
Wouter Verkerke, UCSB

Event classification
— Comparing discriminating variables
— Choosing the optimal cut
— Working in more than one dimension
— Approximating the optimal discriminant
— Techniques: Principal component analysis,

Fisher Discriminant, Neural Network,
Probability Density Estimate, Empirical Modeling

Introduction to event classification

• Most HEP analysis involve classification of events in
‗signal‘ and ‗background‘

– Statistics connection : Hypothesis testing

– Determine consistency of each event with a signal and
background hypothesis

– No certain answer on signal-vs-background classification for each
event, but rather a probability

– In simple cases like above example no need to
make cut on signal probability

– Go straight to parameter estimation: what is # of signal events?

Signal

Background P(sig)=0%

P(sig)=50%

Signal hypothesis
Gaussian distribution in x

Background hypothesis
Flat distribution in x

Multivariate event classification

• Many HEP problem are much more difficult than preceding
example

– Many observables, overwhelming background.

– Various approaches possible

• Analyses perform various combination of two techniques

– Selection of events (throw out events that are not very much signal-like)

– Parameter estimation (assign signal probability to each event determine
total number of signal events in sample)

• ―Cut and count‖ (or fit)

– First make preselection of events that are most ‗signal-like‘

– Then do parameter estimation or simple counting on those events

• ―Compactification‖

– Compactify information in multiple observables into one observable (e.g.
output of neural network) ‗test statistic t(x)‘

– Do parameter estimation on compactify representation

• ―Big fit‖

– Make explicit model of signal and background hypothesis in all observables
and fit all data to estimate model parameters
(#signal events, Higgs mass etc…) Wouter Verkerke, NIKHEF

Merits of various approaches

• Statistical sensitivity

– Cutting usually throws away some information.

– Compactification can loose some information, but not necessarily

– Big fit keeps all information

• Feasibility

– Cutting usually easiest

– Compactification. Recent developments in machine learning make this
a lot easier

– Big fit clearly most ambitious

• What is the best you can do? Best (this context):

Smallest stat. error on measurement

– Equivalent statement for a selection cut:

lowest possible bkg. efficiency at a given sig. efficiency

Hypothesis testing

• Introduce some terminology of hypothesis testing

• Assumed one has a model for data under two
hypotheses

– Null hypothesis (H0) = Background only

– Alternate hypotheses (H1) = e.g. Signal + Background

• One makes a measurement and then need to decide to
accept or reject H0

Wouter Verkerke, NIKHEF

Hypothesis testing

• Definition of terms

– Rate of type-I error = a

– Rate of type-II error = b

– Power of test is 1-b

• Treat hypotheses asymmetrically

– Null hypo is special Fix rate of type-I error

• Now can define a well stated goal

– Maximize the power of test (minimized rate of type-II error) for
given a

Wouter Verkerke, NIKHEF

The Neyman-Pearson lemma

• In 1932-1938 Neyman and Pearson developed in which
one must consider competing hypotheses

– Null hypothesis (H0) = Background only

– Alternate hypotheses (H1) = e.g. Signal + Background

• The region W that minimizes the rate of the type-II
error (not reporting true discovery) is a contour of the
Likelihood Ratio

• Any other region of the same size will have less power

Wouter Verkerke, NIKHEF

What is the best you can do?

• Neyman-Pearson lemma:

– For a problem described by a continuous signal distribution f(x|s)
and a continuous bkg distribution f(x|b) the optimal acceptance
region is defined by

– Note that for continuous distributions you cannot always achieve
perfect separation

• Translation for 3 approaches

– Cut and count: Optimal cut is defined by surface S(x)/B(x)>a

– Compactification: Optimal 1-D test statistics t(x) = S(x)/B(x)

– Big fit: Optimal fit is when model M(x)=NSS(x) +NBB(x)

Wouter Verkerke, NIKHEF

Why Neyman-Pearson doesn‘t always help

• The problem is that we usually don‘t have explicit
formulae for the pdfs

– Instead we may have Monte Carlo models for signal and
background processes, so we can produce simulated data, and
enter each event into an n-dimensional histogram. Use e.g. M bins
for each of the n dimensions, total of Mn cells.

