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Roadmap for this course

e In this course I aim to follow the ‘HEP workflow’ to organize the
discussion of statistics issues

- My experience is that this most intuitive for HEP Phd students

e Basics (15 slides)

- Distributions, the Central Limit Theorem

e Event classification (54 slides)
- Hypothesis testing
- Machine learning

e Parameter estimation (64 slides)
- Estimators: Maximum Likelihood and Chi-squared
- Mathematical tools for model building
- Practical issues arising with minimization
e Confidence intervals, limits, significance (54 slides)
- Hypothesis testing (again), Bayes Theorem
- Frequentist statistics, Likelihood-based intervals
e Likelihood principle, Systematics and nuisance parameters (53 slides)
- Likelihood principle and conditioning

- Systematic uncertainties as nuisance parameters
- Treatment of nuisance parameters in statistical inference
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Basics

— Basic distributions — Binomial, Poisson, Gaussian
— Central Limit Theorem
— Covariance, correlations
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Basic Distributions — The binomial distribution

e Simple experiment — Drawing marbles from a bowl
- Bowl with marbles, fraction p are black, others are white
- Draw N marbles from bowl, put marble back after each drawing

— Distribution of R black marbles in drawn sample:

Probability of a Number of equivalent
specific outcome permutations for that
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Properties of the binomial distribution

e Mean: <r>:n-p

e Variance: V(r)=np(l-p) = GZ\/np(l—p)

p=0.1, N=4 p=0.5, N=4 p=0.9, N=4

p=0.5, N=1000

p=0.1, N=1000

=




HEP example - Efficiency measurement

e Example: trigger efficiency turn-on curve

Fitted efficiency
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Basic Distributions — the Poisson distribution

e Sometimes we don’t know the equivalent of the number
of drawings

- Example: Geiger counter

— Sharp events occurring in a (time) continuum

e What distribution to we expect in measurement over
fixed amount of time?

— Divide time interval A in n finite chunks,

— Take binomial formula with p=A/n and let n2>w»
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Properties of the Poisson distribution
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More properties of the Poisson distribution P(;1)=
e Mean, variance: <r> )

V(=4 = o=+

e Convolution of 2 Poisson distributions is also a Poisson
distribution with A=A +A,

P(r)= ZP(”A;AA)P(”_VA;/IB)
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Basic Distributions — The Gaussian distribution

e Look at Poisson distribution in limit of /arge N

P(r;A)=e"* = A

™. Take log, substitute, r = 1 + x
i and use In(M) =rinr—r+In2m

ln(P(r;/I)):—/1+rln'/1—(r]nr—r)—1n\/%
:—m;{m—mua+%))}+(z+x)—1nm

x2

20

ln(l+z)~z z22/2

zx—(/z—x)[j{ j In(27)

2

~ "; ~In(274)

—x% /24

Take exp

 P(x)=

Familiar Gaussian distribution, ... _
27 (approximation reasonable for N>10) "
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Properties of the Gaussian distribution

P(x, L, (7) — \/2177 e—(X—ﬂ)z/zo-z
and

(x)= [ xP(x; 11, 0)dx = 1
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O—=0

e Integrals of Gaussian
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68.279% within 1o 90% - 1.645c

95.43% within 2¢ 95% - 1.960

99.73% within 3o 99% - 2.580

99.9% - 3.29¢




The Gaussian as ‘Normal distribution’

e Why are errors usually Gaussian?

e The Central Limit Theorem says

- If you take the sum X of N independent measurements X,
each taken from a distribution of mean m,, a variance V,=c?,
the distribution for x

(a) has expectation value <X> = Z,ul

(b) has variance J(X) = ZVl = Zo’lz
i i
(c ) becomes Gaussian as N 2> «©

- Small print: tails converge very slowly in CLT, be careful in assuming
Gaussian shape beyond 2o
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Demonstration of Central Limit Theorem
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< 5000 numbers taken at random from a
uniform distribution between [0,1].
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< 5000 numbers, each the sum of 2
random numbers, i.e. X = X;+X,.
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— Triangular shape

< Same for 3 numbers,
X=Xy + X, + X5
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« Same for 12 numbers, overlaid curve is
exact Gaussian distribution
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Central Limit Theorem - repeated measurements

e Common case 1 : Repeated identical measurements
l.e.w = wo;=0c foralli
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Central Limit Theorem - repeated measurements

e Common case 2 : Repeated measurements with
identical means but different errors
(i.e weighted measurements, w, = n)

— yixi / O-i2

X = ZI/O_; Weighted average

V() = s = 0(F) = e

‘Sum-of-weights’ formula for
error on weighted measurements
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