
Physics at Hadron Colliders

Part 4

Physics Beyond the Standard Model

- Supersymmetry (Tevatron and LHC)
- Other Extensions of the Standard Model
 - Extra dimensions
 - Extra gauge bosons
 - Leptoquarks

Why?

- 1. Gravity is not yet incorporated in the Standard Model
- 2. Dark Matter not accomodated
- 3. Many open questions in the Standard Model
 - Hierarchy problem: m_W (100 GeV) $\rightarrow m_{Planck}$ (10¹⁹ GeV)
 - Unification of couplings
 - Flavour / family problem
 -

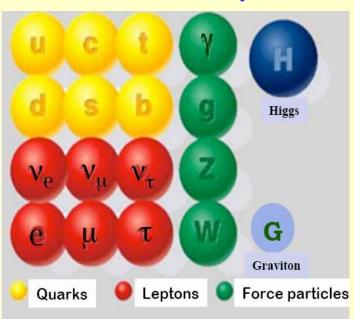
All this calls for a *more fundamental theory* of which the Standard Model is a low energy approximation → **New Physics**

Candidate theories: Supersymmetry

Extra Dimensions

Technicolor

.


Many extensions predict new physics at the TeV scale !!

Strong motivation for LHC, mass reach ~ 3 TeV

Supersymmetry

Extends the Standard Model by predicting a new symmetry Spin ½ matter particles (fermions) ⇔ Spin 1 force carriers (bosons)

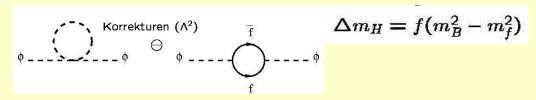
Standard Model particles

SUSY particles

New Quantum number: R-parity:
$$R_p = (-1)^{B+L+2s} = +1$$
 SM particles -1 SUSY particles

Experimental consequences of R-parity conservation:

- SUSY particles are produced in pairs
- Lightest Supersymmetric Particle (LSP) is stable.


LSP is only weakly interacting:

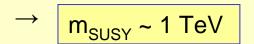
LSP $\equiv \chi^0_1$ (lightest neutralino, in many models)

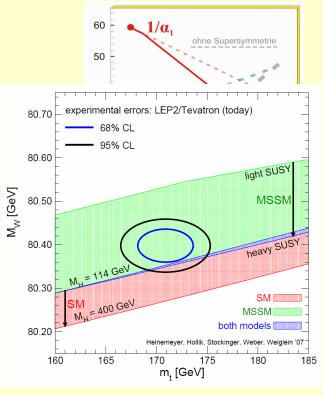
- \rightarrow LSP behaves like a $\nu \rightarrow$ it escapes detection
- $\rightarrow E_T^{miss}$ (typical SUSY signature)

Why do we like SUSY so much?

 Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)


- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,



The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

Link to the Dark Matter in the Universe?

Parameter of the SUSY model

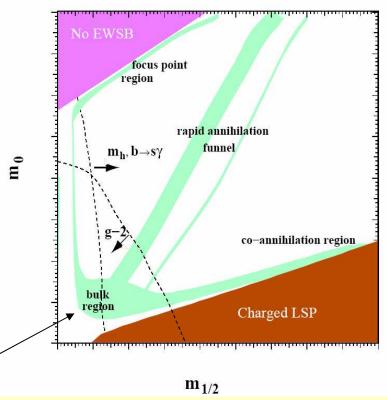
⇒ predictions for the relic density of dark matter

Interpretation in a simplified model

cMSSM (constrained Minimal Supersymmetric Standard Model)

Five parameters:

m₀, m_{1/2} particle masses at the GUT scale

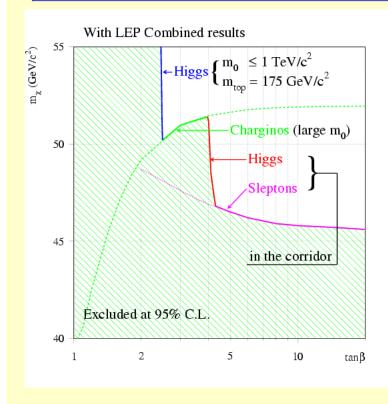

A₀ common coupling term

tan β ratio of vacuum expectation value of

the two Higgs doublets

μ (sign μ) Higgs mass term

 $\rho_{\chi} = m_{\chi} n_{\chi}$, $n_{\chi} \sim \frac{1}{\sigma_{ann}(\chi \chi \rightarrow ...)}$

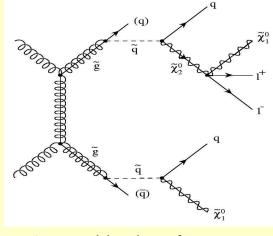

regions of parameter space which are consistent with the measured relic density of dark matter (WMAP,.....)