• But n is potentially large prohibitively large number
of cells to populate with Monte Carlo data.

– Compromise: make Ansatz for form of test statistic with
fewer parameters; determine them (e.g. using MC) to give best
discrimination between signal and background.

Wouter Verkerke, NIKHEF

Using test statistics to describe the selection

• All decision boundaries (‗cuts‘) can be expressed as
where t(x) is a test statistic and a is a parameter

• Goal is a test statistic as close as possible to t(x)=S(x)/D(x)

• Two separate questions

– What is the optimal form of t(x) –
Independent of ratio Nsig/Nbkg

– What is the best value of a –
Depends on ratio Nsig/Nbkg

accept
H0

H1

accept
H0

H1

accept

H0

H1

Rectangular cut Linear cut Non-linear cut

)()()(iijj cxcxxt iijj xaxaxt)(...)(xAxxaxt

a)(xt

Wouter Verkerke, UCSB

Constructing test statistics – Linear discriminants

• A linear discriminant constructs t(x)
from a linear combination of the variables xi

– Optimize discriminant by chosing ai to maximize separation
between signal and background

• Most common form of the linear discriminant is the
Fisher discriminant

xaxaxt
N

i

ii

1

)(

R.A. Fisher
Ann. Eugen. 7(1936) 179. xVxF

T

BS

 1)(

Mean values in
xi for sig,bkg

Inverse of variance matrix
of signal/background
(assumed to be the same)

a

accept
H0

H1

Wouter Verkerke, UCSB

Ansatz test statistics – The Fisher discriminant

• Advantage of Fisher Discriminant:

– Ingredients s,b,V can all be calculated directly from
data or simulation samples. No ‗training‘ or ‗tuning‘

• Disadvantages of Fisher Discriminant

– Fisher discriminant only exploits difference in means.

– If signal and background have different variance, this information
is not used.

R.A. Fisher
Ann. Eugen. 7(1936) 179. xVxF

T

BS

 1)(

Mean values in
xi for sig,bkg

Inverse of variance matrix
of signal/background
(assumed to be the same)

a

Example of Fisher discriminant

• The ―CLEO‖ Fisher discriminant

– Goal: distinguish between
e+e- Y4s bb and uu,dd,ss,cc

– Method: Measure energy flow
in 9 concentric cones around
direction of B candidate

F(x)

Energy flow
in bb

Energy flow
in u,d,s,c

1

2

3

4

5
678

9

Cone
Energy
flows

1 2 3

4 5 6

7 8 9

Wouter Verkerke, UCSB

When is Fisher discriminant is the optimal discriminant?

• A very simple dataset

• Fisher is optimal discriminant for this case

– In this case we can also directly correlate F(x)
to absolute signal probability

i

i
B
ii

i

i
S
ii

xGaussB

xGaussS

),;(

),;(

Multivariate Gaussian distributions
with different means but same width
for signal and background

Fe
FP

1

1
)(

‘Logistic sigmoid function’

Non-linear test statistics

• The optimal decision boundary may not be a hyperplane
non-linear test statistic

• Large variety of Ansatzes

– Neural network

– Support Vector Machines

– Rule ensembles

– Decision Trees

– Kernel density estimates

– Most of these test statistics
t(x,p) have many free parameters p that need to be tuned to
maximize their performance

• Unlike Fisher Discriminant, no analytical calculation
possible Computational solution

– Machine Learning

– Bayesian Learning

Wouter Verkerke, NIKHEF

accept

H0

H1

Common approximations made in machine learning

• Machine learning approach most popular for training multivariate
non-linear test statistics

• Approximation of knowledge of true signal and background
distributions with sample of signal and background events

– Finite statistics limit precision (in itself usually not a problem)

• Risks of overtraining

– For finite datasets it is always
possible to construct a perfect
discriminant

(i.e. better than Neyman-Pearson
optimum for true signal and bkg)

• E.g. tiny rectangular box cuts around
each signal events will do the job

– Control overtraining by measuring
performance of test statistic on
independent ‗test sample‘.

