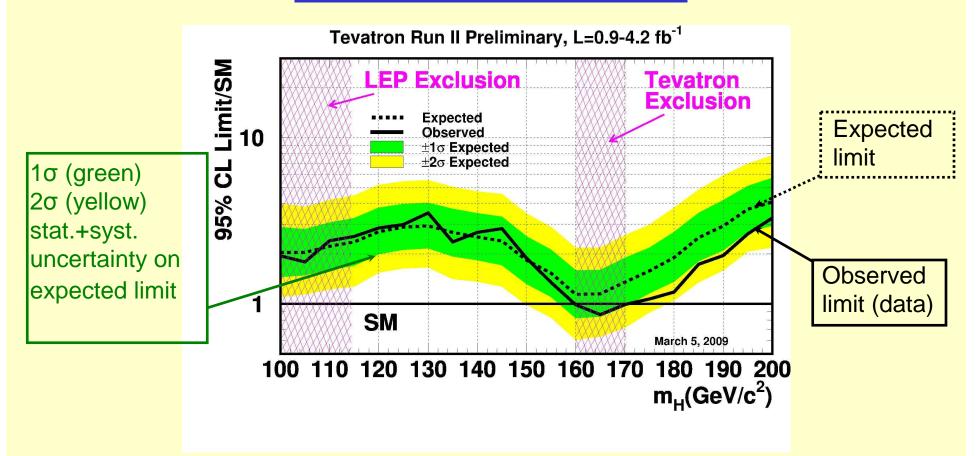












Combined Tevatron limits

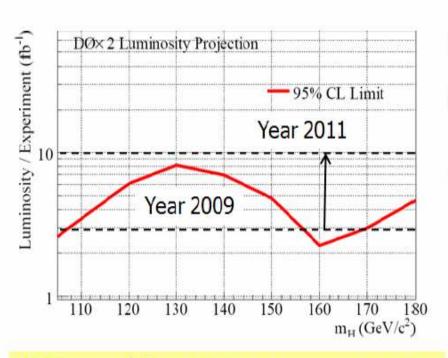
A fluctuation in the data allows the Tevatron to set a 95% CL exclusion of a SM Higgs boson in the mass region around 160–170 GeV (first direct exclusion since LEP)

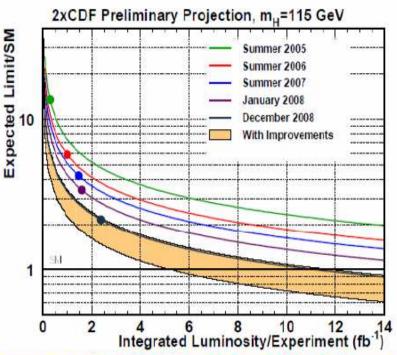
At $m_H = 115 \text{ GeV}$ Expected limit: 2.4 x σ_{SM}

Observed limit: 2.5 x σ_{SM}

Conclusions on the Tevatron Higgs search

- The Tevatron experiments are about to reach sensitivity (expected limit) for the SM Higgs boson in the mass range around 160 GeV
- With increased luminosity the sensitivity in this region is expected to reach the 3σ level
 - \rightarrow either a large mass region can be excluded with 95% C.L. or first evidence (3 σ) for a SM Higgs boson can be found;
- The Higgs search in the mass range below ~130 GeV is difficult (also at the LHC);


Search for the bb final state at the Tevatron will provide important complementary information to the LHC Higgs search in the H $\rightarrow \gamma \gamma$ and qqH \rightarrow qq $\tau \tau$ channels



Expected Higgs sensitivity

assume CDF+DØ, and projected improvements:

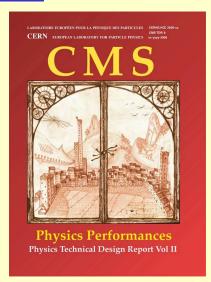
2009: precision EW measurements + Tevatron → SM Higgs 115 - 160 GeV 2010: with Tevatron luminosity, expects upper limit to go down to ~145 GeV ≥2011: @ Tevatron, direct exclusion from 115 to 185 GeV, or first evidence?

The Search for

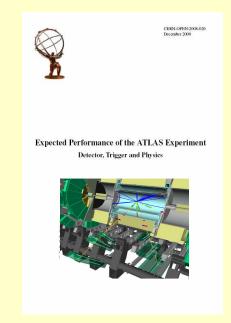
The Higgs boson at the LHC

What is new on LHC Higgs studies?

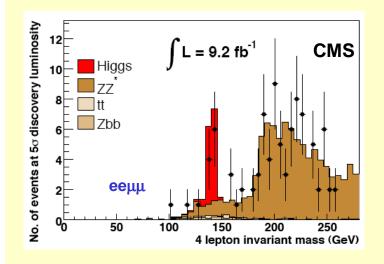
- Many studies have meanwhile been performed using detailed GEANT simulations of the detectors
 - Physics Performance Technical Design Report from the CMS collaboration
 - ATLAS CSC book (Computing System Commissioning)
- New (N)NLO Monte Carlos (also for backgrounds)
 - MCFM Monte Carlo, J. Campbell and K. Ellis, http://mcfm.fnal.gov
 - MC@NLO Monte Carlo, S.Frixione and B. Webber, wwwweb.phy.cam.ar.uk/theory/
 - T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D68, 073005 (2003)
 - E.L.Berger and J. Campbell, Phys. Rev. D70, 073011 (2004)
 - C. Anastasiou, K. Melnikov and F. Petriello, hep-ph/0409088 and hep-ph/0501130


-

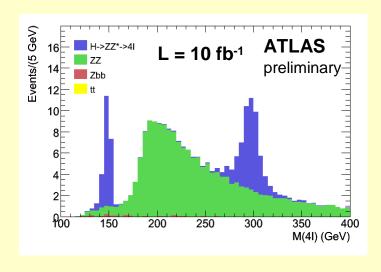
- New approaches to match parton showers and matrix elements
 - ALPGEN Monte Carlo + MLM matching, M. Mangano et al.
 - SHERPA Monte Carlo, F. Krauss et al.

