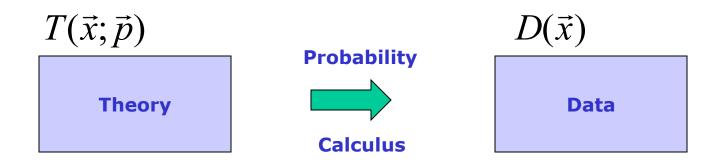
Parameter estimation χ^2 and likelihood

- Introduction to estimation
- Properties of χ^2 , ML estimators
- Measuring and interpreting Goodness-Of-Fit
- Numerical issues in fitting
- Understanding MINUIT
- Mitigating fit stability problems
- Bounding fit parameters
- Simultaneous fitting
- Multidimensional fitting
- Fit validation studies
 - Fit validity issues at low statistics
- Toy Monte Carlo techniques

Parameter estimation – Introduction

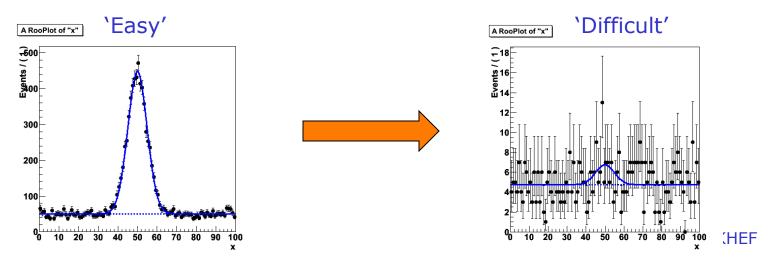


 Given the theoretical distribution parameters p, what can we say about the data

• Need a procedure to estimate p from D

Multiple methods

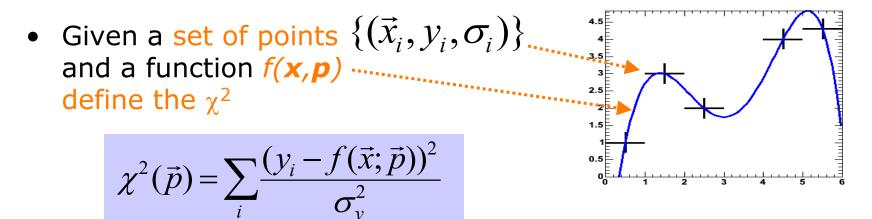
- Many ways to infer information on model (parameter) from data
 - $-\chi^2$ fit $\rightarrow p = 5.2 \pm 0.3$
 - Likelihood fit $\rightarrow p = 4.7 \pm 0.4$
 - Bayesian interval $\rightarrow p \in [4.5 5.9]$ at 68% credibility
 - − Frequentist interval \rightarrow p \in [4.4 5.8] at 68% confidence level
- When data is abundant, methods usually give consistent answers
- Issues and differences between methods arise when experimental result contains little information



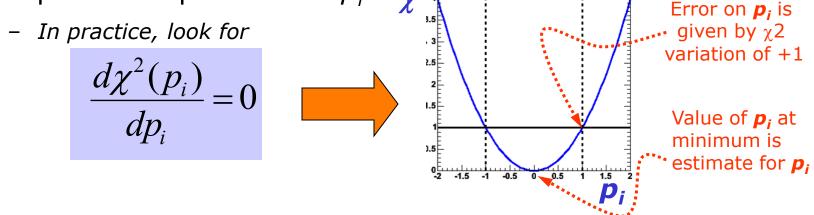
Multiple methods

- Many ways to infer information on model (parameter) from data
 - $-\chi^2 \text{ fit } \rightarrow p = 5.2 \pm 0.3$
 - Likelihood fit $\rightarrow p = 4.7 \pm 0.4$
 - − Bayesian interval \rightarrow p \in [4.5 5.9] at 68% credibility
 - − Frequentist interval \rightarrow p \in [4.4 5.8] at 68% confidence level
- Will first focus χ^2 and likelihood estimation procedures
 - Well known, often used
 - Explore assumptions, limitations
- Tomorrow we focus on interpreting experiments with little information content

A well known estimator – the χ^2 fit



• Estimate parameters by minimizing the $\gamma^2(p)$ with respect to all parameters $p_i \rightarrow 2_4$



 Well known: but why does it work? Is it always right? Does it always give the best possible error?

Basics – What is an estimator?

 An estimator is a procedure giving a value for a parameter or a property of a distribution as a function of the actual data values, i.e.

$$\hat{\mu}(x) = \frac{1}{N} \sum_{i} x_i$$
$$\hat{V}(x) = \frac{1}{N} \sum_{i} (x_i - \vec{\mu})^2$$

← Estimator of the mean

← Estimator of the variance

- A perfect estimator is
 - Consistent: $\lim_{n \to \infty} (\hat{a}) = a$
 - Unbiased With finite statistics you get the right answer on average
 - Efficient

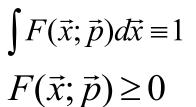
 $V(\hat{a}) = \langle (\hat{a} - \langle \hat{a} \rangle)^2 \rangle$ This is called the Minimum Variance Bound

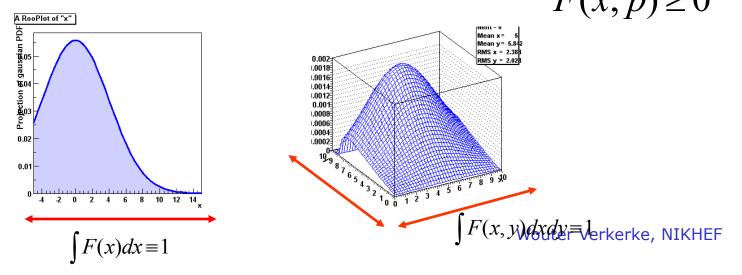
There are no perfect estimators for most problems —

Wouter Verkerke, UCSB

How to model your data

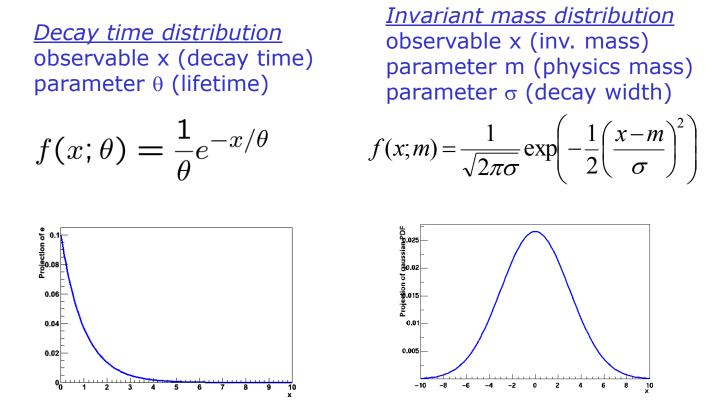
- Approach in χ^2 fit very empirical Function f(x,y) can be any arbitrary function
- Many techniques (Likelihood, Bayesian, Frequentist) require a more formal approach to data modeling through probability density functions
- We can characterize data distributions with *probability density functions* F(x;p)
 - x = observables (measured quantities)
 - **p** = parameters (model/theory parameters)
- Properties
 - Normalized to unity with respect to observable(s) x
 - Positive definite F(x;p)>=0 for all (x,p)





Probability density functions

- Properties
 - Parameters can be physics quantities of interest (life time, mass)



- Vehicle to infer physics parameters from data distributions

Wouter Verkerke, NIKHEF

Likelihood

- The *likelihood* is the value of a probability density function evaluated at the measured value of the observable(s)
 - Note that likelihood is only function of parameters, not of observables

$$L(\vec{p}) = F(\vec{x} \equiv \vec{x}_{data}; \vec{p})$$

 For a dataset that consists of multiple data points, the product is taken

$$L(\vec{p}) = \prod_{i} F(\vec{x}_{i}; \vec{p}), \text{ i.e. } L(\vec{p}) = F(x_{0}; \vec{p}) \cdot F(x_{1}; \vec{p}) \cdot F(x_{2}; \vec{p})...$$