• Never train on data! (unless control sample)

– Overtraining on data Better selection efficiency than on simulated events
that are used to calculate efficiency Bias towards positive fluctuations

Wouter Verkerke, NIKHEF

Training iteration

Training sample

Independent test sample

Wouter Verkerke, UCSB

Multivariate data selection – Neural networks

• Neural networks are used in neurobiology, pattern
recognition, financial forecasting (and also HEP)

• This formula corresponds to the ‗single layer perceptron‘

– Visualization of single layer network topology

i

iixaasxN 0)(

s(t) is the activation function,
usually a logistic sigmoid

te
ts

1

1
)(

x1

xN

N(x)

Since activation function s(t) is monotonic,
the single layer N(x) is equivalent

to the Fisher discriminant F(x)

Wouter Verkerke, UCSB

Neural networks – general structure

• The single layer model and easily be generalized to a
multilayer perceptron

– Easy to generalize to arbitrary number of layers

– Feed-forward net: values of a node depend only on earlier layers
(usually only on preceding layer) ‗the network architecture‘

– More nodes bring N(x) close to optimal t(x)=S(x)/B(x) but with
much more parameters to be determined

x1

xN

N(x)

))(()(
,1

0

m

i

ii xhaasxN

with

n

j

jijii xwwsxh
1

0)()(

with ai and wij weights
(connection strengths)

hidden
layer

Wouter Verkerke, UCSB

Neural networks – Training

• Parameters of NN usually determined by minimizing the
error function

• Same principle as Fisher discriminant, but cannot solve
analytically for general case

– In practice replace e with averages from training data from MC
(Adjusting parameters ‗Learning‘)

– Generally difficult, but many programs exist to do this for you
(‗error back propagation‘ technique most common)

 xdxSxNxdxBxN

)(1)()(0)(
22

e

NN target value
for background

NN target value
for signal

Wouter Verkerke, UCSB

Neural networks – training example

N(x)

Signal MC Output

Background MC Output

cosQH
B cosQ*B cosQthr

cosQH
D Fisher Qhemi

Diff

ln|DOCAK| QBSQob
Km(Kl)

Signal

Signal

Signal

Background

Background

Background

Input Variables (9) Output Variables (1)

Wouter Verkerke, UCSB

Practical aspects of Neural Net training

• Choose input variables sensibly

– Don‘t include badly understood observables (such as #tracks/evt)

– Some input variables may be highly correlated drop or
decorrelate

– Some input variables may contain little or no discriminating power
 drop them

– Transform strongly peaked distributions into smooth ones (rarity
transforms / Gaussianization)

– Fewer inputs fewer parameters to be adjusted parameters
better determined for finite training data

• Choose architecture sensibly

– No ‗rules‘ for number of hidden layers, nodes

– Usually better to start simple and gradually increase compexity
and see how that pays off

• Verify sensible behavior

– NN are not magic, understand what your trained NN is doing

Improving performance of non-linear test statistics

• Strong correlations may adversely impact training and
performance of non-linear test statistics

– Extreme example with rectangular cut optimization, but other
algorithm are also affected to lesser degree

Wouter Verkerke, NIKHEF

Signal

Background

Scenario with
uncorrelated
X,Y in sig,bkg

Scenario with
strongly cor-

related X,Y in sig

Additional background
could have been reduced
at no cost with a differently
shaped cut

Need different approach…

Decorrelation of input variables – two ways

• Removal of linear correlations by rotating input variables

Cholesky decomposition: determine square-root C of covariance
matrix C, i.e., C = CC

Transform orig (x) into decorrelated variable space (x) by: x = C1x

• Principal component analysis

1) Compute variance matrix Cov(X)

2) Compute eigenvalues li and eigenvectors vi

3) Construct rotation matrix T = Col(vi)
T

4) Finally calculate ui = Txi

u1

u2

Example of decorrelation

• Note that decorrelation is only complete, if

– Correlations are linear

– Input variables are Gaussian distributed

– Not very accurate conjecture in general
(but valid for above example)

• Can decorrelate signal or background, not both

Wouter Verkerke, NIKHEF

Original Cholesky (√C) Principal Comp. Ana.