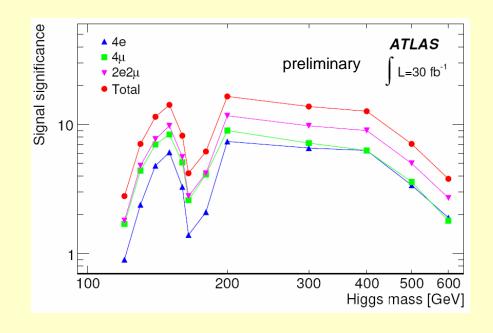

٠...

Tevatron data are extremely valuable for validation (see yesterday's lecture)


- More detailed, better understood reconstruction methods (partially based on test beam results,...)
- Further studies of new Higgs boson scenarios
 (Various MSSM benchmark scenarios, CP-violating scenarios, Invisible Higgs boson decays,....)

CMS: CERN / LHCC 2006-021 ATLAS: CERN-OPEN 2008-020

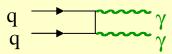

$H \longrightarrow ZZ^* \longrightarrow \ell\ell \ell\ell$

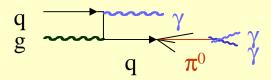


Main backgrounds: ZZ (irreducible), tt, Zbb (reducible)

Updated ATLAS and CMS studies:

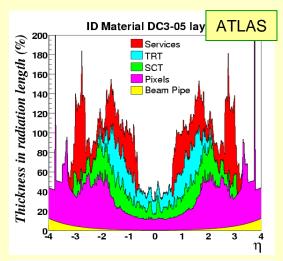
- ZZ background: NLO K factor used
- background from side bands
 (gg->ZZ is added as 20% of the LO qq->ZZ)

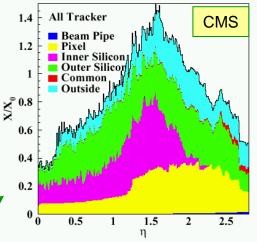




Main backgrounds:

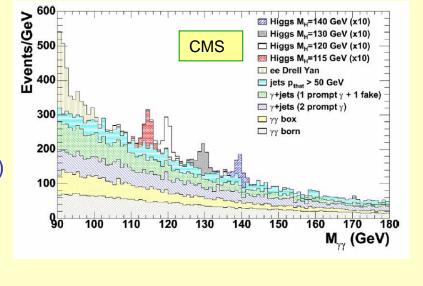
 $\gamma\gamma$ irreducible background

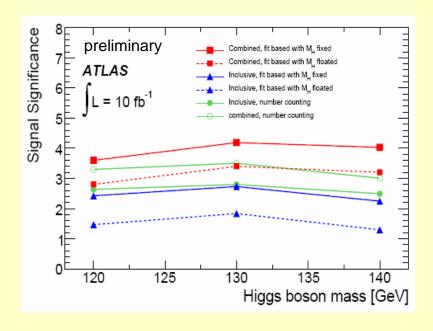


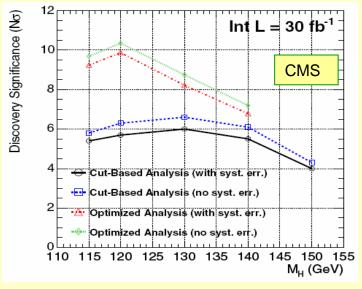

 γ -jet and jet-jet (reducible)

$$\begin{array}{ll} \sigma_{\gamma j+jj} \sim 10^6 \; \sigma_{\gamma \gamma} & \text{with large uncertainties} \\ \rightarrow \text{need} \; \; R_j > 10^3 & \text{for } \epsilon_{\gamma} \approx \; 80\% \; \; \text{to get} \\ & \sigma_{\gamma j+jj} \; \; \text{$^{\prime\prime}$} \; \sigma_{\gamma \gamma} \end{array}$$

- Main exp. tools for background suppression:
 - photon identification
 - γ / jet separation (calorimeter + tracker)
 - note: also converted photons need to be reconstructed (large material in LHC silicon trackers)




CMS: fraction of converted γs
Barrel region: 42.0 %

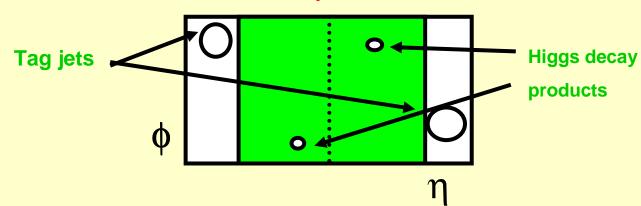

Endcap region: 59.5 %

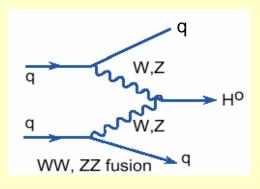
New elements of the analyses:

- NLO calculations available (Binoth et al., DIPHOX, RESBOS)
- Realistic detector material
- More realistic K factors (for signal and background)
- Split signal sample acc. to resolution functions

