Oct. 01. 2009 · Humboldt-University of Berlin

Lattice study of pion pion scattering

Xu Feng
NIC, DESY / Münster University

in collaboration with **Karl Jansen** and **Dru B. Renner** on behalf of **ETMC**

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

第1页18

返回

全屏显示

关 闭

退 出

1 Scattering: from experiment to theory

- scattering is a main method in studying hadron-hadron interactions
- \bullet cross section σ are measured in experiment
- in the limit of $r \to \infty$, wave function $\psi(\vec{r})$ for two-particle state is expanded

$$\psi(\vec{r}) \to e^{i\vec{k}\cdot\vec{r}} + A(k,\theta)r^{-1}e^{ikr}$$

• σ can be given by scattering amplitude $A(k, \theta)$

$$\frac{d\sigma}{d\Omega} = A^2(k,\theta)$$

according to partial wave analysis

$$A(k,\theta) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) A_l(k) P_l(\cos \theta), \quad A_l(k) = \frac{e^{2i\delta_l(k)} - 1}{2i}$$

• in the limit of $k \to 0$, scattering length a_l is extracted from $\delta_l(k)$

$$\delta_l(k) = a_l k^{2l+1} + O(k^{2l+3})$$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标题页

第2页18

返回

全屏显示

关 闭

2 Pion pion scattering

- chiral symmetry spontaneously breaking: three Goldstone meson π^{\pm} , π^0
- property of π as Goldstone bonson: chiral symmetry play a central role in $\pi\pi$ scattering
- in χ -PT theory, chiral expansion of scattering amplitude A(s) is given by:

$$A(s) = A(s)_2 + A(s)_4 + A(s)_6 + \cdots$$

- \bullet we need low energy constants (LECs) to determine A(s)
- A(s) is specified by isospin $A^{I}(s)$
- single pion: isospin triplet

$$|\pi^{+}\rangle = |I = 1, I_{z} = +1\rangle,$$

 $|\pi^{0}\rangle = |I = 1, I_{z} = 0\rangle,$
 $|\pi^{-}\rangle = |I = 1, I_{z} = -1\rangle.$

• two pion system:

$$|\pi\rangle \otimes |\pi\rangle \equiv |\pi\pi\rangle$$

 $|I=1\rangle \otimes |I=1\rangle = |I=2\rangle \oplus |I=1\rangle \oplus |I=0\rangle$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第3页18

返回

全屏显示

关 闭

• I=2 channel, here we consider

$$|I=2, I_z=+2\rangle = |\pi^+\pi^+\rangle$$

- ★ no resonance appears in this channel
- \star LECs is required to determine χ -PT scattering amplitude

 $\star \rho(770)$ resonance appears in this channel

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第4页18

返回

全屏显示

关 闭

resonance mass: m_{ρ} =775 MeV, large width: Γ_{ρ} =149 MeV:

• I=0 channel: $|I=0,I_z=0\rangle = |\pi^+\pi^- + \pi^-\pi^+ - \pi^0\pi^0\rangle$

- $\star \sigma(600)$ resonance appears in this channel
- \star m_{σ} =513(32) MeV, Γ_{σ} =670(134) MeV [CLEO Collaboration, 2002] ??
- ★ width is as large as mass →
 strong overlap between resonance and background
- \star experimental existence for $\sigma(600)$ is not fully settled

$$m_{\sigma} = 400 - 1200 \text{ MeV}, \quad \Gamma_{\sigma} = 500 - 1000 \text{ MeV}. \text{ [PDG]}$$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标题页

第5页18

返回

全屏显示

关 闭

3 Motivation of Lattice QCD

- pros
 - $\star \pi\pi$ scattering is non-perturbative in nature at low energies
 - * LQCD offers a non-perturbative method to study $\pi\pi$ scattering from first principle theory, QCD
 - * extract parameters of $\delta_l^I(\sqrt{s})$ and a_l^I , provide LECs for χ -PT
 - * obtain mass and decay width of resonance
- cons
 - \star lattice artifacts arise from non-zero lattice spacing a
 - \star finite volume constraints: no concepts of δ_l^I in a finite volume
- solutions:
 - $\star N_f = 2$ maximally twisted fermions, automatically O(a) improved
 - * Lüscher's finite size method: connecting finite volume to infinite volume