Gaussianization

• Decorrelation can be improved by applying a
transformation to each observable that results in a
Gaussian distribution

– Can Gaussianize either signal or background sample (not both…)

• Two-step transformation: First apply probability integral
transform: Given continuous x ∈(a,b), and its pdf p(x),
let

y(x) = ∫a
x p(x′) dx′.

• Then y ∈(0,1) and p(y) = 1 (uniform) for all y. (!)

• Next apply Gaussian transform
using inverse error function

Wouter Verkerke, NIKHEF

2

0

2
erf

x
te tx d

 Gauss 1 fl
event even

a
t

t 2 erf 2 1 var iables,k ki i kx x

Decision Trees

• A Decision Tree encodes sequential rectangular cuts

– But with a lot of underlying theory on training and optimization

– Machine-learning technique, widely used in social sciences

– L. Breiman et al., ―Classification and Regression Trees‖ (1984)

• Basic principle

– Extend cut-based selection

– Try not to rule out events failing a particular criterion

– Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Wouter Verkerke, NIKHEF

Building a tree – splitting the data

• Essential operation : splitting the data in 2 groups using
a single cut, e.g. HT<242

– Need to find ‗best cut‘ as quantified through
best separation of signal and background
i.e. most signal passes, most background fails
(requires some metric to quantify this)

– Procedure:
1) Find cut value with best separation for each observable
2) Apply only cut on observable that results in best separation

Wouter Verkerke, NIKHEF

Building a tree – recursive splitting

• Repeat splitting procedure on sub-samples of previous split

• Requires algorithm to decide when to stop splitting

• Output of decision tree:

– true/false or

– probability based on expected purity of leaf (s/s+b)

Parameters in the construction of a decision tree

• Normalization of signal and background before training

– Usually same total weight for signal and background events

• In the selection of splits

– list of questions (vari < cuti) to consider

– Separation metric (quantifies how good the split is)

• Decision to stop splitting (declare a node terminal)

– Minimum leaf size (e.g. 100 events)

– Insufficient improvement from splitting

– Perfect classification (all events in leaf belong to same class)

• Assignment of terminal node to a class

– Usually: purity>0.5 = signal, purity<0.5 = background

Wouter Verkerke, NIKHEF

Separation metric – The impurity function

• Introduce impurity function i(t) to
quantify (im)purity of a sample

– maximum impurity for equal mix of S and B

– Simplest option: i(t) = misclassification rate

– strictly concave reward purer nodes

• favors end cuts with one smaller node and one larger node

• Definition of optimal split – Minimize i(t) on output samples of split

– Metric = decrease of impurity (increase of purity)

– For a split s of a node t tL,tR

Aim: find split that results in largest Di(s,t)

• Stop splitting when

– not enough improvement (introduce a cutoff parameter b on Di)

– not enough statistics in sample

– node is pure (signal or background) Wouter Verkerke, NIKHEF

Impurity
of sample

before split

Impurity
of ‗left‘
sample

Impurity
of ‗right‘
sample

Pruning

•

• Why prune a tree?

– Overtraining Possible to get a perfect classifier on training events

• E.g. tree with one class only per leaf (down to 1 event per leaf if necessary)

– Pruning: eliminate sub-trees (branches) that seem too specific to training
sample:

• a node and all its descendants turn into a leaf

• How?