Probability, Probability Density, and Likelihood

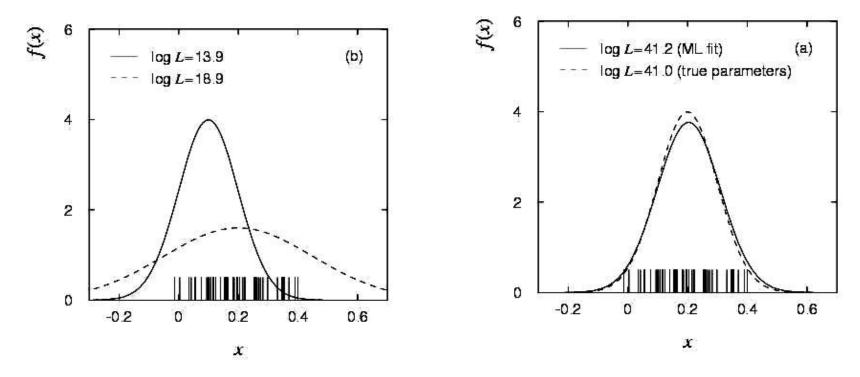
- For discrete observables we have probabilities instead of probability densities
 - Unit Normalization requirement still applies
- Poisson *probability* $P(n|\mu) = \mu^n exp(-\mu)/n!$
- Gaussian probability density function (pdf) p(x|μ,σ): p(x|μ,σ)dx is differential of probability dP.
- In Poisson case, suppose n=3 is observed. Substituting n=3 into P(n| μ) yields the *likelihood function L(\mu) = \mu^3 exp(-\mu)/3!*
 - Key point is that $L(\mu)$ is *not* a probability density in μ . (It is not a density!)
 - Area under L is meaningless. That's why a new word, "likelihood", was invented for this function of the parameter(s), to distinguish from a pdf in the observable(s)! Many people nevertheless talk about `integrating the likelihood' → confusion about what is done in Bayesian interval (more later)
 - Likelihood Ratios L(μ 1) /L(μ 2) are useful and frequently used. NIKHEF

Change of variable x, change of parameter $\boldsymbol{\theta}$

- For pdf p(x|θ) and (1-to-1) change of variable from x to y(x):
 p(y(x)|θ) = p(x|θ) / |dy/dx|.
- Jacobian modifies probability *density, guaranties that* $P(y(x_1) < y < y(x_2)) = P(x_1 < x < x_2)$, i.e., that
- Probabilities are invariant under change of variable x.
 - Mode of probability *density* is *not* invariant (so, e.g., criterion of maximum probability density is ill-defined).
 - Likelihood *ratio* is invariant under change of variable x. (Jacobian in denominator cancels that in numerator).
- For likelihood $L(\theta)$ and reparametrization from θ to $u(\theta)$: $L(\theta) = L(u(\theta))$ (!).
 - Likelihood L(θ) is invariant under reparametrization of parameter θ (reinforcing fact that L is *not* a pdf in θ).

Parameter estimation using Maximum Likelihood

Likelihood is high for values of *p* that result in distribution similar to data



 Define the maximum likelihood (ML) estimator(s) to be the parameter value(s) for which the likelihood is maximum.

Parameter estimation – Maximum likelihood

- Computational issues
 - For convenience the negative log of the Likelihood is often used as addition is numerically easier than multiplication

$$-\ln L(\vec{p}) = -\sum_{i} \ln F(\vec{x}_i; \vec{p})$$

- Maximizing L(p) equivalent to minimizing –log L(p)
- In practice, find point where derivative is zero

$$\frac{d\ln L(\vec{p})}{d\vec{p}}\bigg|_{p_i=\hat{p}_i} = 0$$

Wouter Verkerke, UCSB

Variance on ML parameter estimates

• The ML estimator for the **parameter variance** is

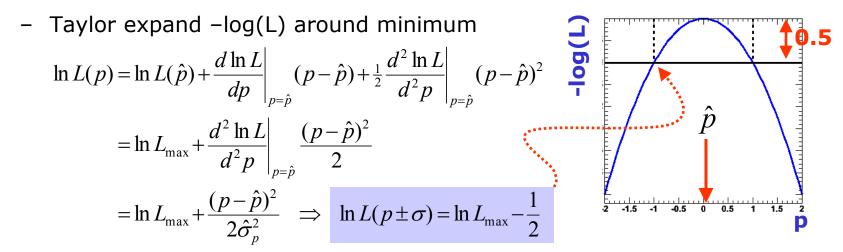
$$\hat{\sigma}(p)^2 = \hat{V}(p) = \left(\frac{d^2 \ln L}{d^2 p}\right)^{-1}$$

- I.e. variance is estimated from 2nd derivative of -log(L) at minimum
- Valid if estimator is efficient and unbiased! ""

From Rao-Cramer-Frechet
inequality
$$V(\hat{p}) \ge \frac{1 + \frac{db}{dp}}{\binom{d^2 \ln L}{d^2 p}}$$

b = bias as function of p, inequality becomes equality in limit of efficient estimator

• Visual interpretation of variance estimate



Properties of Maximum Likelihood estimators

- In general, Maximum Likelihood estimators are
 - **Consistent** (gives right answer for $N \rightarrow \infty$)
 - **Mostly unbiased** (bias $\propto 1/N$, may need to worry at small N)
 - Efficient for large N (you get the smallest possible error)
 - Invariant: (a transformation of parameters will Not change your answer, e.g

 $(\hat{p})^2 = (p^2)$

for variance estimate is usually OK

- MLE efficiency theorem: the MLE will be unbiased and efficient if an unbiased efficient estimator exists
 - Proof not discussed here
 - Of course this does not guarantee that any MLE is unbiased and efficient for any given problem

More about maximum likelihood estimation

- It's not 'right' it is just sensible
- It does not give you the `most likely value of p' –
 it gives you the value of p for which this data is most likely
- Numeric methods are often needed to find the maximum of ln(L)
 - Especially difficult if there is >1 parameter
 - Standard tool in HEP: MINUIT (more about this later)
- Max. Likelihood does **not** give you a goodness-of-fit measure
 - If assumed F(x;p) is not capable of describing your data for any p, the procedure will not complain
 - The absolute value of L tells you nothing!

Relation between Likelihood and χ^2 estimators

• Properties of χ^2 estimator follow from properties of ML estimator using *Gaussian probability density functions*

$$F(x_i, y_i, \sigma_i; \vec{p}) = \exp\left[-\left(\frac{y_i - f(x_i; \vec{p})}{\sigma_i}\right)^2\right]$$

Probability Density Function in p for single data point $x_i(\sigma_i)$ and function $f(x_i;p)$

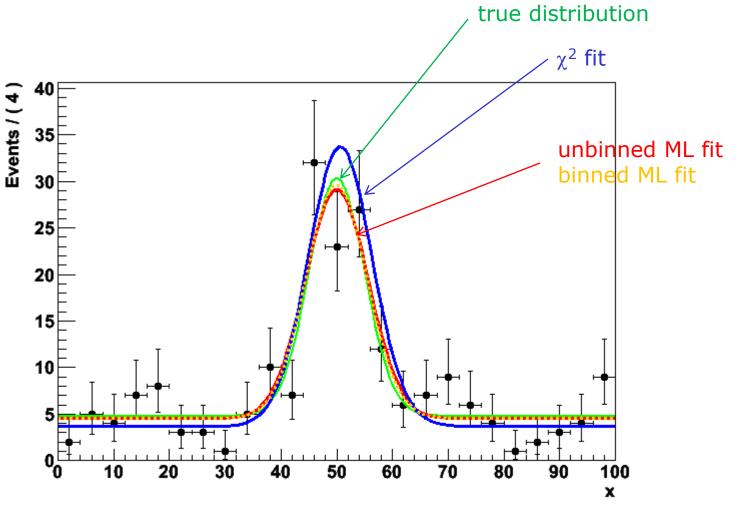
Take log,
Sum over all points
$$(\mathbf{x}_i, \mathbf{y}_i, \sigma_i)$$

$$\ln L(\vec{p}) = -\frac{1}{2} \sum_i \left(\frac{y_i - f(x_i; \vec{p})}{\sigma_i} \right) = -\frac{1}{2} \chi^2$$
The Likelihood function in p
for given points $\mathbf{x}_i(\sigma_i)$
and function $f(\mathbf{x}_i; \mathbf{p})$

- The χ^2 estimator follows from ML estimator, i.e it is
 - Efficient, consistent, bias 1/N, invariant,
 - But only in the limit that the error on x_i is truly Gaussian
 - i.e. need $n_i > 10$ if y_i follows a Poisson distribution
- Bonus: Goodness-of-fit measure $\chi^2 \approx 1$ per d.o.f

