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N = 4 SYM

N = 4 is an interesting theory:

I lots of symmetry (supersymmetry, conformal symmetry, . . . )

I theory is UV finite in all orders of perturbation theory

I model theory for QCD

I non perturbative results for Wilson loops and scattering amplitudes
via AdS/CFT at strong coupling

The last point involves minimal surfaces.
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timeline

some great achievements in this field include:

I duality between Wilson loops at strong coupling and minimal
surfaces in AdS × S
[arXiv:9803002, J. Maldacena]

I BDS conjecture for planar MHV gluon amplitudes at strong coupling
[arXiv:0505205, Z. Bern, L. Dixon, V. Smirnov]

I duality between planar MHV gluon amplitudes at strong coupling
and minimal surfaces in AdS ⇒ test of BDS conjecture ⇒
remainder function
[arXiv:0705.0303, L.F. Alday, J. Maldacena]

I perturbative calculation of the remainder function at 6 legs and 2
loops
[arXiv:0911.5332, V. Del Duca, C. Duhr, V. A. Smirnov]

[arXiv:1006.5703, A. B. Goncharov, M. Spradlin, C. Vergu, A. Volovich]
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the AdS/CFT correspondence

AdS/CFT relates type IIB string theory on AdS5 × S5 to N = 4 SYM.

N = 4 SYM Strings on AdS5 × S5

’t Hooft coupling λ = g2
YMN string tension T =

√
λ

2π

number of colors N string coupling gs = λ
4πN

local operators string states
scaling dimension of an operator Energy of the string state

large N (planar) limit (λ = const.) free strings
strong coupling (λ� 1) classical strings

Wilson loops at strong coupling minimal surfaces
MHV gluon amplitudes at strong coupling minimal surfaces
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Wilson loops at strong coupling, minimal surfaces

The Wilson loop expectation value is defined as

W (C ) =
1

N
〈0|Tr P exp

(
ig

∮
C

ds[ẋµAµ + |ẋ |θIφI ]
)
|0〉 (1)

conjectrue by Maldacena (Wilson loop - minimal surface correspondence):

W (C ) =

∫
∂X=C

DX exp(−
√
λS [X ]) , (2)

which for large λ is dominated by exp(−
√
λA).

[arXiv:9803002, J. Maldacena]
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gluon scattering amplitudes at strong coupling

In the strong coupling limit (λ� 1) planar MHV gluon scattering
amplitudes correspond to space-like surfaces in AdS5 with closed

light-like polygonal boundary (A ∝ e−
√
λ
2 Area).

[arXiv:0705.0303, L.F. Alday, J. Maldacena]

The boundary corresponds to the momentum configuration!

⇒ implies correspondence of Wilson loops and amplitudes at strong
coupling. Surprisingly this seems to be valid at weak coupling as well!

I the only explicitely known solution corresponds to AMHV
4 .

I progress in calculating the regularized area without knowing the
corresponding surface (Y- System, Thermodynamic Bethe Ansatz)
[arXiv:0904.0663, L.F. Alday, J. Maldacena]

[arXiv:0911.4708, L.F. Alday, D. Gaiotto, J. Maldacena]

[arXiv:1002.2459, L.F. Alday, J. Maldacena, A. Sever, P. Vieira]
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⇒ space-like minimal surfaces in AdS5(×S5) with closed light-like
polygonal boundary are interesing!
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Anti-De-Sitter space

Definition of AdSn via embedding in R(2,n−1)

X iXi = −(X 0)2 − (X 0′)2 + (X 1)2 + · · ·+ (X n−1)2 = −1 , (3)

with the metric η = diag(−1,−1, 1, . . . , 1).

I AdSn is a maximally symmetric Lorentzian manifold

I AdSn has constant negative scalar curvature R = −n(n − 1) and
constant sectional curvature −1

I it is the homogeneous space O(2, n − 1)�O(1, n − 1)

I the isometry group is O(2, n − 1)

AdSn admits a conformal boundary.