– Expected error pruning
(result from tree with node pruned in consistent within error with orig. tree)

• Statistical error estimate with binomial error p(1 − p)/N for node with purity p and N training events

• No need for testing sample

– Cost/complexity pruning

• Idea: penalize ―complex‖ trees (many nodes/leaves) and find compromise between good fit to training
data (larger tree) and good generalization properties (smaller tree)

Concrete example of Decision Tree

Wouter Verkerke, NIKHEF

Signal

Background

1

2

3

1

2

13 2

1
2

Decision Tree score card

• Training is fast

• Human readable (not a black box)

• Deals with continuous and discrete variables simultaneously

• No need to transform inputs, resistant to irrelevant variables

– Irrelevant variables not used, order of training events is irrelevant

• Works well with many variables

– Ranking of variable xi : sum impurity at each node where xi is used Largest decrease of
impurity = best variable

• Good variables can be masked

– xj may be just a little worse than xi but will never be picked xj is ranked as irrelevant

– But remove xi and xj becomes very relevant (Solution available (surrogate split, not covered
now))

• Very few parameters

• For some time still ―original‖ in HEP

• Unstable tree structure

– Small changes in sample can lead to very different tree structures, easy to overtrain

• Piecewise nature of output (not a continuous distribution)

– Output distribution discrete by nature

– granularity related to tree complexity tendency to have spikes at certain purity values (or just
two delta functions at ±1 if not using purity)

– Solution available: averaging over multiple Decision Trees (Boosting)
Wouter Verkerke, NIKHEF

A brief history of boosting

• First provable algorithm by
Schapire (1990)

– Train classifier T1 on N events

– Train T2 on new N-sample,
half of which misclassified by T1

– Build T3 on events where T1 and T2 disagree

– Boosted classifier: MajorityVote(T1,T2,T3)

• Then

– Variation by Freund (1995): boost by majority (combining many
learners with fixed error rate)

– Freund & Schapire joined forces: 1st functional model AdaBoost
(1996)

• Recently in HEP

– MiniBooNe compared performance of different boosting algorithms and
neural networks for particle ID (2005)

– D0 claimed first evidence for single top quark production (2006) CDF
(2008)

Wouter Verkerke, NIKHEF

Principles of boosting

• Principles of boosting

– General method, not limited to decision trees

– Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

– Goal: combine such weak classifiers into a new more stable one,
with smaller error

• General algorithm

Wouter Verkerke, NIKHEF

AdaBoost

• AdaBoost = Adaptive Boosting (Freund & Shapire ‗96)

– Learning procedure adjusts to training data to classify it better

– Many variations on the same theme for actual implementation

– Most common boosting algorithm around

• Schematic view of iterative algorithm

– Calculate misclassification rate for Tree K

– Derive weight of Tree K

– Increase weight of misclassified events in Sample(k) to create Sample(k+1)

– Train T(k+1) on Sample (k+1)

– Boosted result

Wouter Verkerke, NIKHEF

“Weighted average
of isMisclassified over

all training events”

“Weighted average
of Trees by their performance

AdaBoost by example

• So-so classifier (Error rate = 40%)

– Misclassified events get their weight multiplied by exp(0.4)=1.5

– Next tree will have to work a bit harder on these events

• Good classifier (Error rate = 5%)

– Misclassified events get their weight multiplied by exp(2.9)=19 (!!)

– Being failed by a good classifier means a big penalty: must be a
difficult case

– Next tree will have to pay much more attention to this event and try to
get it right

• Overtraining in boosting

– Misclassification rate on training sample is bound Rate falls to zero
for sufficiently large N(tree)

• Corollary: training data is over fitted

• Error rate on test sample may reach a minimum and then potentially rise. Stop boosting at
the minimum.