- Comparable results for ATLAS and CMS
- Improvements possible by using more exclusive $\gamma\gamma$ + jet topologies

Vector Boson Fusion qq H

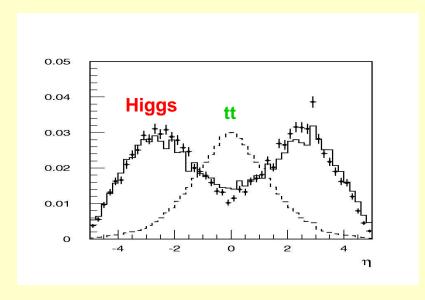

Motivation:

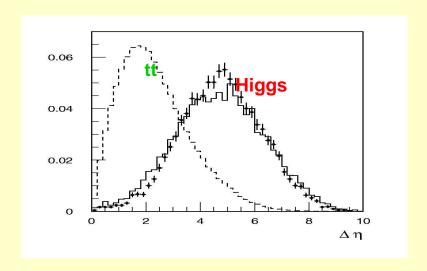

Increase discovery potential at low mass
Improve and extend measurement of Higgs boson parameters
(couplings to bosons, fermions)

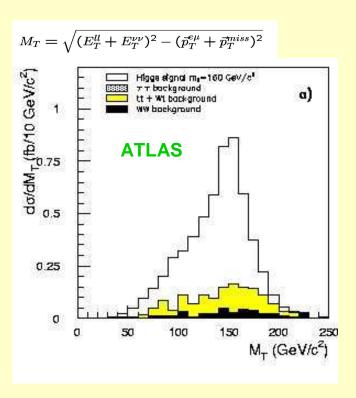
Established (low mass region) by D. Zeppenfeld et al. (1997/98)
Earlier studies: R.Kleiss W.J.Stirling, Phys. Lett. 200 (1988) 193;
Dokshitzer, Khoze, Troyan, Sov.J. Nucl. Phys. 46 (1987) 712;
Dokshitzer, Khoze, Sjöstrand, Phys.Lett., B274 (1992) 116.

Distinctive Signature of:

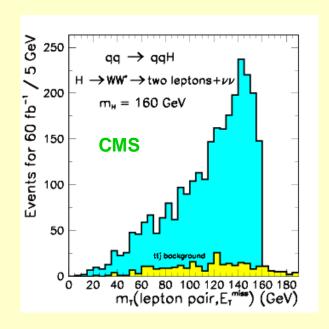
- two high p_T forward jets (tag jets)
- little jet activity in the central region (no colour flow)
 - ⇒ central jet Veto

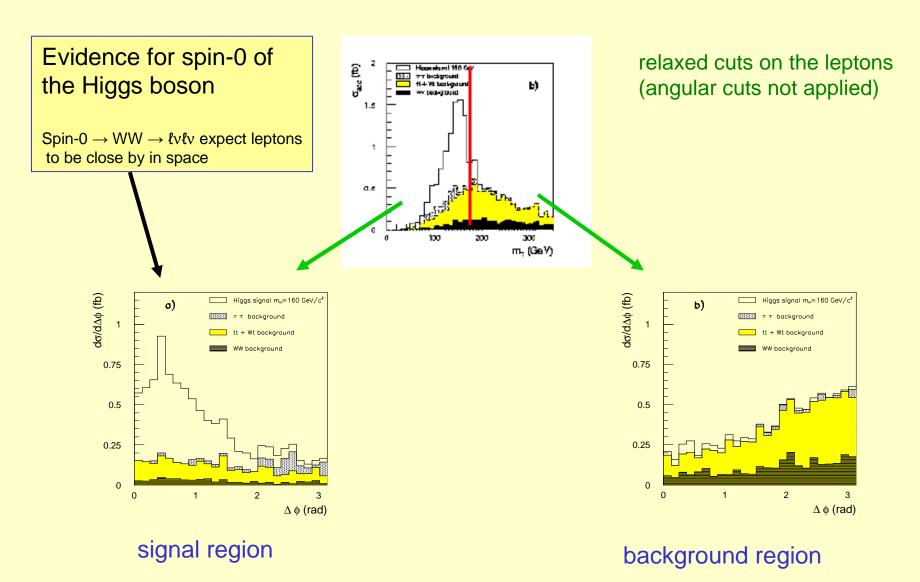



Forward jet tagging

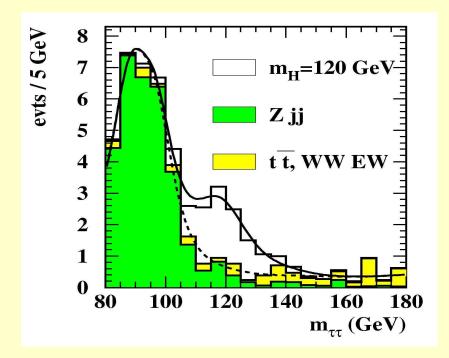

Rapidity distribution of tag jets

VBF Higgs events vs. tt-background


Rapidity separation


Selection criteria:

- Lepton P_T cuts and
- Tag jet requirements (Δη, P_T, large mass)
- Jet veto (important)
- · Lepton angular and mass cuts



Transverse mass distributions: clear excess of events above the background from tt-production

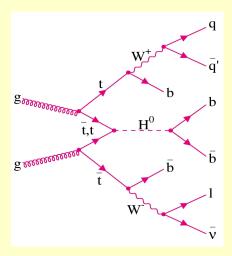
Presence of a signal can also be demonstrated in the $\Delta \phi$ distribution (i.e. azimuthal difference between the two leptons)