Scattering: from . . .
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标题页

第6页18

返回

全屏显示

关 闭

4 Lüscher's method

- assume that $V^I(\vec{r})$ describe the interaction of $\pi\pi$ in the isospin channel, I.
- infinite volume: continuous energy spectrum \sqrt{s} :

$$V^I(\vec{r}) \Rightarrow \psi^I(\vec{r}) \Rightarrow \delta_l^I(\sqrt{s})$$

 \bullet lattice simulation ask for finite volume: discrete energy spectrum \sqrt{s}_L

$$V_L^I(\vec{r}) = \sum_{\vec{m} \in \mathbb{Z}^3} V(\vec{r} + \vec{m}L) \Rightarrow \sqrt{s_L}$$

$$V_L^I(\vec{r}) \Rightarrow \psi_L^I(\vec{r}) \Rightarrow \left(\delta_l^I\right)_L(\sqrt{s_L})??$$

 \bullet Lüscher established a connection between \sqrt{s}_L and δ

$$\frac{1}{\tan \delta(\sqrt{s_L})} = Z(1; k_L L/(2\pi)), \quad k_L = \sqrt{s_L/4 - m_\pi^2}$$

• $Z(1; k_L L/(2\pi))$ is a known function and universal for different interactions

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第7页18

返回

全屏显示

关 闭

5 l=2 channel

- twisted mass fermions: m_{π} : 270 MeV–480 MeV a: 0.086 fm, 0.067 fm
- calculate discrete energy spectrum $E_{\pi\pi}^{I=2}$ for each m_{π}
- ullet Lüscher's method relates $E_{\pi\pi}^{I=2}$ to δ , and hence scattering length $a_{\pi\pi}^{I=2}$

$$E_{\pi\pi}^{I=2} - 2m_{\pi} = -\frac{4\pi a_{\pi\pi}^{I=2}}{m_{\pi}L^{3}} \left[1 + c_{1} \frac{a_{\pi\pi}^{I=2}}{L} + c_{2} \left(\frac{a_{\pi\pi}^{I=2}}{L} \right)^{2} \right] + O(L^{-6})$$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

全屏显示

关 闭

退 出

• NLO χ -PT

$$m_{\pi} a_{\pi\pi}^{I=2} = -\frac{m_{\pi}^2}{8\pi f_{\pi}^2} \left\{ 1 + \frac{m_{\pi}^2}{16\pi^2 f_{\pi}^2} \left[3 \ln \left(\frac{m_{\pi}^2}{f_{\pi}^2} \right) - 1 - l_{\pi\pi}^{I=2} (\mu = f_{\pi,phy}) \right] \right\}$$

• this gives $m_{\pi}a_{\pi\pi}^{I=2}$ at physical limit and $l_{\pi\pi}^{I=2}(\mu)$ at a scale of $\mu=f_{\pi,phy}$

* ETMC:
$$m_{\pi}a_{\pi\pi}^{I=2} = -0.04385(47)$$
 $l_{\pi\pi}^{I=2}(\mu) = 4.7(1.4)$

* NPLQCD:
$$m_{\pi}a_{\pi\pi}^{I=2} = -0.04330(42)$$
 $l_{\pi\pi}^{I=2}(\mu) = 6.2(1.2)$

$$\star$$
 CGL: $m_{\pi}a_{\pi\pi}^{I=2} = -0.0444(10)$

* E865 at BNL:
$$m_{\pi}a_{\pi\pi}^{I=2} = -0.0454(34)$$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第9页18

返回

全屏显示

关 闭

6 l=1 channel

• resonance $\rho(770)$ in $e^+e^- \to \pi^+\pi^-$ cross section, large width: Γ =149 MeV:

• cross section σ is contributed by l-th partial wave scattering phase δ_l^I :

$$\sigma(\sqrt{s}) \propto \sum_{l} (2l+1) \sin^2(\delta_l^I(\sqrt{s}))$$

- ullet I=1 channel, P-wave scattering phase δ^1_1 dominates the contribution to σ
- definition for resonance mass M_R :

$$\sigma(\sqrt{s}) \mid_{\sqrt{s}=M_R} = \sigma_{\max} \quad \text{or} \quad \delta_1^1(\sqrt{s}) \mid_{\sqrt{s}=M_R} = \frac{\pi}{2}$$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel
Conclusion