– In principle AdaBoost must overfit training sample

Wouter Verkerke, NIKHEF

Example of Boosting

Wouter Verkerke, NIKHEF

T0(x,y)

T1(x,y)

T2(x,y)

T3(x,y)T4(x,y)

4

0

),(),(
i

ii yxTyxB a

Example of BDT analysis of single top quark in D0

Wouter Verkerke, NIKHEF

Support Vector Machines

• Find hyperplane that best separates
signal from background

– Best separation:
maximum distance (margin) between
closest events (support) to hyperplane

– Linear decision boundary is defined
by solution of a Langrangian

– Solution of Lagrangian only
depends on inner product of
support vectors

• For non-separable data add
misclassification cost

– add misclassification cost parameter
C·Sii to minimization function

Wouter Verkerke, NIKHEF

x1

x2

margin

support
vectors

S
e
p
a
ra

b
le

 d
a
ta

x1

x2

margin N
o
n
-s

e
p
a
ra

b
le

 d
a
ta

1

2

4

3

Support Vector Machines

• Non-linear cases

– Transform variables into higher
dimensional feature space

(x,y) (x,y,z=f(x,y))

where again a linear boundary
(hyperplane) can separate the data

– Explicit basis functions not required:
use Kernel Functions to approximate
scalar products between transformed
vectors in the higher dimensional
feature space

– Choose Kernel and use the hyperplane
using the linear techniques developed
above

Wouter Verkerke, NIKHEF

x
1

x
2

x
1

x
2

x
3

x
1

x
2

f(x1,x2)

Probability density estimates

• Instead of constructing a test statistic t(x) using
machine learning…

• You can also try to model S(x) and B(x) individually and
construct a test statistic as t(x)S(x)/B(x)

• Training and parameter-free approach –
Probability density estimates from MC samples

– Idea (1-dim): represent each event of your MC sample as a
Gaussian probability distribution

– Add probability distributions from all events in sample

Wouter Verkerke, NIKHEF

Sample of events

Gaussian
probability distributions

for each event

Summed
probability distribution
for all events in sample

Wouter Verkerke, UCSB

Probability Density Estimates – Adaptive Kernel

• Width of single event Gaussian can of course vary

– Width of Gaussian tradeoff between smoothness and ability to
describe small features

• Idea: ‗Adaptive kernel‘ technique

– Choose wide Gaussian if local density of events is low

– Choose narrow Gaussian if local density of events is high

– Preserves small features in high statistics areas, minimize jitter in
low statistics areas

Static Kernel
(with of all Gaussian identical)

Adaptive Kernel
(width of all Gaussian depends

on local density of events)

Probability Density Estimates – Some examples

• Example 2D signal and background distribution

Theoretical
distributions

Kernel Estimation
(N=1000)

Kernel Estimation
(N=10000)

S(x,y) B(x,y) D(x,y)=S(x,y)/B(x,y)

Wouter Verkerke, UCSB

Probability Density Estimates

• Also works in >2 dimensions

• Simplified approach also possible:

– count events in a (hyper)cube around (x)

• Advantages of PDE technique

– No training necessary

– Insightful / intuitive

• Disadvantages

– Prone to effects of low statistics

– Computationally very intense in application phase for multiple
dimensions

Characterizing and comparing performance

• Performance of a test statistic characterized
by e(sig) vs e(bkg) curve

– Curve for theoretical maximum performance can be added if true
S(x) and B(x) are known

– Position on curve determines tradeoff
between type-I and type-II errors

Good Performance

Bad Performance

Performance comparison of (boosted) decision trees

Wouter Verkerke, NIKHEF

Using the compactified output

• Using the output of a of test statistic t(x)

– Fit data to sum of templates M(x) = NsigTS(x) + NbkgTB(x)

• Optimal use of information, but possibly more sensitive to systematic uncertainties
that influence the shape of TS and TB

– Or select only events with t(x)>a and either count, or fit a
distribution of another observable y that was not used in
construction of t(x)

• You throw away some information, but if shapes of signal and background in y are
well understood, you have smaller systematic uncertainties

– What is the optimal value of a?