$H \rightarrow \tau \tau$ decay modes visible for a SM Higgs boson in vector boson fusion

Experimental challenge:

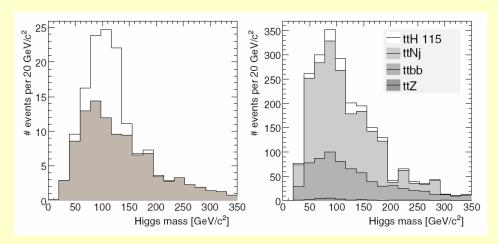
- Identification of hadronic taus
- Good E_T^{miss} resolution
 (ττ mass reconstruction in collinear approximation,
 i.e. assume that the neutrinos go in the direction of the visible decay products,
 good approximation for highly boosted taus)
 - → Higgs mass can be reconstructed
- Dominant background: $Z \rightarrow \tau \tau$

the shape of this background must be controlled the high mass region

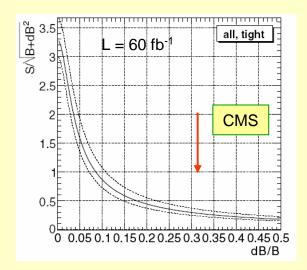

 \rightarrow use data (Z $\rightarrow \mu\mu$) to constrain it

$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$

Complex final states:
$$H \rightarrow bb$$
, $t \rightarrow bjj$, $t \rightarrow b\ell\nu$
 $t \rightarrow b\ell\nu$, $t \rightarrow b\ell\nu$
 $t \rightarrow bjj$, $t \rightarrow bjj$

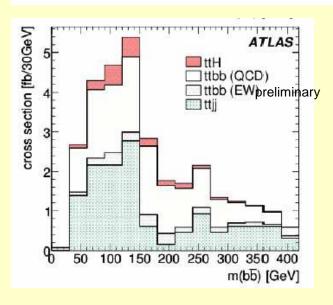

Main backgrounds:

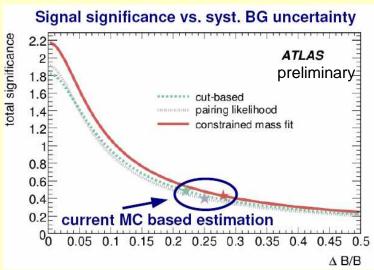
- combinatorial background from signal (4b in final state)
- ttjj, ttbb, ttZ,...
- Wijijij, WWbbjj, etc. (excellent b-tag performance required)



- Updated CMS study (2006): ALPGEN matrix element calculations for backgrounds
 - → larger backgrounds (ttjj dominant), experimental + theoretical uncertainties, e.g. ttbb, exp. norm. difficult.....

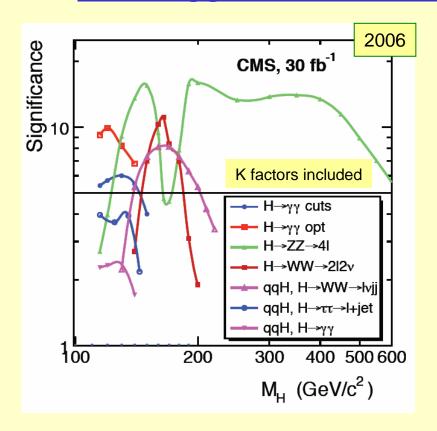
M (bb) after final cuts, 60 fb⁻¹

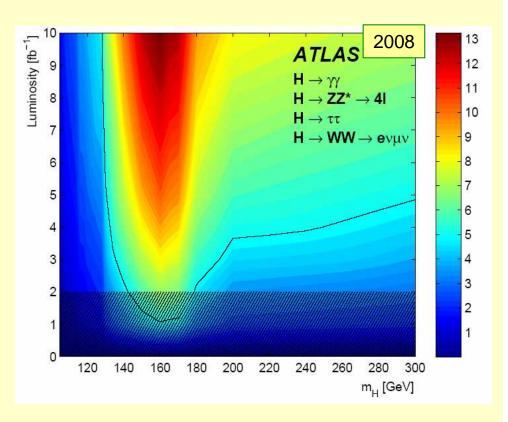

Signal events only backgrounds added



Signal significance as function of background uncertainty

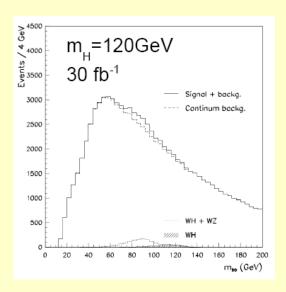
.....comparable situation in ATLAS (ttH cont.)


Preselection cut	$t\bar{t}H(\mathrm{fb})$	$t\bar{t}b\bar{b}(\mathrm{EW})$ (fb)	$t\bar{t}b\bar{b}(QCD)$ (fb)	$t\bar{t}X$ (fb)
lepton cuts (ID + p_T)	57. \pm 0.2	141 ± 1.0	1356 ± 6	63710 ± 99
$+ \ge 6$ jets	36 ± 0.2	77 ± 0.9	665 ± 4	26214 ± 64
$+ \ge 4$ loose <i>b</i> -tags	16.2 ± 0.2	23 ± 0.7	198 ± 3	2589 ± 25
$+ \ge 4 \text{ tight } b\text{-tags}$	3.8 ± 0.06	4.2 ± 0.2	30 ± 0.8	51 ± 2
	LO	LO	LO	NLO



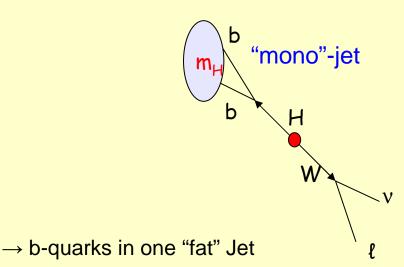
estimated uncertainty on the background: ± 25% (theory, + exp (b-tagging)) ⇒ Normalization from data needed to reduce this (non trivial,...)