The masses of the SUSY particles are not predicted;

Theory has many additional new parameters (on which the masses depend)

However, charginos/neutralinos are usually lighter than squarks/sleptons/gluinos.

```
<u>Present mass limits</u>: m (sleptons, charginos) > 90-103 GeV LEP II
m (squarks, gluinos) > ~ 350 GeV Tevatron
m (LSP, lightest neutralino) > ~ 45 GeV LEP II
```



LEP-II limit on the mass of the Lightest SUSY particle

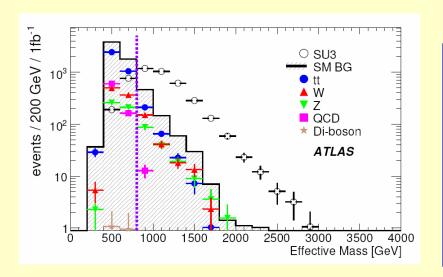
assumption: lightest neutralino = LSP

Search for Supersymmetry at the LHC

- If SUSY exists at the electroweak scale, a discovery at the LHC should be easy
- Squarks and Gluinos are strongly produced

They decay through cascades to the lightest SUSY particle (LSP)

⇒ combination of Jets, Leptons, E_T^{miss}

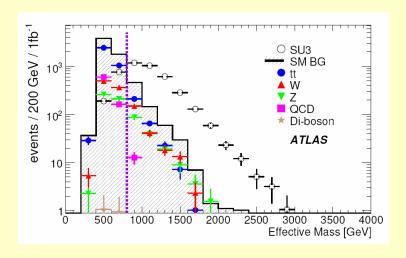

- 1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult)
 Strategy: select particular decay chains and use kinematics to
 determine mass combinations

Squarks and Gluinos

 If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}

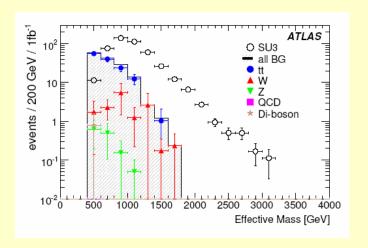
• Typical selection: $N_{iet} > 4$, $E_T > 100$, 50, 50, 50 GeV, $E_T^{miss} > 100$ GeV

• Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)

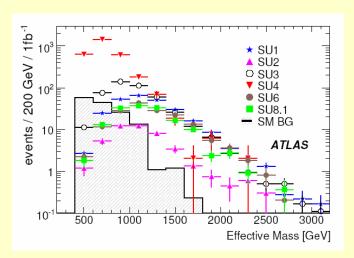

LHC reach for Squark- and Gluino masses:

0.1 fb⁻¹ \Rightarrow M ~ 750 GeV 1 fb⁻¹ \Rightarrow M ~ 1350 GeV 10 fb⁻¹ \Rightarrow M ~ 1800 GeV

Deviations from the Standard Model due to SUSY at the TeV scale can be detected fast!

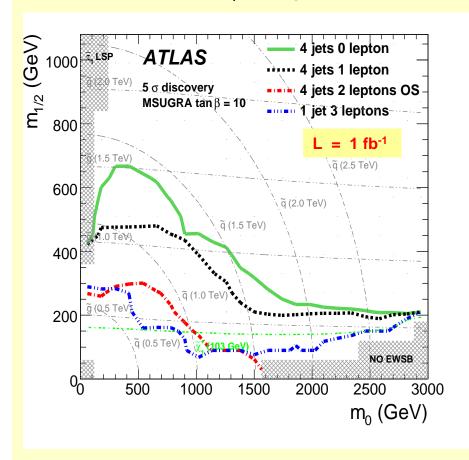

example: mSUGRA, point SU3 (bulk region) $m_0 = 100$ GeV, $m_{1/2} = 300$ GeV $\tan \beta = 6$, $A_0 = -300$ GeV, $\mu > 0$

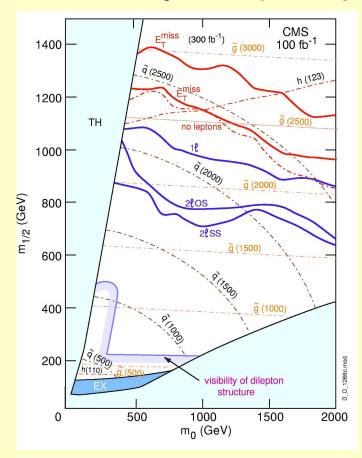
...additional potential: inclusive searches with leptons