– Need a ‗Figure of Merit‘
to quantify this

Wouter Verkerke, NIKHEF

Figure of merit

• Common choices for Figure of Merit

– Choose position of cut a where F(a) is maximal

• Note that above FOMs are ‗traditional‘, not statistically
rigorous.

– Better calculations exist, see e.g. Punzi / PhyStat 2003

– Example: Counting experiment where signal and background are
Poisson processes, discovery at n sigma

)()(

)(
)(

aa

a
a

BS

S
F

)(

)(
)(

a

a
a

B

S
F

Where S(a) and B(a) are number of signal and background
events remaining after a cut a

„measurement‟ „discovery‟

)(2/

)(
)(

a

ae
a

Bn
F

Where e(a) the signal efficiency and
B(a) is number of background events
at a cut a

Note that position of
optimum depends on
a priori knowledge of
signal cross section

Wouter Verkerke, UCSB

Using a figure of merit

• Application of S/√S+B figure of merit to simple
one-dimensional cut

Simulated bkg.

Simulated signal

X

X

Make
cut |x|<C

C

CX

X

Large Bkg Scenario

Small Bkg Scenario
Make

cut |x|<C

S
/

s
q

r
t(

S
+

B
)

S
/

s
q

r
t(

S
+

B
)

Strongly
peaked
optimum

Shallow
optimum

Do you trust your NN / BDT etc?

• Keep in mind that any trained NN / BDT / SVM is just a
parameterized decision boundary in n dimensions

– You can visualize it. It may be sub-optimal (or overtrained) but it
is really just a boundary.

• Better question: Do you believe that the signal and
background training samples that were used were an
accurate reflection of reality?

– In general, they don‘t agree (perfectly) so performance should be
interpreted with some care

– Usually background is harder to get right than signal, because in
addition to any imperfections in the simulation process, you also
need to guess correctly which physics processes constitute your
background

– In particular, you should not assume that the efficiency of a cut
on your test statistic t(x)>a on simulated events is the same as in
data Important source of systematic uncertainty in your final

result

Wouter Verkerke, NIKHEF

Measuring the performance of your t(x) on data

• Common solution for controlling uncertainties in the
performance of your t(x) is to measure it on data

– Several ways to do this, will highlight one here

• Keep one (uncorrelated) observable out of your test
statistic

– Example with NN here. Instead of using all observables with good
discriminating power, keep one out of your test statistic

– Choose one that is powerful and maximally uncorrelated with the
others (for both signal and background). This may be your ‗best‘
observable
x1

xN

N(x)

x1

xN

N(x)

xN

Measuring the performance of your t(x) on data

• Analysis strategy

– Cut on optimal value on N(x) to reduce background as much as
possible

– Make a fit to distribution of xN to measure residual amount of
signal and background

• In the limit of zero correlation between N(x) and xN the
shape of the distribution is invariant under the cut on
N(x)

– In the limit of complete de-correlation between N(x) and XN no
systematic uncertainty to N(x) performance

xN xN

No cut on N(x) After cut N(x)>a

Background much
reduced, but you
can measure
how much is left

Wouter Verkerke, UCSB

Finding the right method

• Which technique is right for your problem? Depends on

– Complexity of your problem

– Time scale in which you would like to finish the analysis

• On finding the absolute best set of cuts

– All methods for finding discriminants are approximate when used with finite
training/tuning statistics

– Your experiments event simulation is imperfect – your performance on data
can be different (usually it is less)

– You may have systematic error later that might depend on your choice of cuts

– Don‘t hunt for upward statistical fluctuations in tuning data

– If it takes you 6 months of work to reduce your error by 10% keep in mind
that your experiment may have accumulated enough additional data by them
to reduce your statistical error by a comparable or larger amount

• It is more important to get the right(=unbiased) answer than the
smallest possible statistical error

– Don‘t use discriminating variables that you know are poorly modeled in
simulation

– Always try to find a way to cross check your performance on data, e.g. by
using a control sample, or leaving one observable out of your t(x)