Example of χ^2 vs ML fit

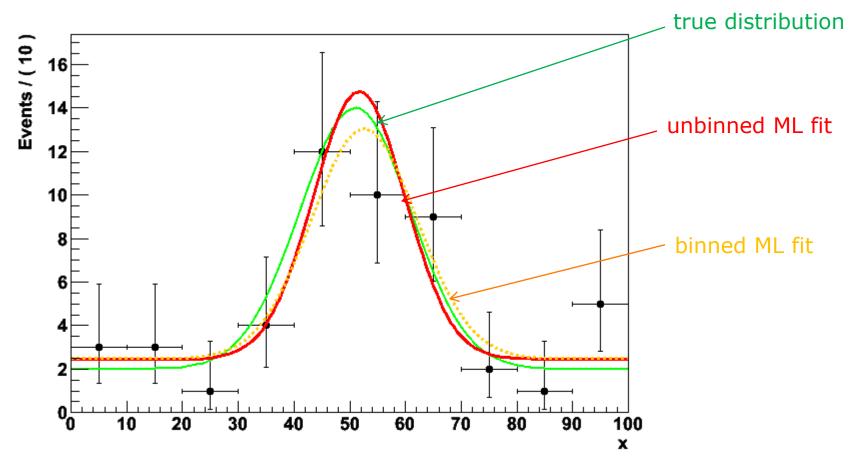
• Example with many low statistics bins



Wouter Verkerke, NIKHEF

Example of binned vs unbinned ML fit

• Lowering number of bins and number of events...



Proper way to study bias, precision is with toy MC study
 → at the end of this module
 Wouter Verkerke, NIKHEF

Maximum Likelihood or χ^2 – What should you use?

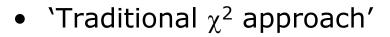
- χ^2 fit is fastest, easiest
 - Works fine at high statistics
 - Gives absolute goodness-of-fit indication
 - Make (incorrect) Gaussian error assumption on low statistics bins
 - Has bias proportional to 1/N
 - Misses information with feature size < bin size
- Full Maximum Likelihood estimators most robust
 - No Gaussian assumption made at low statistics
 - No information lost due to binning
 - Gives best error of all methods (especially at low statistics)
 - No intrinsic goodness-of-fit measure, i.e. no way to tell if 'best' is actually 'pretty bad'
 - Has bias proportional to 1/N
 - Can be computationally expensive for large N
- Binned Maximum Likelihood in between
 - Much faster than full Maximum Likihood
 - Correct Poisson treatment of low statistics bins
 - Misses information with feature size < bin size
 - Has bias proportional to 1/N

$$-\ln L(p)_{\text{binned}} = \sum_{\text{bins}} n_{\text{bin}} \ln F(\vec{x}_{\text{bin-center}}; \vec{p})$$

Wouter Verkerke, UCSB

You can (almost) always avoid χ^2 fits

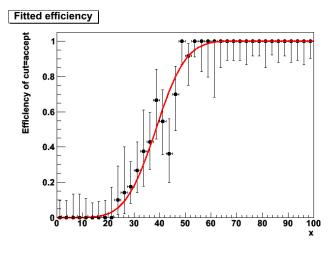
- Case study: Fit for efficiency function
 - Have some simulation sample: need to parameterize which fraction of events passes as function of observable x



- Make histogram of Npassed/Ntotal
- Fit parameterized efficiency function to histogram
- Tricky question: what errors to use? \sqrt{N} is wrong.

Can use binomial errors $V(r) = np(1-p) \implies \sigma = \sqrt{np(1-p)}$

However still quite approximate: true errors will be asymmetric (i.e. no upward error on bin with Npass=10, Ntotal=10)



You can (almost) always avoid χ^2 fits

- MLE approach
 - Realize that your dataset has two observables (x,c), where c is a discrete observable with states 'accept' and 'reject'
 - Corresponding probability density function:

$$F(c \mid x, \vec{p}) = \theta(c = accept) \cdot \varepsilon(x, \vec{p}) + \theta(c = reject)(1 - \varepsilon(x, \vec{p}))$$

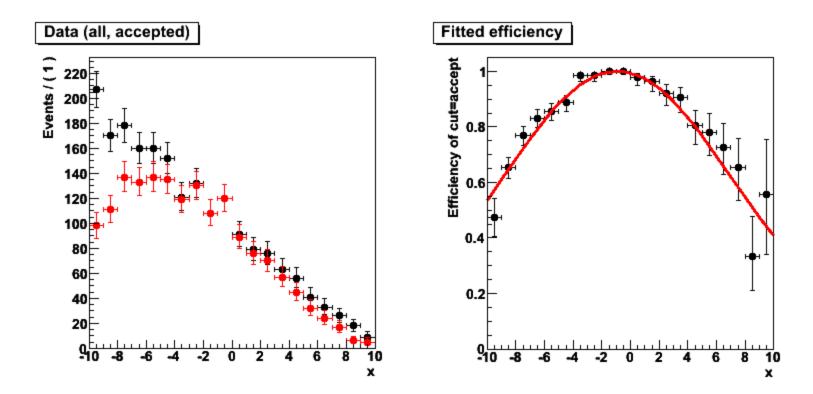
- Clearly unit-normalized over c for each value of (x,p)
 (ε must be between 0 and 1 for all (x,p))
- Write -log(L) as usual, using above p.d.f. and minimize

$$-\ln L(\vec{p}) = -\sum_{i} \ln F(x_i, c_i; \vec{p})$$

- Result: estimation of e(x,p) using correct binomial/poisson assumption on distribution of observables.
- Fit can also be performed unbinned

You can (almost) always avoid χ^2 fits

• Example of unbinned MLE fit for efficiency



Weighted data

- Sometimes input data is weighted
- Examples:
 - Certain Next-to-leading order event generator for LHC physics produce simulated events with weights +1 and -1.
 - You've subtracted a distribution of background events from a sideband in data (also results in events with weight +1 and -1)
 - You work with reweighted data samples for a variety of reasons (e.g. not enough data was available for one background sample, rescale available events with some non-unit weight to match available amounts of other samples)
- How to deal with event weights in χ^2 , MLE parameter estimation
- χ^2 fit of histograms with weighted data are straightforward

From C.L.T

$$y_{i} = \sum_{i} w_{i}$$

$$\chi^{2} = \sum_{i} \left(\frac{y_{i} - f(\vec{x}_{i}; \vec{p})}{\sigma_{i}}\right)^{2}$$

$$\sigma_{i} = \sqrt{\sum_{i} w_{i}^{2}}$$
From C.L.T
- NB: You may no longer be able to interpret $\hat{\sigma}(p) \equiv \sqrt{\hat{V}(p)}$ as a Gaussian error
(i.e. 68% contained in 1σ)

Weighted data – χ^2 vs MLE

 Adding event weights to -log(L) straightforward, but does not yield correct estimates on parameter variance

$$-\ln L(\vec{p})_{\text{weighted}} = -\sum_{i} \frac{\text{Event weight}}{\ln F(\vec{x}_i; \vec{p})}$$

- Variance estimate on parameters will be proportional to $\sum_{i} W_{i}$ - If $\sum_{i} W_{i} < N$ errors will be too small, if $\sum_{i} W_{i} > N$ errors will be too large!