Sebastian Wuttke Minimal Surfaces in AdS/CFT



introduction
vacuum solutions in AdS3 × S3

calculating the regularized area

AdS/CFT correspondence
geometric setup

conformal maps

Let (M, gM) and (N, gN) be manifolds with metrics. A map f : M → N
is called conformal if f ∗gN = eα gM .

AdSn
conf.≡ S1 × Bn−1 . (4)

⇒ introduce the conformal boundary of AdSn

∂AdSn = S1 × Sn−2 . (5)

AdSn does not have a boundary ⇒ the conformal factor will conformally
diverge when approaching the conformal boundary
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Poincaré coordinates

Furthermore 1
2 (S1 × Sn−2)

conf.≡ R1,n−2 . One can introduce Poincaré
coordinates for one half of AdSn via

Xµ =
xµ

r
, X 0′+X n−1 =

1

r
, X 0′−X n−1 =

−x20 + x21 + · · ·+ x2n−2 + r2

r
(6)

with µ ∈ {0, 1, . . . , n − 2}. One approaches the boundary for r → 0. The
metric in these coordinates is

gαβ =
1

r2
diag(−1, 1, . . . , 1) , (7)

which is conformal to the flat metric and gives the (n-1) dimensional
Minkowski space on the boundary.
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conformal group

The conformal group is the set of transformations such that the induced
metric only differs by a conformal factor.

I isometry group is a subgroup

I conformal group of R(1,n−2) is O(2, n − 1)

O(2, n − 1) is also the isometry group of AdSn! The action of this
group induces a the conformal group on the boundary.

Iso(AdSn) = Conf.(∂AdSn) = Conf.(R(1,n−2)) (8)

Isometry invariance of the string theory is related to conformal invariance
of the boundary theory.

The conformal algebra of n dimensional Minkowski space is generated by:

n translations, n(n−1)
2 Lorentz-boosts (rotations), 1 dilatation and n

special conformal transformations.
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minimal surfaces, breaking of conformal symmetry

I O(2, 4) acts on a light-like boundary configuration

I How big is the space of all possible boundary configurations with n
cusps?

I Can one obtain a general configuration out of a special one?

I ⇒ a boundary configuration has 3(n-5) conformally invariant cross-
ratios

⇒ for n = 4, 5 cusps one just needs one special solution.

Is the area (amplitude) for (4,5) cusps independent of the kinematics?

No, the area needs to be regulated and the regularization scheme
breaks conformal invariance and introduces a dependence on the
Mandelstam variables!
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vacuum solutions in AdS3 × S3

vacuum solutions in AdS3 × S3
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why vacuum solutions in AdS3 × S3?

We call a solution in AdS3 × S3 vacuum solution if the solution if it
admits a constant induced metric on both factors.

I the string dual lives in AdS5 × S5 ⇒ it is natural to examine the
problem in the product space

I the tetragon solution is a vacuum solution

I space-like minimal surfaces in the product space can be space-like,
time-like and also carry a degenerate metric on the AdS projection
⇒ we expect several interesting classes of solutions

I these solutions have not been examined before and can be calculated
explicitely

We examine these vacuum solutions in
[arXiv:0912.3829, H. Dorn, N. Drukker, G. Jorjadze, C. Kalousios]

[arXiv:0912.3829, H. Dorn, G. Jorjadze, C. Kalousios, L. Megrelidze, S.W.]
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Pohlmeyer reduction for AdS projection

A convenient tool for those minimal surfaces is Pohlmeyer Reduction.

I introduce an orthonormal reper E = {Y , ∂σY|∂σY | ,
∂τY
|∂τY | ,N}

I rewrite the differential equations using a kind of vielbein formalism

I solve a system of linear differential equations for the matrix E :

∂σE = AσE , ∂τE = AτE , [Aσ,Aτ ] + ∂τAσ − ∂σAτ = 0 (9)

vacuum solutions ⇔ Aσ , Aτ = const.