访问主页

标 题 页

第 10 页 18

返回

全屏显示

关 闭

• twisted mass fermions:

$$m_{\pi} = 390, 310, 270 \text{ MeV}$$
, $L/a = 24, 32, 32$, $a = 0.086 \text{ fm}$

- $m_{\rho^0} > 2m_{\pi^+}$: threshold is open for $\rho^0 \to \pi^+\pi^-$
- elastic scattering region: $2m_{\pi} < \sqrt{s_L} < 4m_{\pi}$
- collect four (three) energy spectrums $E_{\pi\pi}^{I=1}$ for each m_{π}
- insert $\sqrt{s}_L=E_{\pi\pi}^{I=1}$ into Lüscher formula, evaluate scattering phase $\delta_1^1(\sqrt{s}_L)$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel
Conclusion

访问主页

标 题 页

第 11 页 18

返回

全屏显示

关 闭

ullet call effective range formula to describe the resonant behavior of δ_1^1

$$\tan \delta_1^1(k) = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k^3}{\sqrt{s}(M_R^2 - s)}, \quad k = \sqrt{s/4 - m_\pi^2}$$

• determine resonance mass M_R and coupling constant $g_{\rho\pi\pi}$ π^+

• decay width is given by $g_{\rho\pi\pi}$:

$$\Gamma = \frac{g_{\rho\pi\pi}^2}{6\pi} \frac{k^3}{M_R^2} , \quad k = \sqrt{M_R^2/4 - m_\pi^2}$$

• NLO χ -PT theory predicts: $g_{\rho\pi\pi}$ is almost m_{π} independent

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

返回

全屏显示

关 闭

•
$$aM_R = 0.4186(56)$$
, $g_{\rho\pi\pi} = 6.16(48)$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel
Conclusion

访问主页

标 题 页

第 13 页 18

返回

全屏显示

关 闭

•
$$aM_R = 0.416(12)$$
, $g_{\rho\pi\pi} = 6.33(84)$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第 14 页 18

返回

全屏显示

关 闭

•
$$aM_R = 0.371(14)$$
, $g_{\rho\pi\pi} = 6.04(77)$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标题页

第 15 页 18

返回

全屏显示

关 闭

ullet chiral extrapolation for M_R

$$M_R = M_R^0 + c_1 m_\pi^2 + O(m_\pi^3)$$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第 16 页 18

返回

全屏显示

关 闭

• fit $g_{\rho\pi\pi}$ as a constant

• ETMC: $g_{\rho\pi\pi} = 6.17(37)$ Experiment: $g_{\rho\pi\pi} = 5.98(02)$

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

Conclusion

访问主页

标 题 页

第 17 页 18

返回

全屏显示

关 闭

7 Conclusion

- \bullet in I=2 channel, we probe the chiral dynamics of strong interaction
 - \star smaller m_{π} is used: 270 MeV–480 MeV
 - * precise scattering length at physical limit:

```
ETMC: m_{\pi}a_{\pi\pi}^{I=2} = -0.04385(47)

NPLQCD: m_{\pi}a_{\pi\pi}^{I=2} = -0.04330(42)

E865 at BNL: m_{\pi}a_{\pi\pi}^{I=2} = -0.0454(34)
```

- in I = 1 channel
 - * at all three pion masses, we get obvious indications of resonance

```
* m_{\pi} = 390 \text{ MeV}, aM_R = 0.419(06), g_{\rho\pi\pi} = 6.16(48)

* m_{\pi} = 310 \text{ MeV}, aM_R = 0.416(12), g_{\rho\pi\pi} = 6.33(84)

* m_{\pi} = 270 \text{ MeV}, aM_R = 0.371(14), g_{\rho\pi\pi} = 6.04(77)
```

- \star chiral extrapolation for M_R and $g_{\rho\pi\pi}$
 - * M_R : deviation from experiment is a little more than 1σ only three data, linear fit??
 - * $g_{\rho\pi\pi}$: well consistent with experiment pion mass dependence of $g_{\rho\pi\pi}$ is small
- future improvement:
 - \star calculate M_R and $g_{\rho\pi\pi}$ at smaller lattice spacing to check lattice artifacts
 - \star extract scattering parameter in I=0 channel

Scattering: from...
Pion pion scattering
Motivation of Lattice QCD
Lüscher's method
I=2 channel
I=1 channel

访问主页

标 题 页

Conclusion

第 18 页 18

返回

全屏显示

关 闭