 No clean solution available that retains all good properties of MLE, but it is possible to perform sum-of-weights-like correction to covariance matrix to correct for effect of on-unit weights

$$V' = VC^{-1}V$$

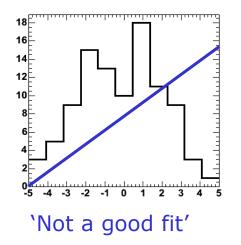
- where V is the cov. matrix calculated from a -log(L) with event weights w, and C is the cov. matrix calculated from a -log(L) with event weights w²
- It is easy to see that in the case of 1 parameter this is equivalent to $\sigma_i = \sqrt{2}$

Hypothesis testing – Goodness of fit

- Hypothesis testing and goodness-of-fit
 - Reminder:

classical hypothesis test compares data to two hypothesis H_0 and H_1 (e.g background-only vs signal+background). Type-I error = claiming signal when you should *not* have Type-II error = *not* claiming signal when you should have

- If there is no alternate (H0) hypothesis, hypothesis test is called 'goodness-of-fit' test. NB: Can only quantify Type-I error thus question "which g.o.f. test is *best*" (e.g. χ^2 , Kolmogorov) is ill posed



Estimating and interpreting Goodness-Of-Fit

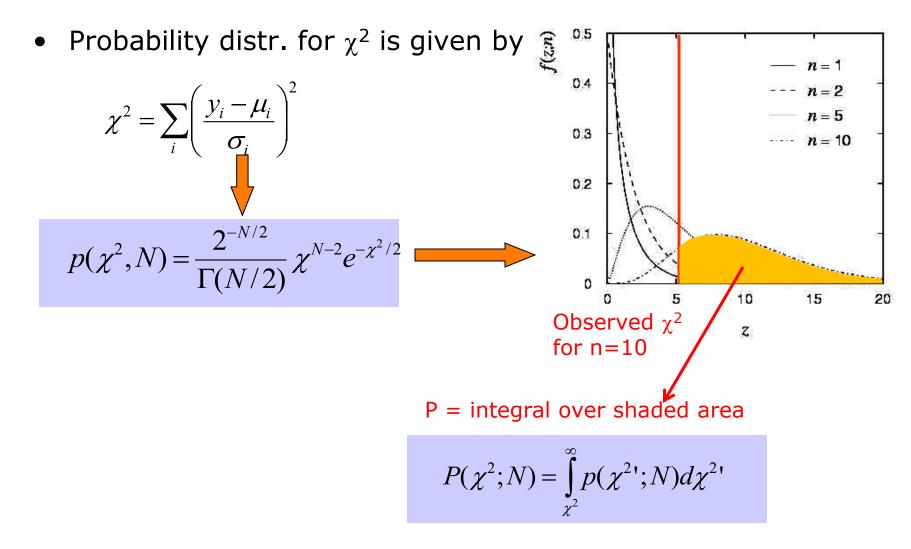
• Most common test: the χ^2 test

$$\chi^2 = \sum_{i} \left(\frac{y_i - f(\vec{x}_i; \vec{p})}{\sigma_i} \right)^2$$

– If f(x) describes data then $\chi^2 \approx N$, if $\chi^2 >> N$ something is wrong

- How to quantify meaning of 'large $\chi^{2'}$?
 - What you really want to know: the probability that a function which does genuinely describe the data on N points would give a χ^2 probability as large or larger than the one you already have.
 - − For large N, sqrt($2\chi^2$) has a Gaussian distribution with mean sqrt(2N-1) and σ =1 → `Easy'
 - How to make a well calibrated statement for intermediate N

How to quantify meaning of `large $\chi^{2'}$



• Good news: Integral of χ^2 pdf is analytically calculable! Wouter Verkerke, UCSB

Goodness-of-fit – χ^2

- Example for χ^2 probability
 - Suppose you have a function f(x;p) which gives a χ² of 20 for 5 points (histogram bins).
 - Not impossible that **f(x;p)** describes data correctly, just unlikely

How unlikely?
$$\int_{20}^{\infty} p(\chi^2, 5) d\chi^2 = 0.0012$$

- Note: If function has been fitted to the data
 - Then you need to account for the fact that parameters have been adjusted to describe the data

$$N_{\rm d.o.f.} = N_{\rm data} - N_{\rm params}$$

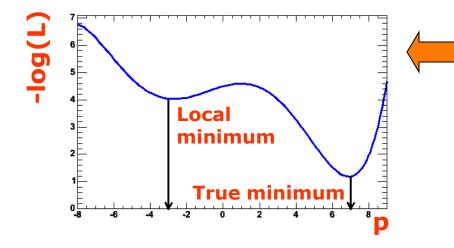
- Practical tips
 - To calculate the probability in ROOT 'TMath::Prob(chi2,ndf)'

Practical estimation – Numeric χ^2 and -log(L) minimization

- For most data analysis problems minimization of χ^2 or log(L) cannot be performed analytically
 - Need to rely on numeric/computational methods
 - In >1 dimension generally a difficult problem!
- But no need to worry Software exists to solve this problem for you:
 - Function minimization workhorse in HEP many years: MINUIT
 - MINUIT does function minimization and error analysis
 - It is used in the PAW,ROOT fitting interfaces behind the scenes
 - It produces a lot of useful information, that is sometimes overlooked
 - Will look in a bit more detail into MINUIT output and functionality next

Numeric χ^2 /-log(L) minimization – Proper starting values

- For all but the most trivial scenarios it is not possible to automatically find reasonable starting values of parameters
 - This may come as a disappointment to some...
 - So you need to supply good starting values for your parameters



Reason: There may exist multiple (local) minima in the likelihood or χ^2

- Supplying good initial uncertainties on your parameters helps too
- Reason: Too large error will result in MINUIT coarsely scanning a wide region of parameter space. It may accidentally find a far away local minimum
 Wouter Verkerke, UCSB

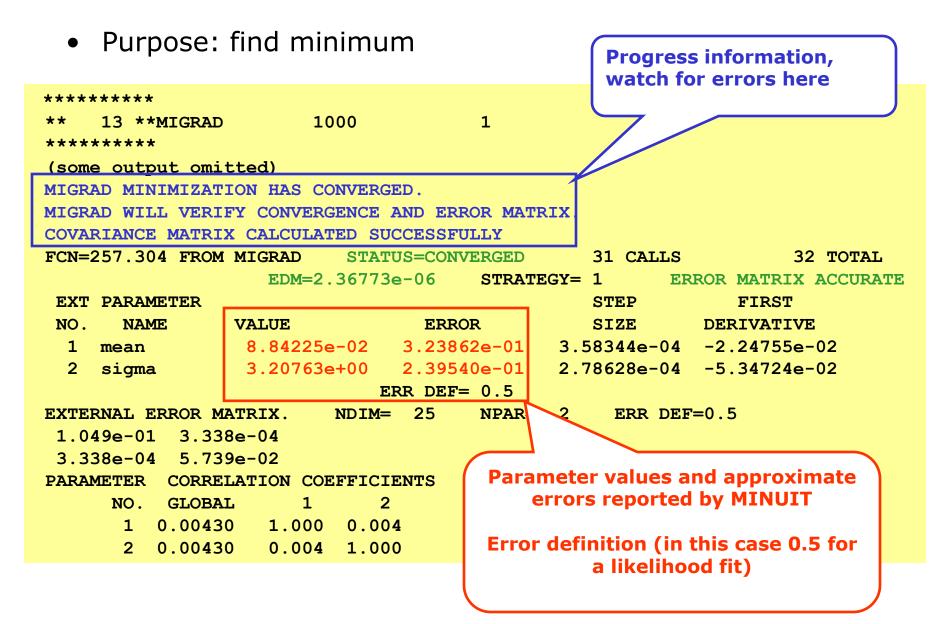
Example of interactive fit in ROOT



 What happens in MINUIT behind the scenes

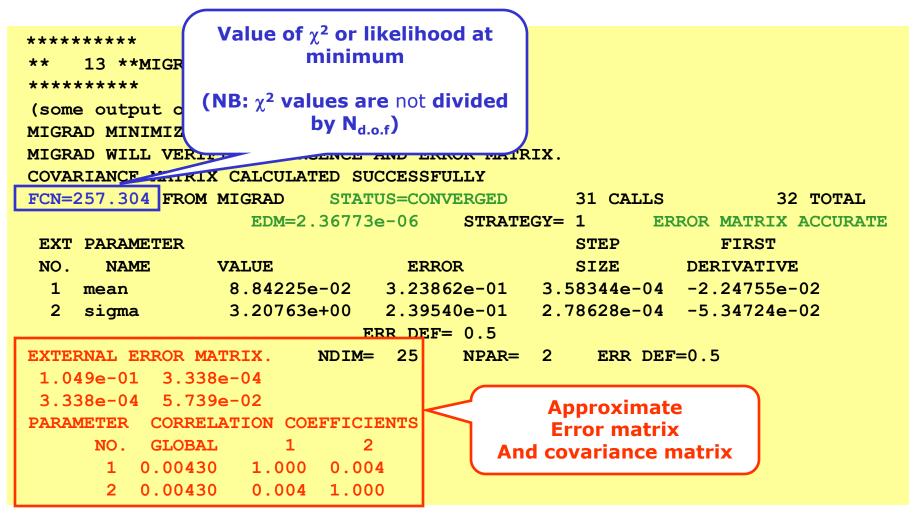
 Find minimum in -log(L) or χ² - MINUIT function MIGRAD
 Calculate errors on parameters - MINUIT function HESSE
 Optionally do more robust error estimate - MINUIT function MINOS Wouter Verkerke, UCSB