⇒ the integration breaks down to the computation of an exponential

Aσ and Aτ depend on to parameters: ρ which paramtereizes the induced
metric and φ which is the phase of the second fundamental form.
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AdS- projection

I the AdS projection depends on two parameters {φ, ρ}
I the AdS projection is time-like for ρ2 < 1 and space-like for ρ2 > 1

I every class of solutions is represented by a different color in the
picture

I the lines represent different solutions that have the same AdS
projection

All surfaces have a constant mean curvature in AdS3.
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S- projection

The spherical projections depend in a similar way on two parameters
{ρs , φs}. They are tori in S3 with constant mean curvature.
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time-like spinning solutions

There are three time-like (on AdS) solutions that correspond to the green
and the pink area and the orange line.

The diameter of the tube and the shape of the solution that touches
infinity in two points can be adjusted with a different choice of the
parameters {ρ, φ}.
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time-like cont.

The depicted solutions belong to the yellow area, the red line and the
black dot.

The time-like tetragon can also have different shapes:
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spacelike tetragon and degenerate solutions

These solutions correspond to the white area (space-like) tetragon and to
the blue line and dots.

The space-like tetragon can also have different shapes:
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regularized area

Calculating the area
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two candidates for amplitudes

From our previous analysis there are two interesting classes:

I time-like tetragon (s- channel): cot 2θ := sinφ cosφ

ρ
√
ρ2−1

, H = cot 2θ

I space-like tetragon (u- channel): tanh 2θ :=
ρ
√

1−ρ2
sinφ cosφ , H = − coth 2θ
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calculation of the area

We choose an isometry transformation that depends on two parameters
(a, b) which satisfies the conditions:

I after the boost, the whole configuration is contained in a single
Poincaré patch of AdS4

I the parameters (a, b) allow to adjust the Mandelstam variables s
and t

Then calculate a cut-off in AdS4 which is given via rc = const. Then we
use the full induced metric to calculate the regularized area.

Although the action is invariant under isometry transformation (and thus
of s and t), the introduction of a cut-off breaks this conformal invariance!
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area for the space-like tetragon solution

The regularized area for the space-like tetragon solution is

Sreg =

√
λ

2π

(ρ2 + ρ2s )

ρ
√
ρ2 − 1

sin 2θ I (rc) , (10)

and

I (rc) =
1

4

(
log

r2c cos2 θ

−t4π2

)2

+
1

4

(
log

r2c sin2 θ

−s4π2

)2

− 1

4

(
log

s

t
cot2 θ

)2
− π2

3
,

(11)
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area for the time-like tetragon

The calculation of the regularized area for a small cutoff rc in Poincaré
coordinates for the time-like tetragon solution leads to

Sreg =

√
λ

2π
(ρ2 + ρ2s )

sinh 2θ

ρ
√

1− ρ2
I (rc) , (12)

with

I (rc) =
1

4

(
log

r2c sinh2 θ

4π2 s

)2

+
1

4

(
log

r2c cosh2 θ

−4π2 t

)2

−1

4

(
log

s coth2 θ

−t

)2

− π2

3
.

(13)
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interpretation

The expressions for the time-like and space-like tetragon solutions can be
formally related via θ ↔ iθ and continuation to ρ2 > 1.
In order to match with BDS formula the prefactors of the regularized
areas have to be equal to 1.

I for the space-like tetragon the prefactor is ≥ 1 and approaches 1 for
θ → π

4 and ρ2 →∞. I (rc) then coincides with the pure AdS case.
This corresponds to the suppression of the S- projection

I for the time-like tetragon the prefactor is ≥ 2 and approaches its
lower bound for ρ2 → 1 which implies θ → 0. This causes an
additional divergence of I (rc)

These considerations lead to the conclusion that these classes do not
have an interpretation as scattering amplitudes at strong coupling.
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conclusions / outlook

I on-shell minimal surfaces in AdS5(×S5) are interesting quantities

I we classified an interesting subset of the space-like flat minimal
surfaces that make use of the spherical part (which is less explored)

I all projections onto AdS and S have constant mean curvature

I however, the interpretation of these solutions is not yet clear

I provides evidence for neglecting spherical part at strong coupling
(solutions may contribute to quantum corrections)

I interesting fact: u-channel configuration can contribute, s-channel
configuration not

There are some further interesting subjects

I continue the study of those minimal surfaces

I study the OPE of light-like Wilson loops
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Thank you for your attention.
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