LHC Higgs boson discovery potential

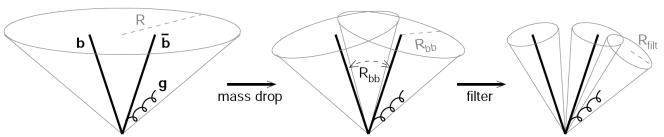

- Comparable performance in the two experiments
 [at high mass: more channels (in WW and ZZ decay modes) available than shown here]
- Several channels and production processes available over most of the mass range
 → calls for a separation of the information + global fit (see below)

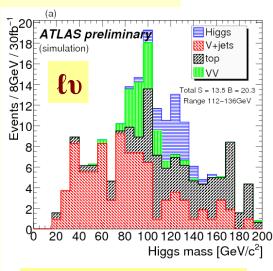
New hope for $H \rightarrow bb$ decays at the LHC: W/Z H, $H \rightarrow bb$

The most important channels at the **TEVATRON** at low mass!


But: signal to background ratio less favourable at the LHC

Follow idea of J. Butterworth, et al. [PRL 100 (2008) 242001]

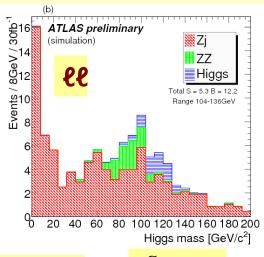

Select events (≈5% of cross section), in which H und W bosons have large transverse momenta: $p_{\tau} > 200 \text{ GeV}$

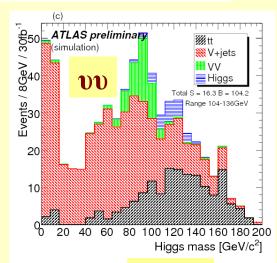


- + Acceptance (more central in detector)
- + Lepton identification, b-tagging

High p_T W/Z H, $H \rightarrow bb$

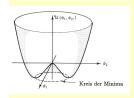
Analyze jet structure:




$$L^{int.} = 30 \, fb^{-1} : \frac{S}{\sqrt{B}} = 3.0$$

Combined: $\frac{S}{\sqrt{B}} = 3.7$

(Pileup not yet included)



$$M_{H} = 120 \text{ GeV} \qquad \frac{S}{\sqrt{B}} = 1.3$$

$$\frac{S}{\sqrt{B}} = 1.6$$

- S/B much better than for ttH
- Different backgrounds for different channels
- Still good sensitivity including systematics (e.g. $S/\sqrt{B} = 3.0$ for 15% uncertainty on all backgrounds)

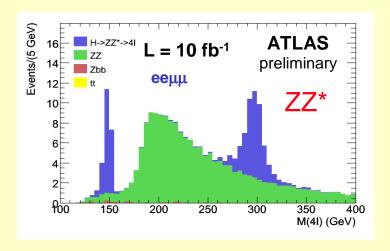
Is it a Higgs Boson?

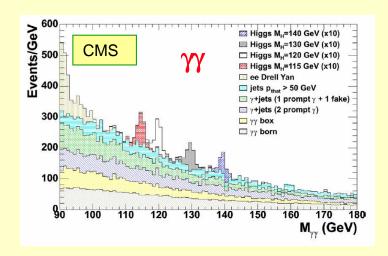
1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV/c²) ($\gamma\gamma$ and ZZ \rightarrow 4 ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

(→ see next slides)

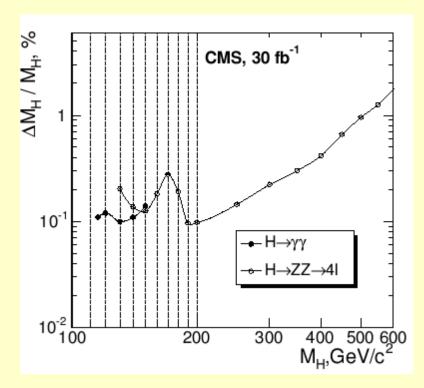

3. Spin and CP


Angular correlations in $H \to ZZ(*) \to 4 \ell$ and $\Delta \phi_{jj}$ in VBF events are sensitive to spin and CP (achievable precision is statistics limited, requires high luminosity)

4. Higgs self coupling

(→ see next slides)

(i) Precision on mass is achieved in el.magn. final states



Dominant systematic uncertainty:

 γ/ℓ energy scale.

assumed: 1‰ (goal 0.2‰)

Scale from $Z \to \ell\ell$ (close to light Higgs)

Precision below 1% can be achieved over a large mass range for 30 fb⁻¹; syst. limit can be reached for higher integrated luminosities \rightarrow 100 fb⁻¹ Note: no theoretical errors, e.g. mass shift for large $\Gamma_{\rm H}$ (interference resonant/non-resonant production) taken into account

(ii) Higgs boson couplings to fermions and bosons

The Higgs boson couplings can in principle be extracted from rate measurements,

$$\sigma_{yy \to H} \cdot BR(H \to xx) \sim \Gamma_y \cdot \Gamma_x / \Gamma_H$$

however, $\Gamma_{\rm H}$ is needed, which cannot be directly measured at the LHC for m_H< 200 GeV.