Minuit function MIGRAD



Minuit function MIGRAD

• Purpose: find minimum



Wouter Verkerke, UCSB

Minuit function MIGRAD	
 Purpose: find minimu 	U Should be 'converged' but can be 'failed' Estimated Distance to Minimum
****	should be small O(10 ⁻⁶)
** 13 **MIGRAD 1000	
****	Error Matrix Quality
(some output omitted)	should be 'accurate', but can be
MIGRAD MINIMIZATION HAS CONVERG	GEL'approximate' in case of trouble
MIGRAD WILL VERIFY CONVERGENCE AND FORTHIX.	
COVARIANCE MATRIX CALCULATED SUCCESSFULLY	
FCN=257.304 FROM MIGRAD STAT	TUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2.36773	3e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER	STEP FIRST
NO. NAME VALUE	ERROR SIZE DERIVATIVE
	3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00	
	ERR DEF = 0.5
EXTERNAL ERROR MATRIX. NDIM=	f = 25 NPAR = 2 ERR DEF = 0.5
1.049e-01 3.338e-04	
3.338e-04 5.739e-02	
PARAMETER CORRELATION COEFFICI	
	2
1 0.00430 1.000 0.00	
2 0.00430 0.004 1.00	

Minuit function MINOS

- MINOS errors are calculated by 'hill climbing algorithm'.
 - In one dimension find points where $\Delta L = +0.5$.
 - In >1 dimension find contour with ΔL =+0.5. Errors are defined by bounding box of contour.
 - In >>1 dimension very time consuming, but more in general more robust.
- Optional activated by option "E" in ROOT or PAW

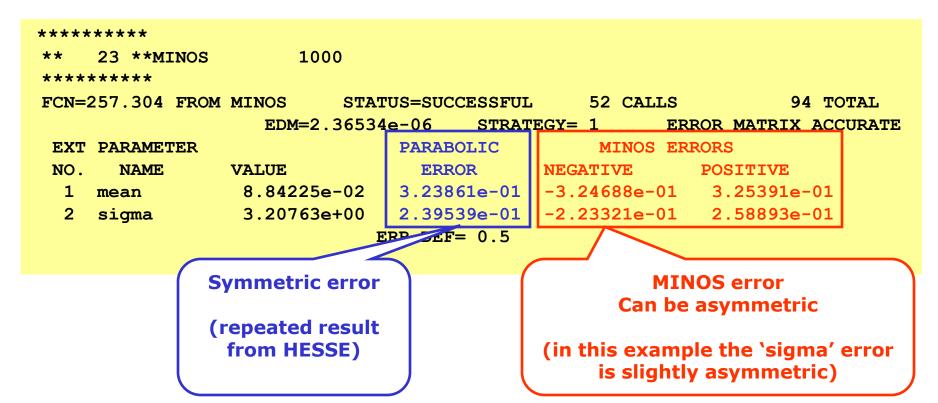
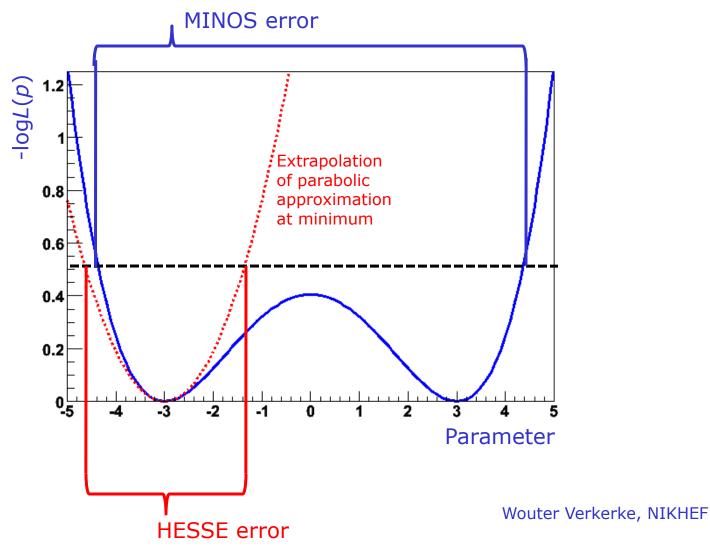


Illustration of difference between HESSE and MINOS errors

• 'Pathological' example likelihood with multiple minima and non-parabolic behavior



Practical estimation – Fit converge problems

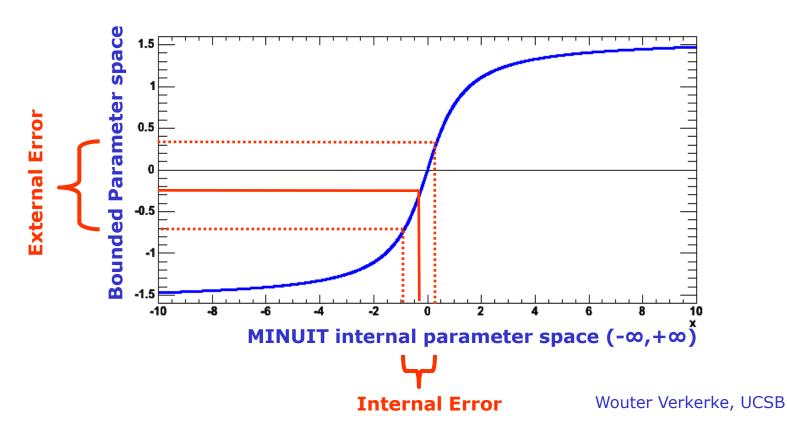
- Sometimes fits don't converge because, e.g.
 - MIGRAD unable to find minimum
 - HESSE finds negative second derivatives (which would imply negative errors)
- Reason is usually numerical precision and stability problems, but
 - The underlying cause of fit stability problems is usually by highly correlated parameters in fit
- HESSE correlation matrix in primary investigative tool

PARAMETER	CORRELATION COEFFICIENTS			Signs of trouble
NO.	GLOBAL	1	2	
1	0.99835	1.000	0.998 🚽	
2	0.99835	0.998	1.000	And and a second s

In limit of 100% correlation, the usual point solution becomes a line solution (or surface solution) in parameter space.
 Minimization problem is no longer well defined

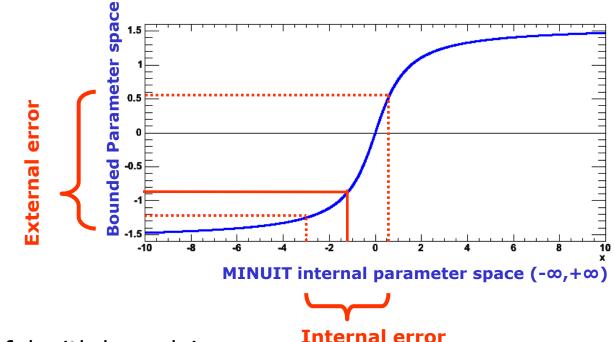
Practical estimation – Bounding fit parameters

- Sometimes is it desirable to bound the allowed range of parameters in a fit
 - Example: a fraction parameter is only defined in the range [0,1]
 - MINUIT option 'B' maps finite range parameter to an internal infinite range using an arcsin(x) transformation:



Practical estimation – Bounding fit parameters

• If fitted parameter values is close to boundary, errors will become asymmetric (and possible incorrect)

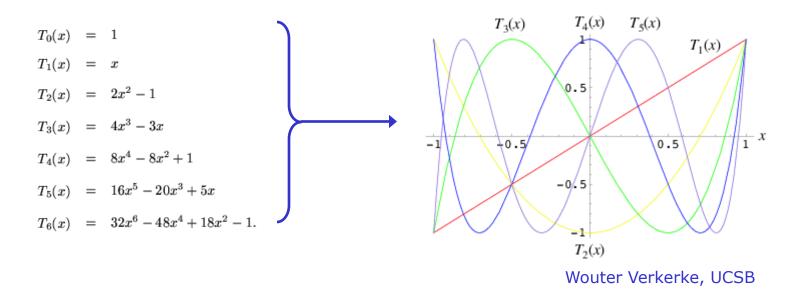


• So be careful with bounds!