SU3, 4 jets + 0 lepton final states

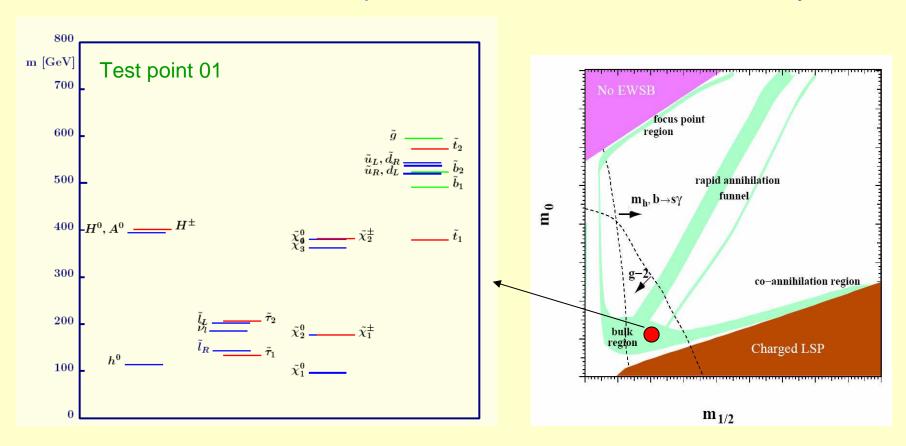
- Smaller signal rates, but better S:B conditions
- Discovery potential is more robust, in particular at the beginning, when systematic uncertainties on the backgrounds are large
- Similar analyses with τ lepton and b quark final states


SU3, 4 jets + 1 lepton final states


4 jets + 1 lepton final states for other benchmark points

LHC reach in the m₀ - m _{1/2} mSUGRA plane:

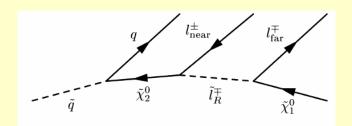
Multijet + E_T^{miss} signature


SUSY cascade decays give also rise to many other inclusive signatures: **leptons**, **b-jets**, τ 's

- Tevatron reach can be extended with early data
- Expect multiple signatures for TeV-scale SUSY Long term mass reach (300 fb⁻¹): 2.5 – 3 TeV

How can the underlying theoretical model be identified?

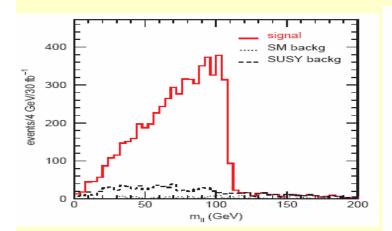
Measurement of the SUSY spectrum → Parameter of the theory



LHC: strongly interacting squarks and gluinos

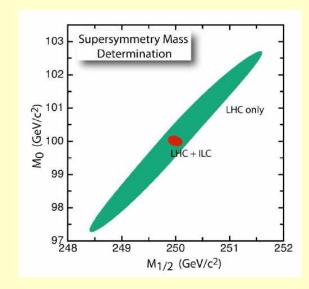
ILC / CLIC: precise investigation of electroweak SUSY partners

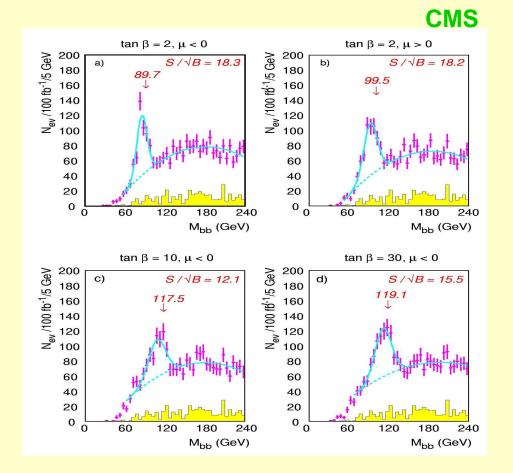
LHC Strategy: End point spectra of cascade decays

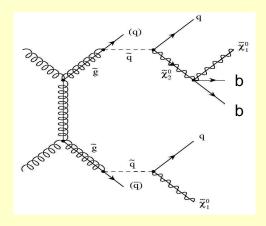

Example:
$$\widetilde{q} \to q \widetilde{\chi}_2^0 \to q \widetilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \widetilde{\chi}_1^0$$

$$\mathsf{M}_{\ell^{+}\ell^{-}}^{\mathsf{max}} = \frac{\sqrt{(\mathsf{m}_{\chi_{2}^{0}}^{2} - \mathsf{m}_{\ell}^{2})(\mathsf{m}_{\ell}^{2} - \mathsf{m}_{\chi_{1}^{0}}^{2})}}{\mathsf{m}_{\ell}}$$

$$M_{\ell_1 q}^{max} = \frac{\sqrt{(m_{\chi_2^0}^2 - m_{\widetilde{\ell}}^2)(m_{\widetilde{q}}^2 - m_{\chi_2^0}^2)}}{m_{\chi_2^0}}$$


Results for point 01:

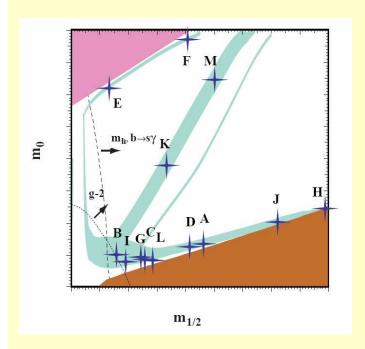

	LHC	LHC⊕ILC	
$\Delta m_{\tilde{\chi}_1^0}$	4.8	0.05 (input)	
$\Delta m_{\tilde{l}_R}$	4.8	0.05 (input)	
$\Delta m_{\tilde{\chi}_2^0}$	4.7	0.08	
$\Delta m_{\tilde{q}_L}$	8.7	4.9	
$\Delta m_{\tilde{q}_R}$	11.8	10.9	
$\Delta m_{\tilde{\mathbf{g}}}$	8.0	6.4	
$\Delta m_{ ilde{b}_1}$	7.5	5.7	
$\Delta m_{\tilde{b}_2}$	7.9	6.2	
$\Delta m_{\tilde{l}_L}^{\tilde{\sigma}_2}$	5.0	0.2 (input)	
$\Delta m_{\tilde{\chi}_4^0}$	5.1	2.23	


$$\Delta m_{\tilde{\chi}_4^0}^{^{1L}}$$
 5.1 2

L = 300 fb⁻¹

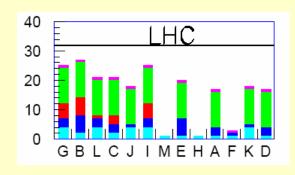
$h \rightarrow bb$:

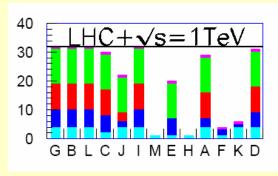
important if $\chi^0_2 \to \chi^0_1 h$ is open; bb peak can be reconstructed in many cases

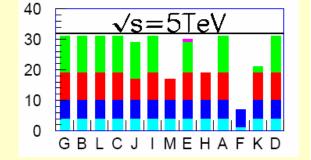

Could be a Higgs discovery mode!

SM background can be reduced by applying a cut on E_T^{miss}

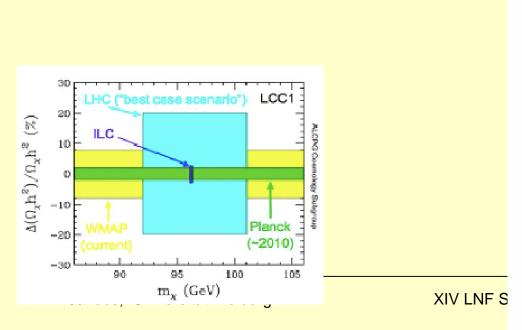
Strategy in SUSY Searches at the LHC:


- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ 's, long lived sleptons)
- Look for ℓ^{\pm} , ℓ^{+} ℓ^{-} , ℓ^{\pm} ℓ^{\pm} , b-jets, τ 's
- End point analyses, global fit → SUSY model parameters

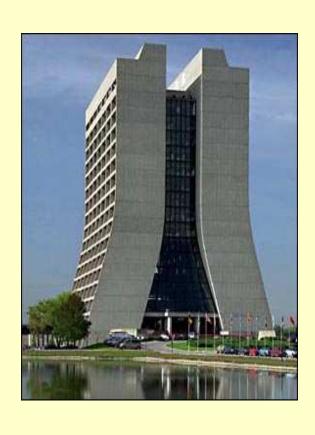

The LHC and the ILC (International Linear Collider, in study/planning phase) are complementary in SUSY searches



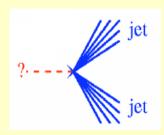
Number of observable SUSY particles:

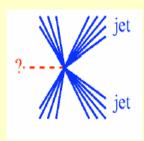


)* Study by J. Ellis et al., hep-ph/0202110


Importance for the interplay between direct and indirect Dark Matter searches

- Following a discovery of New Physics at the LHC (deviation from the Standard Model)
 the LHC will aim to test the Dark Matter hypothesis
- Estimation of relic density in a simple model-dependent scenario will be the first goal
- Less model-dependent scenarios will follow, detailed studies probably require the ILC
- Conclusive result is only possible in conjunction with astroparticle physics experiments
- Ultimate goal: observation of LSP at the LHC, confirmed by a signal in a direct dark matter experiment with predicted mass and cross-section