Two options:

- (i) Measure ratios of couplings Systematic uncertainties taken into account; M. Dührssen, ATLAS-PHYS-2003-030.
- (ii) Include more theoretical assumptions and measure absolute couplings
 M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld,
 Phys. Rev. D70 (2004) 113009.
- → For both options, the information from all visible Higgs boson production and decay modes can be combined into one global maximum likelihood fit

Experimental input:

Production		Decay	mass range	
eeeee \bar{t} H _	Gluon-Fusion	H o ZZ o 4l	110 GeV - 200 GeV	
	(gg o H)	H o WW o l u l u	110 GeV - 200 GeV	
9		$H o \gamma \gamma$	110 GeV - 150 GeV	
q'	WBF	H o ZZ o 4l	110 GeV - 200 GeV	
W, Z	$(qq \ H)$	$H o WW o l \nu l \nu$	110 GeV - 190 GeV	
W, Z, '		H o au au o l u ul u u	110 GeV - 150 GeV	
q		$H o au au o l u u{ m had} u$	110 GeV - 150 GeV	
		$H o \gamma \gamma$	110 GeV - 150 GeV	
eeee \bar{t}	t ar t H	$H o WW o l\nu l\nu (l u)$	120 GeV - 200 GeV	optimistic assumptions
t _H		$H o b ar{b}$	110 GeV - 140 GeV	optimistic assumptions
ocogo		$H o \gamma \gamma$	110 GeV - 120 GeV	
q = W, Z	WH	$H o WW o l\nu l\nu (l\nu)$	150 GeV - 190 GeV	optimistic assumptions
		$H o \gamma \gamma$	110 GeV - 120 GeV	
q H	ZH	$H o \gamma \gamma$	110 GeV - 120 GeV	

Mass range is restricted to m_{H} < 200 GeV Based on "old ATLAS studies"

Most significant differences: ttH channels with $H \rightarrow bb$ and $H \rightarrow WW$

Higgs-Boson Couplings (cont.)

Global fit

(all channels at a given mass point)

Analysis is done with increasing level of theoretical assumptions

Fit parameters:

Production cross-sections

$$\sigma_{ggH} = \alpha_{ggH} \bullet g_{t}^{2}$$

$$\sigma_{VBF} = \alpha_{WF} \bullet g_{w}^{2} + \alpha_{ZF} \bullet g_{Z}^{2}$$

$$\sigma_{ttH} = \alpha_{ttH} \bullet g_{t}^{2}$$

$$\sigma_{WH} = \alpha_{WH} \bullet g_{W}^{2}$$

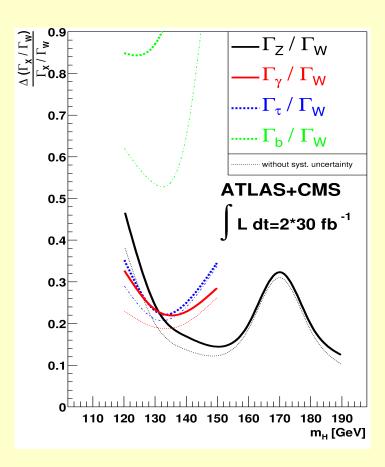
$$\sigma_{ZH} = \alpha_{ZH} \bullet g_{Z}^{2}$$

(b loop neglected so far in ggH)

Branching ratios

$$\begin{split} &\mathsf{BR}(\mathsf{H} \to \mathsf{WW}) \ = \beta_\mathsf{W} \frac{\mathsf{g}_\mathsf{W}^2}{\Gamma_\mathsf{H}} \\ &\mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}) \ = \beta_\mathsf{Z} \frac{\mathsf{g}_\mathsf{Z}^2}{\Gamma_\mathsf{H}} \\ &\mathsf{BR}(\mathsf{H} \to \gamma \gamma) \ = \frac{\left(\beta_{\gamma(\mathsf{W})} \mathsf{g}_\mathsf{W} - \beta_{\gamma(\mathsf{t})} \mathsf{g}_\mathsf{t}\right)^2}{\Gamma_\mathsf{H}} \\ &\mathsf{BR}(\mathsf{H} \to \tau \tau) \ = \beta_\tau \frac{\mathsf{g}_\tau^2}{\Gamma_\mathsf{H}} \\ &\mathsf{BR}(\mathsf{H} \to \mathsf{bb}) \ = \beta_\mathsf{b} \frac{\mathsf{g}_\mathsf{b}^2}{\Gamma_\mathsf{H}} \end{split}$$

α,β from theory with assumed Uncertainties:

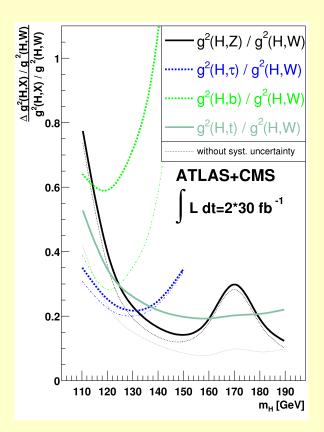

$$\Delta lpha_{
m ggH} = 20\%$$
 $\Delta lpha_{
m WF} = lpha_{
m ZF} = 4\%$
 $\Delta lpha_{
m ttH} = 15\%$
 $\Delta lpha_{
m WH} = \Delta lpha_{
m ZH} = 7\%$