- If boundaries are imposed to avoid region of instability, look into other parameterizations that naturally avoid that region
- If boundaries are imposed to avoid `unphysical', but statistically valid results, consider not imposing the limit and dealing with the `unphysical' interpretation in a later stage
 Wouter Verkerke, UCSB

Mitigating fit stability problems -- Polynomials

- Warning: Regular parameterization of polynomials a₀+a₁x+a₂x²+a₃x³ nearly always results in strong correlations between the coefficients a_i.
 - Fit stability problems, inability to find right solution common at higher orders
- Solution: Use existing parameterizations of polynomials that have (mostly) uncorrelated variables
 - Example: Chebychev polynomials

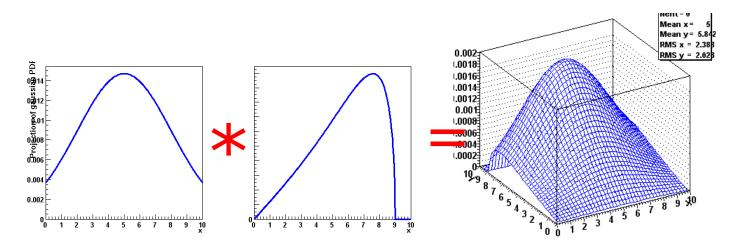


Extending models to more than one dimension

- If you have data with many observables, there are two common approaches
 - Compactify information with test statistic (see previous section)
 - **Describe full** N-dimensional **distribution** with a p.d.f.
- Choice of approach largely correlated with understanding of correlation between observables and amount of information contained in correlations
 - No correlation between observables →
 `Big fit' and `Compactification' work equally well.
 - Important correlations that are poorly understood → Compactification preferred. Approach:
 - 1. Compactify all-but-one observable (ideally uncorrelated with the compactified observables)
 - 2. Cut on compactification test statistic to reduce backgrounds
 - Fit remaining observable → Estimate from data remaining amount of background (smallest systematic uncertainty due to poor understanding of test statistic and its inputs)
 - Important correlations that are well understood \rightarrow Big fit preferred

Extending models to more than one dimension

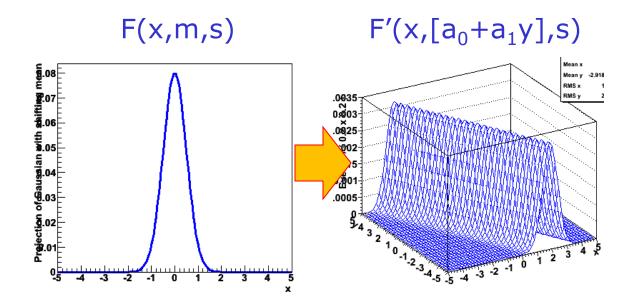
- Bottom line: N-dim models used when either *no correlations* or *well understood correlations*
- Constructing multi-dimensional models without correlations is easy
 - Just multiply N 1-dimensional p.d.f.s.



 No complex issues with p.d.f. normalization: if 1-dim p.d.f.s are normalized then product is also by construction

Writing multi-dimensional models with correlations

- Formulating N-dim models *with* correlations may seem daunting, but it really isn't so difficult.
 - Simplest approach: start with one-dimensional model, replace one parameter p with a function p'(y) of another observable
 - Yields correction distribution of x for every given value of y



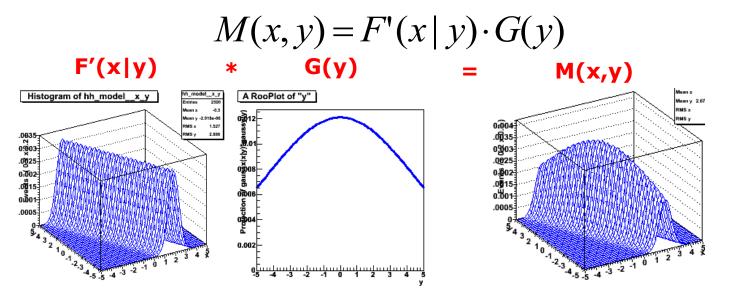
- NB: Distribution of y probably not correct...

Writing multi-dimensional models with correlations

- Solution: see F'(x,y,p) as a conditional p.d.f. F'(x|y)
 - Difference is in normalization

$$\int F(x, y) dx dy \equiv 1 \qquad \int F(x \mid y) dx \equiv 1 \text{ for each value of y}$$

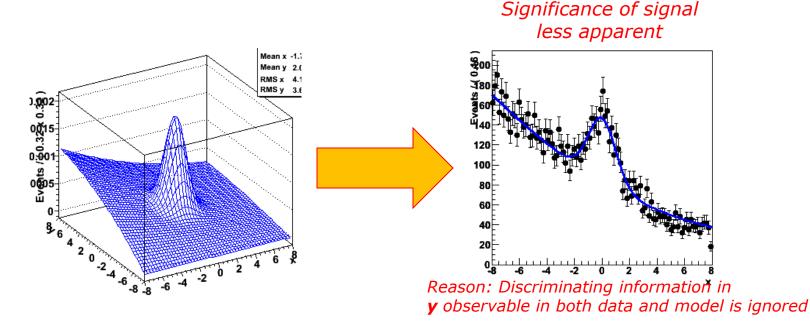
- Then multiply with a separate p.d.f describing distribution in y



- Almost **all** modeling issues with correlations can be treated this way
 - Iteration 1) Exponential Missing ET distr. of 'background' is independent of Transverse mass
 - Iteration 2) Slope depends linearly on MT \rightarrow write conditional pdf F(ET|MT)
 - Iteration 3) Multiply F(ET|MT) with empirical shape for MT

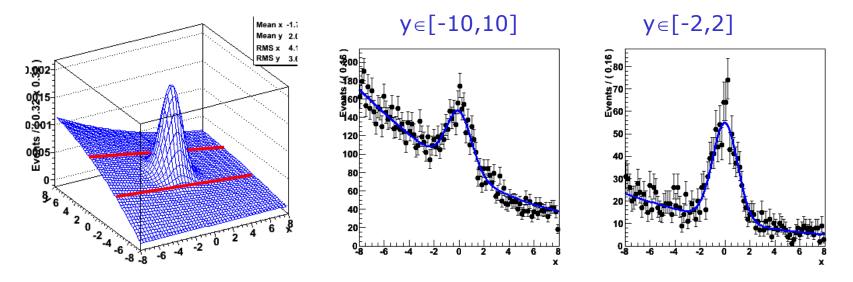
Visualization of multi-dimensional models

- Visualization of multi-dimensional models presents some additional challenges w.r.t. 1-D
- Can show 2D,3D distribution
 - Graphically appealing, but not so useful as you cannot overlay model on data and judge goodness-of-fit
 - Prefer to project on one dimension (there will be multiple choices)
 - But plain projection discards a lot of information contained in both model and data



Visualizing signal projections of N-dim models

- Simplest solution, only show model and data in "signal range" of observable y
 - Significance shown in "range projection" much more in line with that of 2D distribution

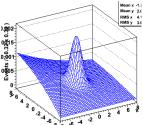


• Easy to define a "signal range" simple model above. How about 6-dimensional model with non-trivial shape?

