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Roadmap for this course

• In this course I aim to follow the ‘HEP workflow’ to organize the 
discussion of statistics issues

– My experience is that this most intuitive for HEP Phd students

• Basics (15 slides)

– Distributions, the Central Limit Theorem

• Event classification (54 slides)

– Hypothesis testing

– Machine learning

• Parameter estimation (64 slides)

– Estimators: Maximum Likelihood and Chi-squared

– Mathematical tools for model building

– Practical issues arising with minimization

• Confidence intervals, limits, significance (54 slides)

– Hypothesis testing (again), Bayes Theorem

– Frequentist statistics, Likelihood-based intervals

• Likelihood principle, Systematics and nuisance parameters (53 slides)

– Likelihood principle and conditioning

– Systematic uncertainties as nuisance parameters

– Treatment of nuisance parameters in statistical inference
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Basics
— Basic distributions – Binomial, Poisson, Gaussian
— Central Limit Theorem
— Covariance, correlations
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Basic Distributions – The binomial distribution

• Simple experiment – Drawing marbles from a bowl

– Bowl with marbles,  fraction p are black, others are white

– Draw N marbles from bowl, put marble back after each drawing

– Distribution of R black marbles in drawn sample:

Binomial distribution
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Properties of the binomial distribution

• Mean:

• Variance:  
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p=0.1, N=4 p=0.5, N=4 p=0.9, N=4

p=0.1, N=1000 p=0.5, N=1000 p=0.9, N=1000



HEP example – Efficiency measurement

• Example: trigger efficiency turn-on curve
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Basic Distributions – the Poisson distribution

• Sometimes we don’t know the equivalent of the number 
of drawings

– Example: Geiger counter

– Sharp events occurring in a (time) continuum

• What distribution to we expect in measurement over 
fixed amount of time?

– Divide time interval l in n finite chunks,

– Take binomial formula with p=l/n  and let n
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Poisson distribution
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Properties of the Poisson distribution

l=0.1 l=0.5 l=1

l=2 l=5 l=10

l=20 l=50 l=200
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More properties of the Poisson distribution

• Mean, variance:

• Convolution of 2 Poisson distributions is also a Poisson 
distribution with lab=la+lb
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Basic Distributions – The Gaussian distribution

• Look at Poisson distribution in limit of large N
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Take exp

Familiar Gaussian distribution, 
(approximation reasonable for N>10)

l=1

l=10

l=200
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Properties of the Gaussian distribution

• Mean and Variance

• Integrals of Gaussian
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68.27% within 1 90%  1.645

95.43% within 2 95%  1.96

99.73% within 3 99%  2.58

99.9%  3.29
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The Gaussian as ‘Normal distribution’

• Why are errors usually Gaussian?

• The Central Limit Theorem says

– If you take the sum X of N independent measurements xi, 
each taken from a distribution of mean mi, a variance Vi=i

2,
the distribution for x

(a) has expectation value

(b) has variance

(c ) becomes Gaussian as N  

– Small print: tails converge very slowly in CLT, be careful in assuming 
Gaussian shape beyond 2
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Demonstration of Central Limit Theorem

 5000 numbers taken at random from a 
uniform distribution between [0,1].

– Mean = 1/2, Variance = 1/12

 5000 numbers, each the sum of 2 
random numbers, i.e. X = x1+x2.

– Triangular shape

 Same for 3 numbers, 
X = x1 + x2 + x3

 Same for 12 numbers, overlaid curve is 
exact Gaussian distribution

N=1

N=2

N=3

N=12
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Central Limit Theorem – repeated measurements

• Common case 1 : Repeated identical measurements
i.e. i = , i   for all i
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Central Limit Theorem – repeated measurements

• Common case 2 : Repeated measurements with
identical means but different errors
(i.e weighted measurements, i = )
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‘Sum-of-weights’ formula for
error on weighted measurements

Weighted average