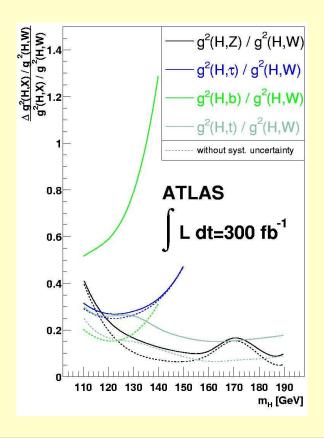
$$\Delta \beta = 1\%$$

Step 1: measurement of ratios of partial decay width:

Assumption: only one light Higgs boson

To cancel $\Gamma_{\rm H}$, normalization to $\Gamma_{\rm W}$ is made (suitable channel, measurable over a large mass range ~120–200 GeV)

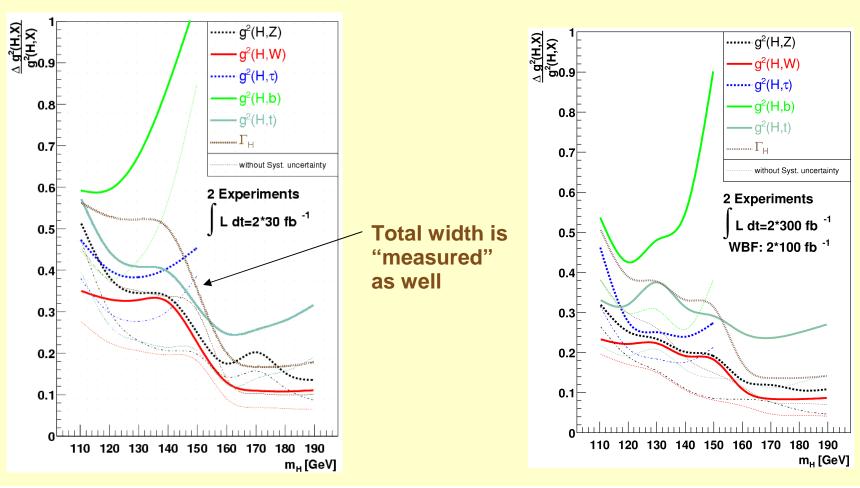



Note: optimistic assumptions for $H \rightarrow bb$ (based on old studies)

Step 2: measurement of ratios of couplings:

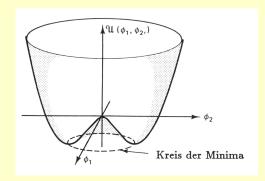
Additional assumption: particle content in the gg- and $\gamma\gamma$ -loops are known;

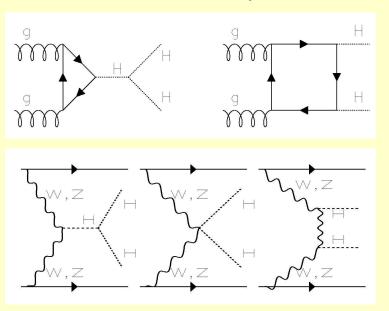
Information from Higgs production is now used as well; Important for the determination of the top-Yukawa coupling

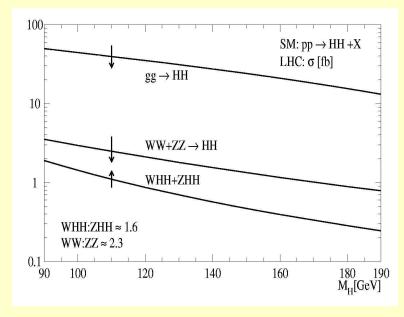


Step 3: measurement of couplings (absolute values):

Needs additional ("mild") theoretical assumptions:


- use lower limit on $\Gamma_{\rm H}$ from visible decay modes
- assume that g (H,W) are bound from above by the Standard Model value: $g^2(H,W) \le g^2(H,W,SM)$; (valid for any model that contains only Higgs doublets and singlets) (upper value is motivated from WW scattering unitarity arguments)


(iv) Higgs boson self-coupling?


To finally establish the Higgs mechanism the Higgs boson self-coupling has to be measured:

$$\lambda_{HHH}^{SM} = 3\,rac{m_H^2}{v}\;, \quad \lambda_{HHHH}^{SM} = 3\,rac{m_H^2}{v^2}$$

Cross sections for HH production:

small signal cross-sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

 \Rightarrow no significant measurement possible at the LHC need Super LHC $L = 10^{35}$ cm⁻² sec⁻¹, 6000 fb⁻¹

Most sensitive channel:

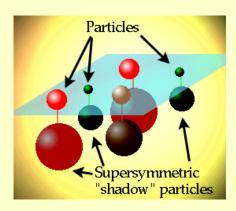
$$gg \rightarrow HH \rightarrow WW WW \rightarrow \ell \nu jj \ell \nu jj$$

- accessible in mass range around 160 GeV
- bb- or γγ decay modes at lower masses are hopeless

Selection (old analysis):

- 2 isolated, high P_T, like sign leptons (from different Higgs bosons)
- 4 high P_T jets, compatible with W-mass

m_H	Signal	t ar t	$W^{\pm}Z$	$W^\pm W^+ W^-$	$t \bar{t} W^{\pm}$	$tar{t}tar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
200 GeV	220	90	60	1500	1600	30	3.8


6000 fb ⁻¹
$$\Rightarrow$$
 $\Delta \lambda_{HHH} / \lambda_{HHH} = 19 \%$ (stat.) (for m_H = 170 GeV) $\Delta \lambda_{HHH} / \lambda_{HHH} = 25 \%$ (stat.) (for m_H = 200 GeV)