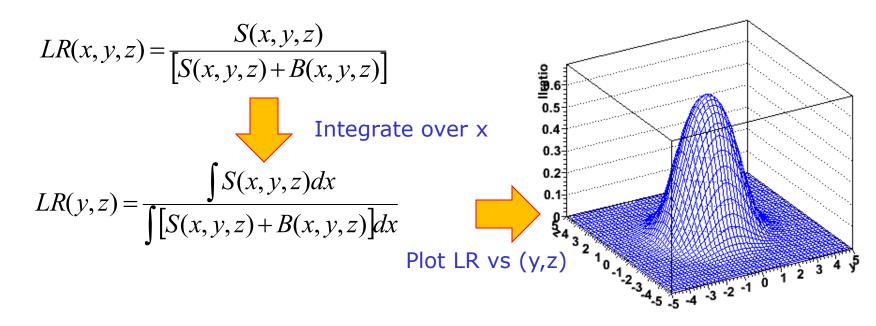
- Need *generic algorithm* \rightarrow Likelihood ratio plot

Likelihood ratio plots

- Idea: use information on S/(S+B) ratio in projected observables to define a cut
- Example: generalize previous toy model to 3 dimensions

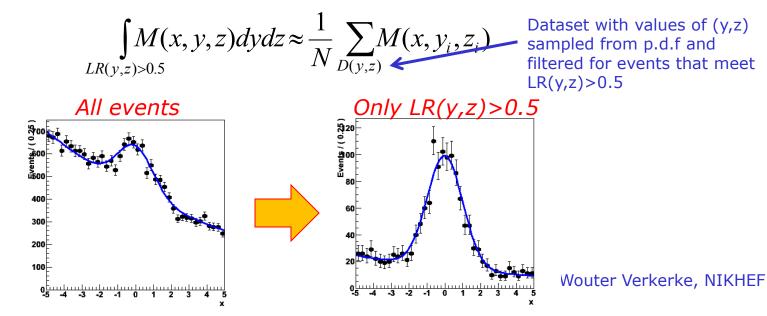


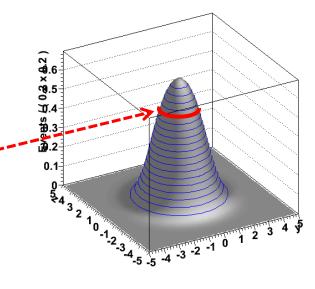
 Express information on S/(S+B) ratio of model in terms of integrals over model components



Likelihood ratio plots

- Decide on s/(s+b) purity contour of LR(y,z)
 - Example s/(s+b) > 50% -
- Plot both data and model with corresponding cut.
 - For data: calculate LR(y,z) for each event, plot only event with LR>0.5
 - For model: using Monte Carlo integration technique:





Multidimensional fits – Goodness-of-fit determination

- Goodness-of-fit determination of >1 D models is difficult
 - Standard χ^2 test does not work very will in N-dim because of natural occurrence of large number of empty bins
 - Simple equivalent of (unbinned) Kolmogorov test in >1-D does not exist
- This area is still very much a work in progress
 - Several new ideas proposed but sometimes difficult to calculate, or not universally suitable
 - Some examples
 - Cramer-von Mises (close to Kolmogorov in concept)
 - Anderson-Darling
 - 'Energy' tests

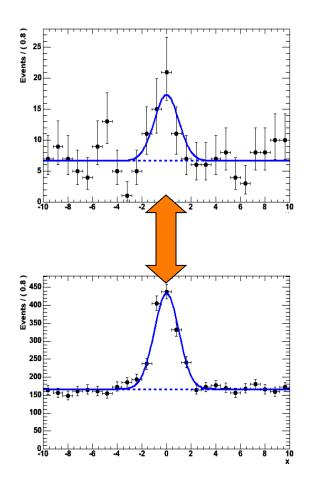
- No magic bullet here, "best" generally an ill-posed question

- Some references to recent progress:
 - PHYSTAT2001/2003/2005

Practical fitting – Error propagation between samples

- Common situation: you want to fit a small signal in a large sample
 - Problem: small statistics does not constrain shape of your signal very well
 - Result: errors are large

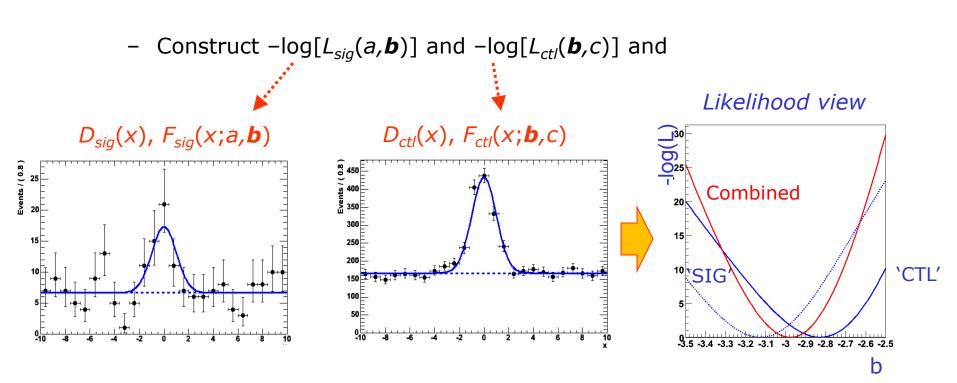
- Idea: Constrain shape of your signal from a fit to a control sample
 - Larger/cleaner data or MC sample with similar properties



 Needed: a way to propagate the information from the control sample fit (parameter values and errors) to your signal fit

Practical fitting – Simultaneous fit technique

• given data $D_{sig}(x)$ and model $F_{sig}(x;a,b)$ and data $D_{ctl}(x)$ and model $F_{ctl}(x;b,c)$

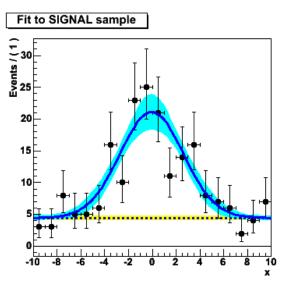


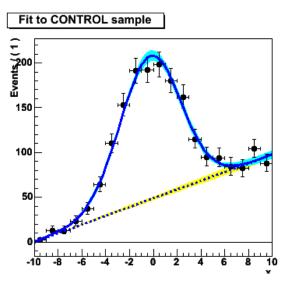
• Minimize $-\log L(a, \mathbf{b}, c) = -\log L(a, \mathbf{b}) + -\log L(\mathbf{b}, c)$

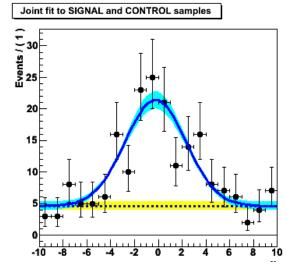
Errors, correlations on common param. b automatically propagated

Practical fitting – Simultaneous fit technique

• Simultaneous fit with visualization of error

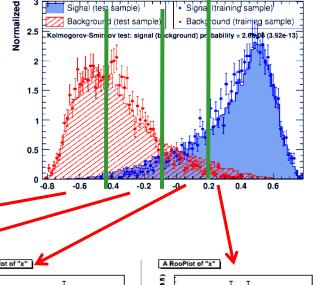


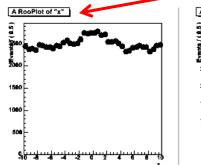


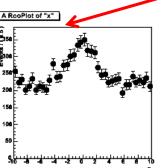


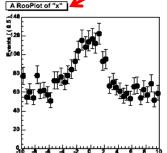
Another application of simultaneous fits

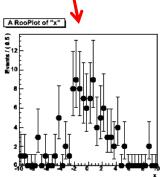
- You can also use simultaneous fits to samples of the same type ("signal samples") with different purity
- Go back to example of NN with one observable left out
 - Fit xN after cut on N(x)
 - But instead of just fitting data with $N(x) > \alpha$, slice data in bins of N(x) and fit each bin.
 - Now you exploit all data instead of just most pure data. Still no uncontrolled systematic uncertainty as purity is measured from data in each slide
 - Combine information of all slices in simultaneous fit







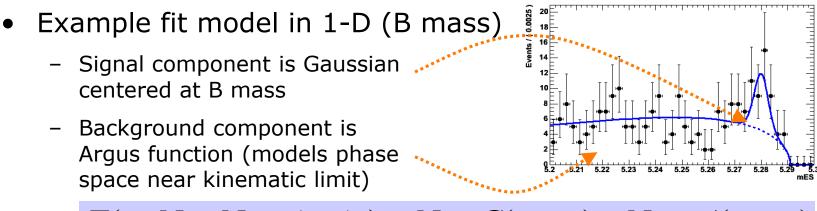




Practical Estimation – Verifying the validity of your fit

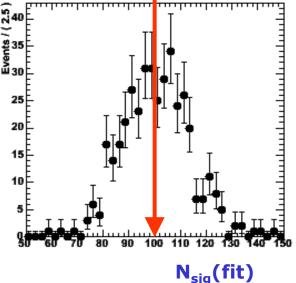
- How to validate your fit? You want to demonstrate that
 - 1) Your fit procedure gives on average the correct answer 'no bias'
 - The uncertainty quoted by your fit is an accurate measure for the statistical spread in your measurement 'correct error'
- Validation is important for low statistics fits
 - Correct behavior not obvious a priori due to intrinsic ML bias proportional to 1/N
- Basic validation strategy A simulation study
 - 1) Obtain a large sample of simulated events
 - Divide your simulated events in O(100-1000) samples with the same size as the problem under study
 - 3) Repeat fit procedure for each data-sized simulated sample
 - 4) Compare average value of fitted parameter values with generated value →
 Demonstrates (absence of) bias
 - 5) Compare spread in fitted parameters values with quoted parameter error → **Demonstrates (in)correctness of error**

Fit Validation Study – Practical example



$$F(m; N_{\text{sig}}, N_{\text{bkg}}, \vec{p}_S, \vec{p}_B) = N_{\text{sig}} \cdot G(m; p_S) + N_{\text{bkg}} \cdot A(m; p_B)$$

- Fit parameter under study: **N**_{sig}
 - Results of simulation study: 1000 experiments with N_{SIG}(gen)=100, N_{BKG}(gen)=200
 - − Distribution of N_{siq}(fit)
 - This particular fit looks unbiased...