The Search for



SUSY at the Tevatron

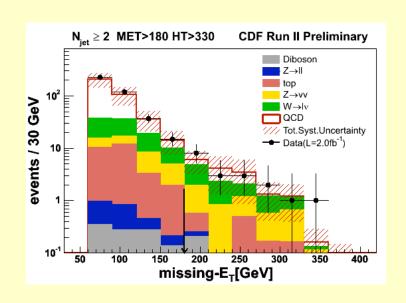
The two classical signatures

1. Search for Squarks and Gluinos: Jet + E_T^{miss} signature produced via QCD processes

2. Search for Charginos and Neutralinos: Multilepton + E_T^{miss} signature produced via electroweak processes (associated production)

$$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \longrightarrow l^{\pm}l^{\mp}l^{\pm}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}X$$

Search for Squarks and Gluinos



- Three different analyses, depending on squark / gluinos mass relations:
 - (i) dijet analysis small m₀, m(squark) < m(gluino)
- $\tilde{q} \, \tilde{g} \rightarrow q \, \tilde{\chi}_1^0 \, q \, \bar{q} \, \tilde{\chi}_1^0$
- (ii) 3-jet analysisintermediate m₀ m(squark) ≈ m(gluino)
- $\tilde{g}\,\tilde{g} \rightarrow q\,\bar{q}\,\tilde{\chi}_1^0 q\,\bar{q}\,\tilde{\chi}_1^0$

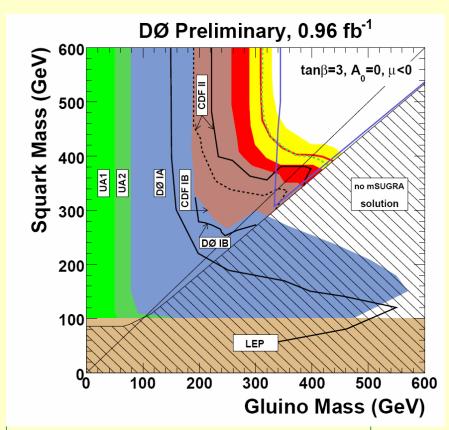
 $\tilde{q}\,\bar{\tilde{q}} \rightarrow q\,\tilde{\chi}_1^0\,\bar{q}\,\tilde{\chi}_1^0$

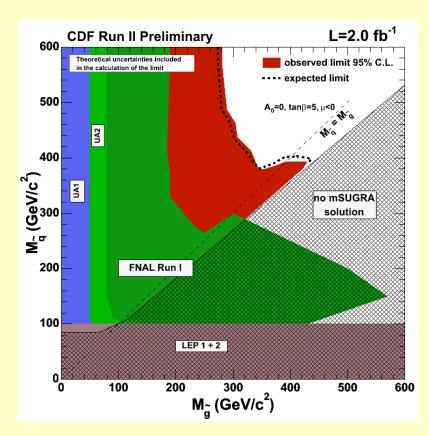
- (iii) Gluino analysis large m₀, m(squark) > m(gluino)
 - Main backgrounds: $Z \rightarrow vv + jets$, tt, W + jet production
 - Event selection:
 - * require at least 2, 3 or 4 jets with $P_T > 60 / 40 / 30 / 20 \text{ GeV}$
 - * veto on isolated electrons and muons
 - * isolation of E_T^{miss} and all jets
 - * optimization of the final cuts → discriminating variables

Search for Squarks and Gluinos (cont.)

Expected background:

samples	2-jets	3-jets	4-jets
QCD	4.37 ± 2.01	13.34 ± 4.67	15.26 ± 7.60
top	1.35 ± 1.22	7.56 ± 3.85	22.14 ± 7.29
$Z\rightarrow \nu\nu+jets$	3.95 ± 1.09	5.39 ± 1.74	2.74 ± 0.95
$Z\rightarrow ll+jets$	0.09 ± 0.04	0.16 ± 0.11	0.14 ± 0.08
$W\rightarrow l\nu+jets$	6.08 ± 2.15	10.69 ± 3.84	7.68 ± 2.85
WW/WZ/ZZ	0.21 ± 0.19	$0.35 {\pm} 0.17$	0.49 ± 0.34
tot SM	16 ± 5	37 ± 12	48±17

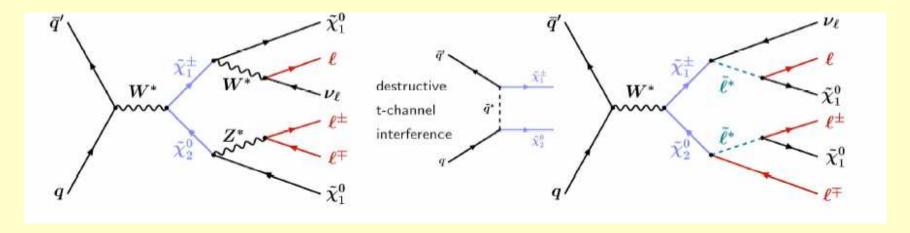

Observed events in data:

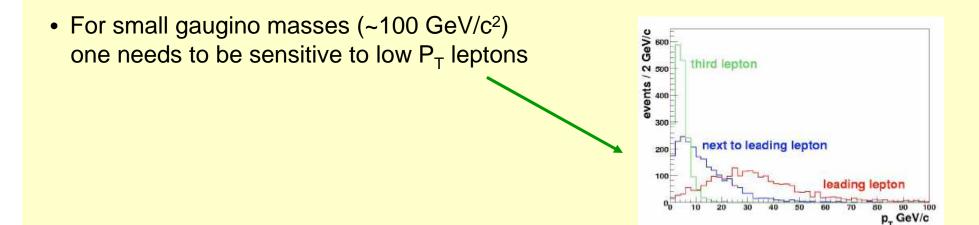

Region	Observed data
4-jets	45
3-jets	38
2-jets	18

No excess above background from Standard Model processes

ightarrow NO evidence for SUSY (yet) ightarrow Set limits on masses of SUSY particles

Excluded regions in the m(squark) vs. m(gluino) plane

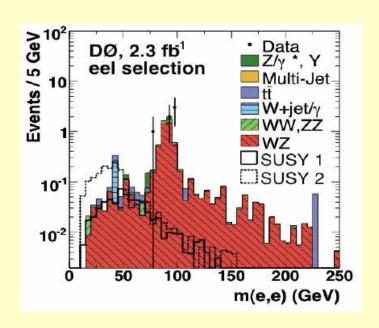


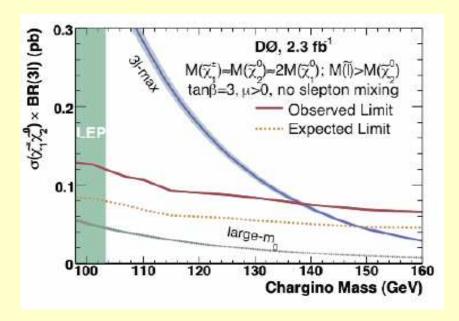

Exclusion limits
(incl. systematic uncertainties)*:
m(gluino) > 290 GeV/c²
m(squark) > 375 GeV/c²

^{)*} uncertainties from structure functions, change of renormalization and factorization scale μ by a factor of 2, NLO calculation, default choice: $\mu = m(gluino)$, m(squark) or ½(m(gluino)+m(squark)) for gg, qq, qg production

Search for Charginos and Neutralinos - the tri-lepton channel-

 Gaugino pair production via electroweak processes (small cross sections, ~0.1 – 0.5 pb, however, small expected background)



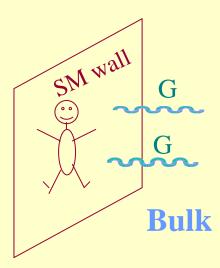


Analysis:

- Search for different ({{\mathred{lll}}}) + like-sign μμ final states with missing transverse momentum
- In order to gain efficiency, no lepton identification is required for the 3rd lepton, select: two identified leptons + a track with P_⊤ > 4 GeV/c

mSUGRA interpretation

For specific scenarios: sensitivity / limits above LEP limits; e.g., $M(\chi^{\pm}) > 140 \text{ GeV/c}^2$ for the 3l-max scenario


Can LHC probe extra dimensions?

- Much recent theoretical interest in models with extra dimensions
 (Explain the weakness of gravity (or hierarchy problem) by extra dimensions)
- New physics can appear at the TeV-mass scale, i.e. accessible at the LHC

Example: Search for direct Graviton production

$$gg o gG$$
 , $qg o qG$, $q\overline{q} o Gg$ $q\overline{q} o G\gamma$

 \Rightarrow Jets or Photons with E_T^{miss}

Search for escaping gravitons:

Jet + E_T^{miss} search:

Main backgrounds:
$$jet+Z(\rightarrow vv)$$
, $jet+W\rightarrow jet+(e,\mu,\tau)v$

$$G_N^{-1} = 8\pi R^{\delta} M_D^{2+\delta}$$
 δ : # extra dimensions

 δ : # extra dimensions M_D = scale of gravitation R = radius (extension)

$$M_D^{max} = 9.1, 7.0, 6.0 \text{ TeV}$$
for
 $\delta = 2, 3, 4$

LHC experiments are sensitive, but conclusions on the underlying theory are difficult and require a detailed measurement program

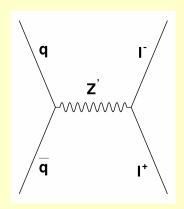
More ideas?