Note: - background contributions (tt and WWW) underestimated

- Estimates are based on fast detector simulation
- No pile-up effects and no realistic sLHC performance assumed
- ⇒ Study needs to be updated with more realistic simulations, before more reliable estimates can be given

The Higgs Sector

in the MSSM

The Higgs Sector in the MSSM

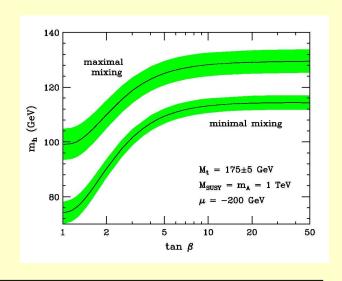
Two Higgs doublets: 5 Higgs particles H, h, A H⁺, H⁻

Determined by two parameters: m_A , $\tan \beta$

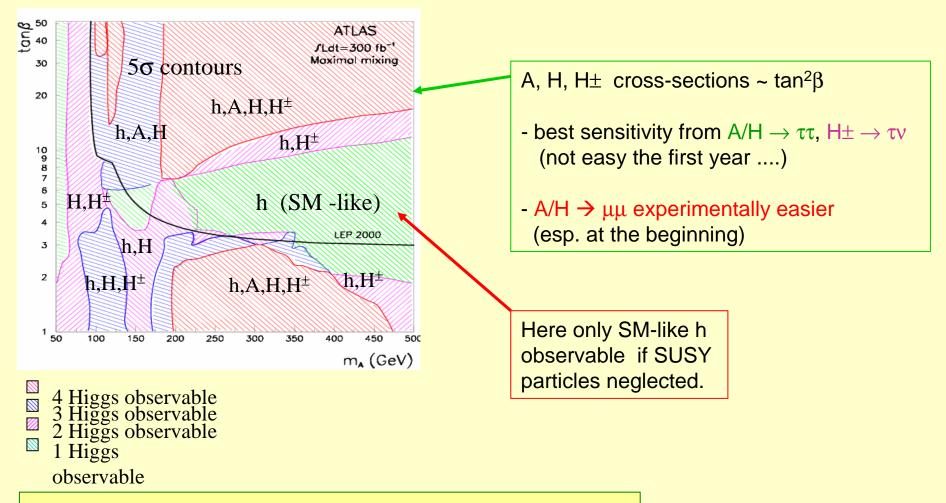
Fixed mass relations at tree level: (Higgs self coupling in MSSM fixed by gauge couplings)

$$m_{H,h}^2 = \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)^2 - 4m_Z^2 m_A^2 \cos^2 2\beta} \right)$$

 $m_h^2 \le m_Z^2 \cos^2 2\beta \le m_Z^2$


Important radiative corrections !! (tree level relations are significantly modified)

→ upper mass bound depends on top mass and mixing in the stop sector

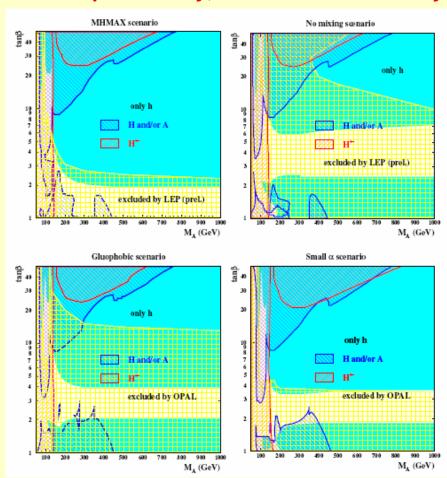

$$m_h^2 \leq m_Z^2 + rac{3g^2 m_t^4}{8\pi^2 m_W^2} \left[\ln \left(rac{M_S^2}{m_t^2}
ight) + x_t^2 \left(1 - rac{x_t^2}{12}
ight)
ight]$$
 where: $M_S^2 = rac{1}{2} \left(M_{\tilde{t}_1}^2 + M_{\tilde{t}_2}^2
ight)$ and $x_t = (A_t - \mu \cot \beta) \ / \ M_S$

 \rightarrow m_h < 115 GeV for no mixing \rightarrow m_h < 135 GeV for maximal mixing

i.e., no mixing scenario: in LEP reach max. mixing: easier to address at the LHC

LHC discovery potential for SUSY Higgs bosons

* Validated by recent ATLAS and CMS full simulation studies *


Coverage in the large m_a wedge region can be improved (slightly) by:

- Higher luminosity: sLHC
- Additional SUSY decay modes (however, model dependent)

<u>Updated MSSM scan for different benchmark scenarios</u>

Benchmark scenarios as defined by M.Carena et al. (h mainly affected)

ATLAS preliminary, 30 fb^{-1,} 5σ discovery

MHMAX scenario $(M_{SUSY} = 1 \text{ TeV/c}^2)$ maximal theoretically allowed region for m_h

Nomixing scenario $(M_{SUSY} = 2 \text{ TeV/c}^2)$ (1TeV almost excl. by LEP) small $m_h \rightarrow \text{difficult for LHC}$

Gluophobic scenario ($M_{SUSY} = 350 \text{ GeV/c}^2$) coupling to gluons suppressed (cancellation of top + stop loops) small rate for g g \rightarrow H, H $\rightarrow \gamma \gamma$ and Z \rightarrow 4 ℓ

Small α scenario (M_{SUSY} = 800 GeV/c²) coupling to b (and t) suppressed (cancellation of sbottom, gluino loops) for large tan β and M_A 100 to 500 GeV/c²