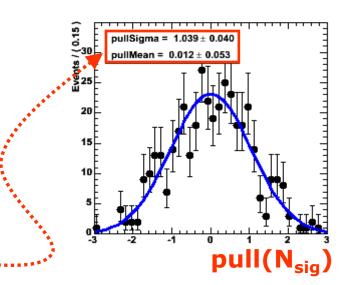


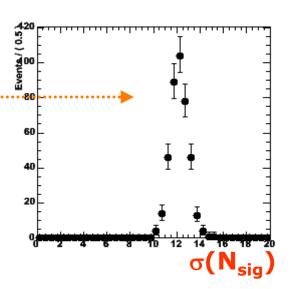
Fit Validation Study – The pull distribution

- What about the validity of the error?
 - Distribution of error from simulated experiments is difficult to interpret...
 - We don't have equivalent of N_{sig}(generated) for the error
- Solution: look at the *pull distribution*
 - Definition:

$$\text{pull}(N_{\text{sig}}) = \frac{N_{\text{sig}}^{\text{fit}} - N_{\text{sig}}^{\text{true}}}{\sigma_{N}^{\text{fit}}}$$

- Properties of pull:
 - Mean is 0 if there is no bias
 - Width is 1 if error is correct
- In this example: no bias, correct error within statistical precision of study





Fit Validation Study – Low statistics example

- Special care should be taken when fitting small data samples
 - Also if fitting for small signal component in large sample
- Possible causes of trouble
 - χ^2 estimators may become approximate as Gaussian approximation of Poisson statistics becomes inaccurate
 - ML estimators may no longer be efficient \rightarrow error estimate from 2nd derivative may become inaccurate
 - Bias term proportional to 1/N of ML and χ^2 estimators may no longer be small compared to 1/sqrt(N)
- In general, absence of bias, correctness of error can not be assumed. How to proceed?
 - Use unbinned ML fits only most robust at low statistics
 - Explicitly verify the validity of your fit

Demonstration of fit bias at low N – pull distributions

20

N_{SIG}(fit)

 $N_{SIG}(gen) = 20$

5.28

pull(N_{SIG})

Low statistics example: Scenario as before but now with 200 bkg events and only 20 signal events (instead of 100) 5.24 5.25 $N_{BKG}(gen) = 200$ Results of simulation study **Distributions become** asymmetric at low statistics \rightarrow Fit is positively biased! N_{SIG}(gen) (0.15) 25 Events / (1.5) 05 05 05 pullSigma = 1.090 ± 0.04 pullMean = 0.138 ± 0.060 . Ш20 25 20 E 15 10

Absence of bias, correct error at low statistics not obvious!

σ(N_{SIG})

Small yields are typically overestimated

Fit Validation Study – How to obtain 10.000.000 simulated events?

- Practical issue: usually you need very large amounts of simulated events for a fit validation study
 - Of order 1000x number of events in your fit, easily >1.000.000 events
 - Using data generated through a full GEANT-based detector simulation can be prohibitively expensive
- Solution: Use events sampled directly from your fit function
 - Technique named `*Toy Monte Carlo'* sampling
 - Advantage: Easy to do and very fast
 - Good to determine fit bias due to low statistics, choice of parameterization, boundary issues etc
 - Cannot be used to test assumption that went into model (e.g. absence of certain correlations). Still need full GEANT-based simulation for that.

Toy MC generation – Accept/reject sampling

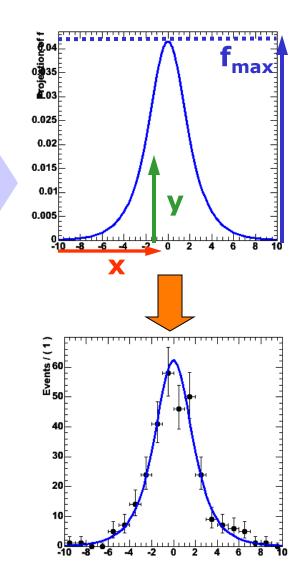
- How to sample events directly from your fit function?
- Simplest: accept/reject sampling

1) Determine maximum of function \mathbf{f}_{\max}

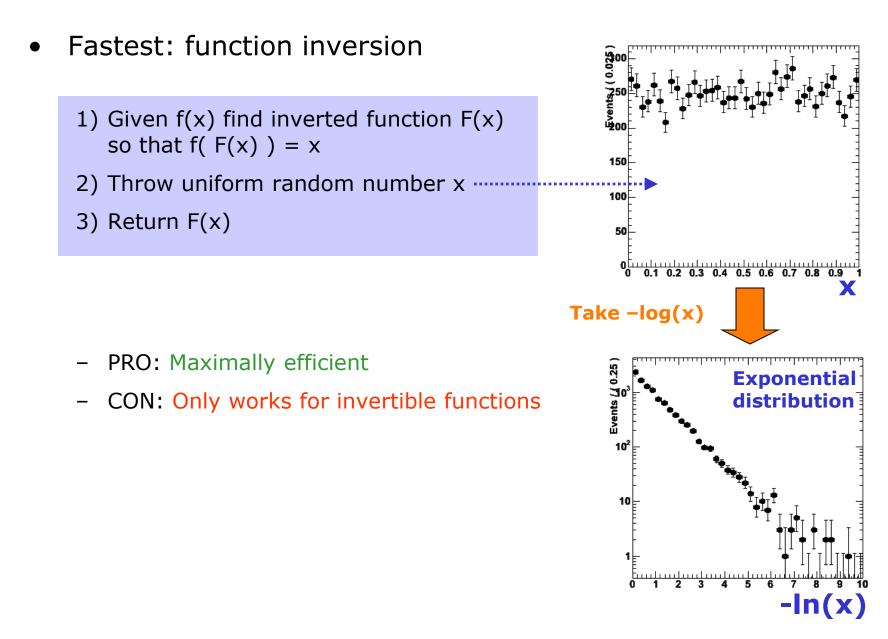
- 2) Throw random number x
- 3) Throw another random number y

4) If y<f(x)/f_{max} keep x, otherwise return to step 2)

- PRO: Easy, always works
- CON: It can be inefficient if function is strongly peaked.
 Finding maximum empirically through random sampling can be lengthy in >2 dimensions

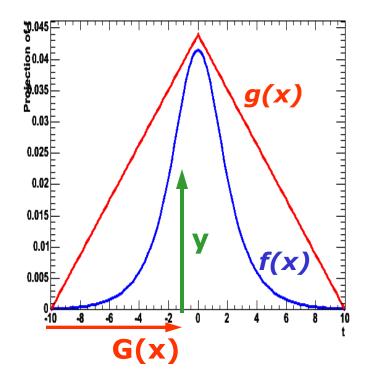


Toy MC generation – Inversion method



Toy MC Generation in a nutshell

- Hybrid: Importance sampling
 - Find 'envelope function' g(x) that is invertible into G(x) and that fulfills g(x)>=f(x) for all x
 - 2) Generate random number x from G using inversion method
 - 3) Throw random number 'y'
 - 4) If y<f(x)/g(x) keep x, otherwise return to step 2



- PRO: Faster than plain accept/reject sampling Function does not need to be invertible
- CON: Must be able to find invertible envelope function

Wouter Verkerke, UCSB

Toy MC Generation in a nutshell

- General algorithms exists that can construct empirical envelope function
 - Divide observable space recursively into smaller boxes and take uniform distribution in each box
 - Example shown below from FOAM algorithm