1. New resonances decaying into lepton pairs

examples: W and Z or Graviton resonances (extra dimensions)

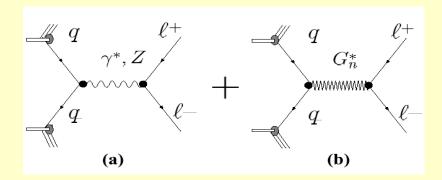
use again leptonic decay mode to search for them: $\,\textbf{W}'\,\rightarrow\boldsymbol{\ell}\,\boldsymbol{\nu}\,$

 $Z' \rightarrow \ell \ell$


2. Leptoquarks?

Particles that decay into leptons and quarks (violate lepton and baryon number; appear in Grand Unified theories)

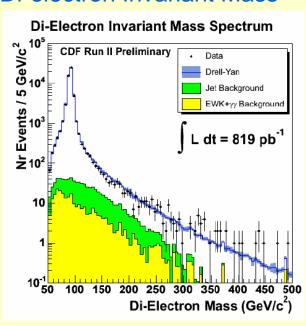
here: search for low mass Leptoquarks (TeV scale)


Fermilab Search for New Resonances in High Mass Di-leptons

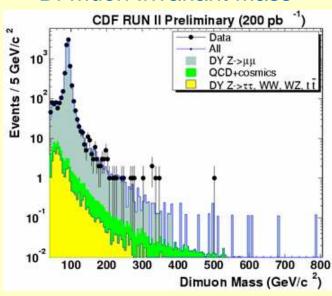
 Neutral Gauge Boson Z´ assume SM-like couplings

 Randall-Sundrum narrow Graviton resonances decaying to di-lepton

appear in Extra Dim. Scenarios



Main background from Drell-Yan pairs

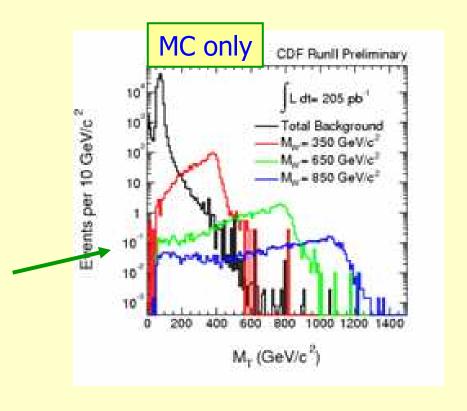

Search for New Resonances in High Mass Di-leptons

Di-electron Invariant Mass

Di-muon Invariant Mass

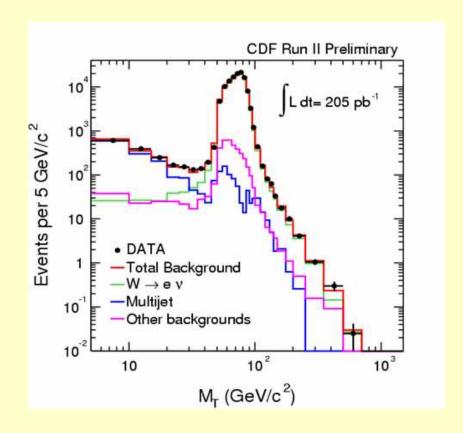
Data are consistent with background from SM processes. No excess observed.

Z' mass limits	(SM couplings)	ee	μμ	ττ		
95% C.L.	CDF /D0:	965	835	394	GeV/c ²	



Search for W' → ev

- W': additional charged heavy vector boson
- appears in theories based on the extension of the gauge group
- e.g. Left-right symmetric models: SU(2)_R W_R
- assume: the neutrino from W' decay is light and stable.


Signature: high p_T electron + high E_T^{miss}

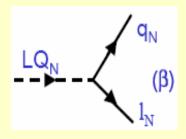
→ peak in transverse mass distribution

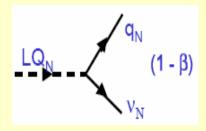
Search for W' \rightarrow ev

Data:

consistent with one well known W + background

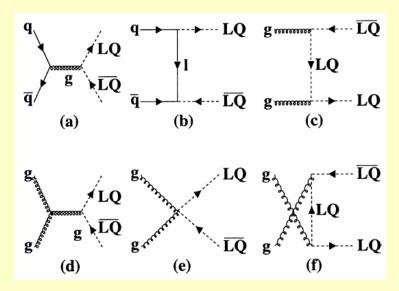
Limit: $M(W') > 842 \text{ GeV/c}^2$


(assuming Standard Model couplings)


Search for Scalar Leptoquarks (LQ)

<u>Production:</u>

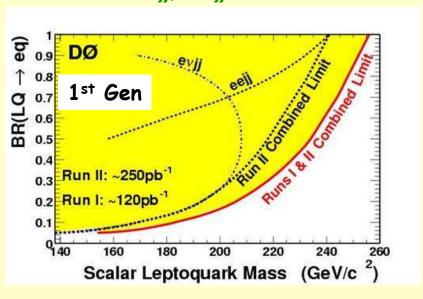
 pair production via QCD processes
 (qq and gg fusion)