Wouter Verkerke, NIKHEF

(Software Advertisement #1)

TMVA

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

What is TMVA

ROOT: is the analysis framework used by most (HEP)-physicists

Idea: rather than just implementing new MVA techniques and

making them available in ROOT (i.e., like TMultiLayerPercetron

does):

Have one common platform / interface for all MVA classifiers

Have common data pre-processing capabilities

Train and test all classifiers on same data sample and evaluate consistently

Provide common analysis (ROOT scripts) and application framework

Provide access with and without ROOT, through macros, C++ executables

or python

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Limitations of TMVA

Development started beginning of 2006 – a mature but not a

final package

Known limitations / missing features

Performs classification only, and only in binary mode: signal versus background

Supervised learning only (no unsupervised ―bump hunting‖)

Relatively stiff design – not easy to mix methods, not easy to setup categories

Cross-validation not yet generalised for use by all classifiers

Optimisation of classifier architectures still requires tuning ―by hand‖

Work ongoing in most of these areas see later in this talk

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

T M V A C o n t e n t T M V A C o n t e n t

Currently implemented classifiers

Rectangular cut optimisation

Projective and multidimensional likelihood estimator

k-Nearest Neighbor algorithm

Fisher and H-Matrix discriminants

Function discriminant

Artificial neural networks (3 multilayer perceptron impls)

Boosted/bagged decision trees

RuleFit

Support Vector Machine

Currently implemented data preprocessing stages:

Decorrelation

Principal Value Decomposition

Transformation to uniform and Gaussian distributions
(coming soon)

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

U s i n g T M V AU s i n g T M V A

A typical TMVA analysis consists of two main steps:

1. Training phase: training, testing and evaluation of classifiers using data
samples with known signal and background composition

2. Application phase: using selected trained classifiers to classify unknown data
samples
Illustration of these steps with toy data samples

 T MVA tutorial

https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome
https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome
https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome
https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome
https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

A Toy Example (idealized)

Use data set with 4 linearly correlated Gaussian distributed
variables:

--
Rank : Variable : Separation
--

1 : var4 : 0.606
2 : var1+var2 : 0.182
3 : var3 : 0.173
4 : var1-var2 : 0.014

--

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Preprocessing the Input Variables

Decorrelation of variables before training is useful for this
example

Note that in cases with non-Gaussian distributions and/or nonlinear
correlations decorrelation may do more harm than any good

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Evaluating the Classifier Training (II)

Check for overtraining: classifier output for test and training
samples …

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Evaluating the Classifier Training (V)

Optimal cut for each classifiers …

Determine the optimal cut (working
point) on a classifier output

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Receiver Operating Characteristics (ROC) Curve

Smooth background rejection versus signal

efficiency curve: (from cut on classifier output)

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Example: Circular Correlation

• Illustrate the behavior of linear and nonlinear classifiers

Circular correlations
(same for signal and background)

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

The ―Schachbrett‖ Toy

• Performance achieved without parameter tuning:
PDERS and BDT best ―out of the box‖ classifiers

• After specific tuning, also SVM und MLP perform
well

Theoretical maximum

Top Workshop, LPSC, Oct 18–20, 2007

A. Hoecker: Multivariate Analysis with TMVA

Summary of the Classifiers and their Properties

Criteria

Classifiers

Cuts
Likeli-

hood

PDERS

/ k-NN
H-Matrix Fisher MLP BDT RuleFit SVM

Perfor-

mance

no / linear

correlations

nonlinear

correlations

Speed

Training

Response /

Robust

-ness

Overtraining

Weak input

variables

Curse of

dimensionality

Transparency

The properties of the Function discriminant (FDA) depend on the chosen function

Exercises

• You need ROOT 5.27-06 (or 04)

• You need some small input files

• All files (plus exercise
descriptions) are in

• Either pick up berlin.tar
all files individually

Wouter Verkerke, NIKHEF

http://www.nikhef.nl/~verkerke/statcourse

