Astroparticle Physics - an introduction with a focus on galactic cosmic rays

Christian Stegmann ECAP, Erlangen

Key questions

- How are non-thermal spectra produced?
- Why is there a universal index?
- Lifetime of CRs in galaxy is finite \rightarrow how is the CR flux sustained?
- What are the sources of Cosmic Rays?

Somewhat agreed scenario

- · particles are accelerated in shock fronts
- stochastic Fermi acceleration
- most Galactic CRs accelerated in supernova remnants
- Active Galactic Nuclei one of proposed sources for extragalactic CRs

Acceleration of cosmic rays – Fermi-Acceleration

Want to obtain a scale-free power law in energy

We need

- acceleration $\propto E$
- · particle escape independent of E

Acceleration: $\frac{dE}{dt} = a E$ Escape: $N(t+dt) = N(t) - N(t)b dt \Rightarrow \frac{dn(E)}{dt} = -bn$ $\frac{dn(E)}{dt} = \frac{dn}{dE}\frac{dE}{dt} = \frac{dn}{dE}a E$ $\Rightarrow \frac{dn}{dE} = -\frac{b}{a}\frac{N}{E} \Rightarrow n(E) = n_0 E^{-b/a}$ scale free power law if b/aindependent of energy

Second order Fermi-Acceleration

Energy spectrum from Fermi-acceleration

particle loss time scale τ_{esc}

Spectrum from diffusion loss equation

$$\frac{\partial n}{\partial t} = \vec{\nabla} (D\vec{\nabla}n) + \frac{\partial}{\partial E} [b(E)n(E)] + Q(E) - \frac{n}{\tau_{esc}}$$

$$b(E) = -\frac{dE}{dt}$$
 is "energy gain" term

consider static solution, no sources, no diffusion, no spallation

$$\frac{\partial}{\partial E} \left[\alpha E n(E) \right] = \frac{n}{\tau_{esc}}$$

$$\Rightarrow n(E) = n_0 E^{-x} \text{ with } x = \left(1 + \frac{1}{\alpha \tau_{esc}} \right)$$

Fermi-Acceleration

succeeded in obtaining power-law

$$n(E) = n_0 E^{-x}$$
 with $x = \left(1 + \frac{1}{\alpha \tau_{esc}}\right)$

- only ingredients:
 - acceleration « energy
 - escape time independent of energy

But

- index depends on V , L , τ_{esc} , not universal
- velocity of interstellar clouds typically $V \approx 10 4c$ \rightarrow not much gain per single collision
- typical distance $L \approx 1 \ pc \rightarrow$ collision rate $c/L \approx 0.3/yr$
- quite general problem: acceleration at low energies hampered by ionisation losses → either accelerate efficiently or inject at high energies

Acceleration in strong shocks

- Shock: pressure wave with velocity $u > c_s$
- for strong shocks, $u \gg c_s$
- gas ahead of shock ("upstream") cannot react
- many astrophysical environments:
 - supernova remnant shocks
 - termination shocks in pulsar wind nebulae
 - $\circ\,$ bow shock caused by solar wind
- strong shocks provide good environment for particle acceleration
 - large shock speeds
 - turbulent motion on small scales
- application of Fermi acceleration results in
 - \circ energy increase $\propto u/c$
 - universal spectral index of 2 in the easiest case

First order Fermi-Acceleration

First order Fermi-Acceleration

Find universal power law

$$\frac{dn}{dE} = n_0 E^{-2}$$

substantial modifications of spectral index possible for

- weak shocks (steeper spectra)
- synchrotron losses (cut-off)
- feedback due to particle pressure (hardening)
- magnetic fields
- relativistic shocks (in general hardening)
- magnetic effects much more complicated