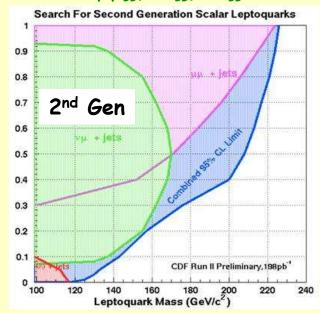

<u>Decay:</u> into a lepton and a quark

 β = LQ branching fraction to charged lepton and quark

N = generation index Leptoquarks of 1., 2., and 3. generation

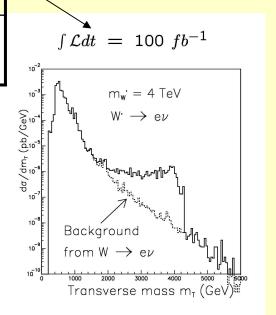
Experimental Signatures:


- two high p_T isolated leptons + jets .OR.
- one isolated lepton + P_T^{miss}+ jets .OR.
- P_T^{miss} + jets


1st, 2nd and 3rd generation Leptoquarks

channels: eejj, ev jj

channels: μμjj, ενjj, ννjj



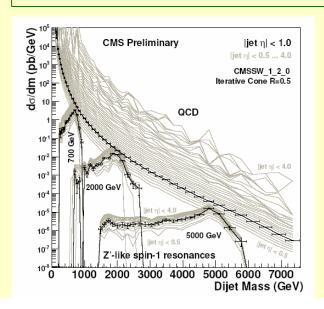
95% C.L.	1. Generation	2. Generation	3. Generation
Mass Limits	LQ	LQ	LQ
CDF (Run II)	235 GeV/c ²	224 GeV/c ²	129 GeV/c ²
D0 (Run I + II)	256 GeV/c ²	200 GeV/c ² (Run I)	

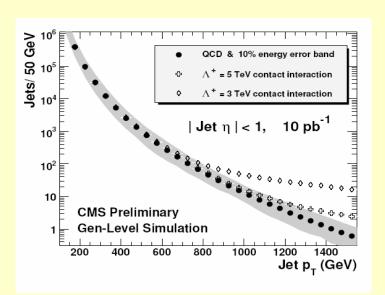
LHC reach for other BSM Physics

(a few examples for 30 and 100 fb⁻¹)

	30 fb ⁻¹	100 fb ⁻¹	
Excited Quarks $Q^* \rightarrow q \gamma$	M (q*) ~ 3.5 TeV	M (q*) ~ 6 TeV	
Leptoquarks	M (LQ) ~ 1 TeV	M (LQ) ~ 1.5 TeV	
$Z' \rightarrow \ell\ell$, jj $W' \rightarrow \ell \nu$	M (Z') ~ 3 TeV M (W') ~ 4 TeV	M (Z') ~ 5 TeV M (W') ~ 6 TeV	
Compositeness (from Di-jet)	Λ ~ 25 TeV	Λ ~ 40 TeV	

Sensitivity to New Physics with jets in Early LHC data

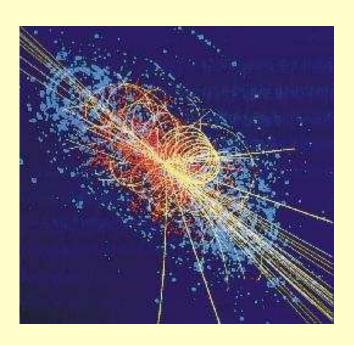

 Even with JES uncertainties expected with early data and an int. luminosity of only 10 pb⁻¹ compositeness scales of ~ 3 TeV can be reached


(close to the present Tevatron reach of $\Lambda > 2.7 \text{ TeV}$)


Resonances decaying into two jets:

Discovery sensitivity around 2 TeV (Spin-1 Z´ like resonance) for ~200 pb⁻¹

Present Tevatron limits: 320 < m < 740 GeV



Conclusions

- 1. Experiments at Hadron Colliders have a huge discovery potential
 - SM Higgs: full mass range, already at low luminosity;

 Vector boson fusion channels improve the sensitivity significantly
 - MSSM Higgs: parameter space covered
 - SUSY: discovery of TeV-scale SUSY should be easy, determination of model parameters is more difficult
 - Exotics: experiments seem robust enough to cope with new scenarios
- 2. Experiments have also a great potential for precision measurements
 - m_W to ~10 15 MeV
 - m_t to ~1 GeV
 - $\Delta m_H / m_H$ to 0.1% (100 600 GeV)
 - + gauge couplings and measurements in the top sector

End of lectures

- In case you have any questions: please do not hesitate to contact me: karl.jakobs@uni-freiburg.de
- Transparencies will be made available as .pdf files on the web (school pages)